
National Aeronautics and Space Administration

www.nasa.gov

Human-Rated
Automation and Robotics

A Design Handbook for Robust Operations,
Control and Fault Management

by Grailing Jones, Jr.
with David Wagner, Daniel Dvorak
and Andrew Mishkin

JPL D-66871

This document has been reviewed and determined not to contain
export controlled technical data.

Human-Rated
Automation and Robotics

A Design Handbook for Robust Operations,
Control and Fault Management

by Grailing Jones, Jr.
with David Wagner, Daniel Dvorak
and Andrew Mishkin

JPL D-66871 (Unlimited Release version)

This document has been reviewed and determined not to contain
export controlled technical data.

© 2010 California Institute of Technology. Government sponsorship acknowledged.

Acknowledgments

This document describes work performed at the Jet Propulsion Laboratory, California Institute of
Technology, under contract from the National Aeronautics and Space Administration. This work
would not have been possible without the critiques, corrections and clarifications provided by our
teammates and colleagues, Gregory Horvath, Glenn Johnson and Sanda Mandutianu. Special thanks
to Mathew Bennett, Robert Rasmussen and Michel Ingham of JPL for the state analysis class material,
upon which much of this document is based. We would also like to thank Kim Simpson, Jay
Briedenthal and Thom McVittie at JPL for providing their invaluable insights on the infusion concerns
of practitioners and customers.

 i
This document has been reviewed and determined not to contain
export controlled technical data.

Table of Contents

1 Forward .. 1

1.1 Human-Rated, Software-Intensive Systems ... 1

1.2 Purposes of this Handbook ... 2

1.3 Overview ... 2

1.4 Guide to Using this Handbook .. 3

2 Introduction and Motivation ... 5

2.1 What is Goal-Based Control? .. 5

2.1.1 The Goal-Based Control Perspective .. 5

2.1.2 Common Misapprehensions about Goal-Based Control ... 6

2.2 Motivations for Goal-Based Control ... 8

2.2.1 Product Reasons .. 8

2.2.2 Process Reasons ... 9

2.3 General Applicability of Goal-Based Control .. 11

2.3.1 “Axes” of Application Types ... 11

2.3.1.1 Degree of Control .. 11

2.3.1.2 Distribution over Deployments ... 12

2.3.2 Examples of Applications ... 13

3 Control, Goals and Specification .. 15

3.1 The Idea of Explicit Control ... 15

3.1.1 What is Control? .. 15

3.1.2 Canonical Functions of a Goal-Based Control System ... 17

3.2 The Role of Goals .. 18

3.2.1 Goals in System Specification .. 18

3.2.2 Classification of Goals .. 20

3.2.2.1 “Type” Dimension ... 20

3.2.2.2 “Category” Dimension .. 21

3.2.3 Goals over the System Lifecycle ... 22

3.3 The Role of Models ... 23

3.3.1 Model-Based Systems Engineering .. 24

3.3.2 State Analysis Framework for Goal-Based Control .. 25

Human-Rated Automation and Robotics

ii

 This document has been reviewed and determined not to contain
 export controlled technical data.

3.3.2.1 Goal Models .. 26

3.3.2.2 State Knowledge Models .. 30

3.3.2.3 State Estimation Models ... 32

3.3.2.4 State Control Models .. 33

4 Specification, Verification and Validation with State Analysis... 35

4.1 From State Analysis to Design Elements ... 35

4.1.1 Overview of State Analysis ... 35

4.1.2 Introducing the System Example ... 36

4.1.3 Realizing the Design Elements ... 37

4.1.3.1 Requirements/Goal Elicitation .. 39

4.1.3.2 Goal Elaboration and Planning .. 41

4.1.3.3 Define Scheduling Rules .. 48

4.1.3.4 Define State Variables ... 51

4.1.3.5 Define State Value Histories ... 55

4.1.3.6 Define State Controller ... 58

4.1.3.7 Define Actuators ... 63

4.1.3.8 Define Sensors .. 65

4.1.3.9 Define State Determination (Estimators) ... 67

4.1.3.10 Consider Deployments .. 70

4.2 Development Path .. 74

4.2.1 System Requirements Specification ... 75

4.2.1.1 Step 1: Build a Preliminary Goal Model .. 75

4.2.1.2 Step 2: Derive a Preliminary Concept Model .. 78

4.2.2 Technical Specification ... 80

4.2.2.1 Step 3: Elaborate the Goal Model with Supporting Goals .. 80

4.2.2.2 Step 4: Derive the Updated Concept Model ... 83

4.2.2.3 Step 5: Analyze Responsibilities and Elaborate Controller Models 84

4.2.2.4 Step 6: Make Choices among Alternative Options ... 87

4.2.2.5 Step 7: Build and Analyze the Behavior Model ... 88

4.3 General Principles for Specification using State Analysis ... 91

4.3.1 Guiding Design Principles for Architecture .. 92

4.3.2 Design Patterns (adapted from [Wagner2008]) .. 93

 iii
This document has been reviewed and determined not to contain
export controlled technical data.

4.3.2.1 State Estimation .. 93

4.3.2.2 State Control ... 96

4.3.2.3 Reactive Closed-Loop Control ... 97

4.3.2.4 Goal Network .. 99

4.3.2.5 Goal Elaboration ... 101

4.3.2.6 Goal Planning and Scheduling ... 102

4.3.2.7 Executive Control (Timeline Execution) .. 104

4.3.2.8 Goal Monitoring and Fault Response ... 106

4.3.2.9 Deliberative Closed-Loop Control ... 107

4.3.2.10 Deliberative and Reactive Closed-Loop Control ... 109

4.3.3 General Specification Questions .. 110

4.3.3.1 State Knowledge ... 110

4.3.3.2 State Constraints ... 112

4.3.3.3 State-Based Model .. 113

4.3.3.4 Goal Achievers .. 114

4.3.3.5 Measurements and Commands .. 114

4.3.3.6 Deployments ... 115

4.4 Verification and Validation of Goal-Based Systems .. 116

4.4.1 Benefits of Models in Verification and Validation ... 116

4.4.2 Architecture Benefits for Verification and Validation .. 117

4.4.2.1 State Analysis Framework Architectural Benefits for V&V ... 117

4.4.2.2 Component Framework Architectural Benefits for V&V .. 119

4.4.3 Well-Rounded, Comprehensive Verification and Validation ... 121

5 Operations, Execution and Fault Management ... 125

5.1 Goal-Based Sequencing ... 125

5.1.1 Coordinating Control through Goal Elaborations .. 125

5.1.2 Planning and Scheduling .. 127

5.1.3 Validation of Goal-Based Plans .. 128

5.2 Goal-Based Execution ... 129

5.2.1 Accomplishing Intent through Goal-Based Sequencing ... 129

5.2.2 Goal-Based Execution in Action ... 130

5.2.3 Monitoring Goal-Based Execution ... 135

Human-Rated Automation and Robotics

iv

 This document has been reviewed and determined not to contain
 export controlled technical data.

5.3 Robust Execution and Fault Management .. 137

5.3.1 Goal-Based Control for Fault Management ... 137

5.3.2 Elements of Goal-Based Fault Management ... 143

5.3.3 Off-Nominal Execution of Sequences .. 145

5.3.4 Reacting to Off-Nominal Execution.. 147

5.3.4.1 Local Responses by Robust Achievers... 147

5.3.4.2 Non-Local Responses to Faults ... 150

Appendix A: Glossary .. 153

Appendix B: Airlock Demo .. 159

Overview and Motivation ... 159

State Analysis .. 159

Implementation Details .. 161

How It Works .. 162

Appendix C: Lunar Rover (SEV) Demo ... 163

Overview and Motivation ... 163

State Analysis .. 163

Implementation Details .. 165

How It Works .. 165

Appendix D: References .. 167

Cited Works ... 167

Referenced Works ... 167

Appendix E: Author Biographies ... 168

 v
This document has been reviewed and determined not to contain
export controlled technical data.

Table of Figures

Fig. 2.1. Document-based vs. model-based engineering.. 9
Fig. 2.2. Relative cost to repair defects at different lifecycle phases (data derived from [Davis1993]) 10
Fig. 2.3. Classification and examples of goal-based systems .. 12
Fig. 3.1. Overview of classic control concepts .. 15
Fig. 3.2. Control systems vs. system under control .. 16
Fig. 3.3. Functions of the control system .. 17
Fig. 3.4. Camera heater example .. 19
Fig. 3.5. State effects model of camera temperature .. 20
Fig. 3.6. The “Type” dimension of goals ... 21
Fig. 3.7. The “Category” dimension of goals ... 22
Fig. 3.8. NASA project lifecycle phases, key events and major reviews ... 22
Fig. 3.9. Mapping of control system functions to state analysis models .. 25
Fig. 3.10. Evaluation of goal over timeline ... 26
Fig. 3.11. Composition of a goal specification .. 27
Fig. 3.12. Analysis/decomposition of goals from requirements ... 28
Fig. 3.13. Transition and maintenance sub-goals of an achieve goal ... 29
Fig. 3.14. State effects modeling .. 31
Fig. 3.15. Overview of state estimation .. 32
Fig. 3.16. Overview of state control .. 33
Fig. 3.17. Example controller specification: switch position .. 34
Fig. 4.1. Overview of state analysis practices ... 36
Fig. 4.2. Imaging system example ... 37
Fig. 4.3. Mapping of design elements to state analysis models ... 38
Fig. 4.4. Requirements/Goal Elicitation practice detail .. 39
Fig. 4.5. Primary model focus for Requirements/Goal Elicitation Practice .. 39
Fig. 4.6. Specification of goals from requirements ... 40
Fig. 4.7. State effects diagram of goals in figure 4.6... 41
Fig. 4.8. Primary model focus for Goal Elaboration and Planning Practice .. 42
Fig. 4.9. Goal Elaboration and Planning practice detail .. 42
Fig. 4.10. Elaboration of main goal into supporting sub-goals ... 43
Fig. 4.11. Example of elaboration rules 3 and 4 ... 44
Fig. 4.13. Specification of alternate tactics ... 46
Fig. 4.14. Anticipating and correcting planning issues through projection .. 48
Fig. 4.15. Define Scheduling Rules practice detail .. 48
Fig. 4.16. Expansion of a goal into goal network .. 49
Fig. 4.17. From goal nets to x-goal timelines .. 50
Fig. 4.18. Merging of goals into x-goals .. 51
Fig. 4.19. Fix to merged timeline by adding a transition goal... 51
Fig. 4.20. Define State Variables practice detail ... 52
Fig. 4.21. State effects model from domain analysis .. 53

Human-Rated Automation and Robotics

vi

 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.22. State effects modeling example .. 54
Fig. 4.23. Define State Value Histories practice detail .. 55
Fig. 4.24. Data state variable definition example ... 56
Fig. 4.25. State effects diagram with data state variable annotations ... 57
Fig. 4.26. Elaboration of knowledge goals into data goals ... 58
Fig. 4.27. Define State Controllers practice detail .. 59
Fig. 4.28. Delegation pattern for reactive control .. 60
Fig. 4.29. Determining state variables and goals from goal models ... 62
Fig. 4.30. Command model for switch position state variable ... 62
Fig. 4.31. Define Actuators practice detail ... 63
Fig. 4.32. From command model to actuator models .. 64
Fig. 4.33. Define Sensors practice detail ... 65
Fig. 4.34. Temperature sensor specification... 66
Fig. 4.35. Define State Determination practice detail .. 67
Fig. 4.36. Determination of state variable states from state effects model .. 68
Fig. 4.37. Deriving estimator algorithm from available evidence ... 69
Fig. 4.38. Consider Deployments practice detail .. 70
Fig. 4.39. Canonical functions of the goal-based control system (as introduced in section 3.1.2) 71
Fig. 4.40. Example of partitioning of functions of control system into deployments 73
Fig. 4.41. Generalized development path... 74
Fig. 4.42. Development path detail on step 1: build a preliminary goal model ... 75
Fig. 4.43. Functional flow block diagram for the remote imager system ... 76
Fig. 4.44. Progressive refinement from objectives to goals ... 77
Fig. 4.45. Examples of preliminary goal/sub-goal definitions... 78
Fig. 4.46. Development path detail on step 2: derive preliminary concept models 78
Fig. 4.47. From goal models to state effects... 79
Fig. 4.48. Development path detail on step 3: elaborate the goal model with supporting goals 80
Fig. 4.49. Elaborating of original goal model .. 81
Fig. 4.50. Determination of state variables from sub-goals ... 82
Fig. 4.51. Scenario definition from state variables ... 82
Fig. 4.52. Development path detail on step 4: derive the updated concept model 83
Fig. 4.53. Updated scenario with durations .. 84
Fig. 4.54. Development path detail on step 5: analyze responsibilities and elaborate controller models 85
Fig. 4.55. Allocation of controller to goals .. 86
Fig. 4.56. Controller algorithm and related specifications ... 86
Fig. 4.57. Development path detail on step 6: make choices among alternative options 87
Fig. 4.58. Development path detail on step 7: build and analyze the behavior model 89
Fig. 4.59. Projected state prediction inputs .. 90
Fig. 4.60. Determining projected state from model inputs .. 91
Fig. 4.61. Comparison of projected state to intended state ... 91
Fig. 4.62. (Re-stated) Metamodel of state analysis design elements ... 93
Fig. 4.63. Estimation pattern (minus command evidence) ... 94

 vii
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 4.64. State control pattern ... 96
Fig. 4.65. Reactive closed-loop control pattern .. 98
Fig. 4.66. Goal network ... 100
Fig. 4.67. Goal elaboration pattern ... 101
Fig. 4.68. Planner/scheduler Interactions ... 103
Fig. 4.69. Executive pattern .. 105
Fig. 4.70. Goal monitor pattern .. 106
Fig. 4.71. Fault response ... 107
Fig. 4.72. Basic specification questions for state analysis .. 110
Fig. 4.73. Properties checked by formal methods .. 119
Fig. 4.74. Component architecture pattern concepts .. 120
Fig. 4.75. Layered implementation of systems ... 121
Fig. 4.76. Healthy, well-balanced verification and validation (adapted from [Feather2002]) 122
Fig. 5.1. Elaboration, projection and scheduling in the control system context 125
Fig. 5.2. Progressive activity specification through elaborations ... 127
Fig. 5.3. Example of a goal macro ... 128
Fig. 5.4. Execution function in control system context .. 129
Fig. 5.5. Time point firing on temporal constraint satisfaction .. 131
Fig. 5.6. Specification and evaluation of ReadyToTransition conditions .. 132
Fig. 5.7. Evaluation of merged time points ... 133
Fig. 5.8. External temperature goal example ... 134
Fig. 5.9. Tactics for specifying transition constraints for unconstrained states 135
Fig. 5.10. Distribution of monitoring over deployments .. 136
Fig. 5.11. Monitoring execution from the flight and ground deployments .. 137
Fig. 5.13. Reactive fault protection versus goal-based fault management .. 143
Fig. 5.14. Sensor health hypothesis test example .. 144
Fig. 5.15. IsStillSatisfied condition evaluation of goals ... 145
Fig. 5.16. Temporal constraint violation example .. 146
Fig. 5.17. Goal failure example ... 147
Fig. 5.18. Robust controller example .. 148
Fig. 5.19. Robust controller example specification... 149
Fig. 5.20. Non-local goal-based controller responses to faults .. 150
Fig. B1. Airlock state effects.. 159
Fig. B2. Airlock demo system components ... 161
Fig. B3. Airlock control components ... 162
Fig. C1. Energy state effects .. 164
Fig. C2. SEV demo system components .. 165
Fig. C3. Energy situation display ... 166

This page intentionally left blank.

 1
This document has been reviewed and determined not to contain
export controlled technical data.

1 Forward
1.1 Human-Rated, Software-Intensive Systems
Future human space missions—whether exploring the Moon, working at a Lagrange point, or visiting a
near-Earth object—will be increasingly ambitious. The challenges of these missions, particularly
roundtrip communications time delays, interplanetary transit times of months, and human presence in
unstructured, natural planetary surface environments, will require the evolution of new mission
scenarios and operations approaches generally less dependent on rapid response by earthbound
operations teams. Functions that Mission Control can no longer sensibly perform must be addressed by
systems or personnel local to crew activities. Robotics and automation will provide an essential means
to reduce risk for crews to acceptable levels, augment human capability, and enable the transfer of
traditional mission control tasks from the ground to crews.

For automated and robotic systems to be truly human-rated, they must be trusted by operators and
crews, and be worthy of such trust. In this handbook, we address the design of human-rated control
systems for automation and robotics, which is arguably the characteristic of automation and robotics
that is distinct and unique relative to other human-rated space systems. (We specifically do not address
aspects of human rating that are common to all physical systems, e.g., choice of materials, levels of fault
tolerance for electronics and mechanisms, or inclusion of redundant physical elements.)

We wrote this handbook to describe a specific framework and approach for specifying, developing and
operating human-rated software-intensive systems. Current and future operations concepts feature
more frequent and complex interactions between humans and automated systems to achieve mission
objectives. These supporting systems will be key enablers and “force multipliers” for astronaut partners
as well as ground-based operators, extending human presence in space in concert with other elements
of the exploration system. The ability to deliver more robust, reliable, and high-quality software systems
is key to realizing this vision.

The approach and framework introduced in this document is a response to the challenge of developing
flexible, safe and capable systems. A cardinal feature of our approach is the cogent, disciplined focus on
architecture, which provides a cornerstone for process, design and product assessment over the system
lifecycle. The formalisms of the framework provide architects with the right set of concepts to answer
the right questions, pointing to the right solutions. The framework’s concepts define an ontology suited
to describing dynamic systems in terms of their natural language of goals and control. The architecture
specification defined using this framework provides an expressive and powerful complement to
traditional requirements documentation. Architectures expressed in terms of this framework guide
detailed design and live on as the record of decisions and rationale, enabling ongoing system analysis to
accommodate inevitable changes.

We also describe how our approach and framework leverages the best aspects of model-based systems
engineering to enhance product quality, reduce risks and transfer knowledge over the life of the system.
The conceptual framework we introduce enhances stakeholder knowledge capture by providing an
open, expressive platform for gathering input and documenting the domain knowledge. Being models,
the specifications are easier to implement, and the resulting designs and products are easier to verify
and validate. Lastly, the specifications are directly traceable to the original expression of user need,
providing an operator-centric system view for increased operability.

Human-Rated Automation and Robotics

2
 This document has been reviewed and determined not to contain
 export controlled technical data.

1.2 Purposes of this Handbook
This handbook is a guide for readers interested in the specification, development, test and operation of
software-intensive systems for mission-critical applications. The ultimate objective is to enable the
development of cost-effective human-rated automation and robotics for human spaceflight. In support
of this objective, we introduce the reader to the background and theory of goal-based control in
particular, and make the case for applying this view to the architecting, development and operation of
systems. By advancing these ideas, we seek to increase awareness of these conceptualizations and
techniques, as well as to network with other practitioners involved with similar issues. We also cover the
conceptual framework of state analysis, and use examples to introduce the practices involved in
developing the models. This introduction to the “mechanics” gives the reader a practical context to
understand the previously developed theory. We end this document with a description of operations,
pointing out how this framework differs from “traditional” approaches, where illustrative.

This handbook complements existing primary documentation on state analysis, which goes into depth
on particular aspects of the concepts and methodology. In contrast, this document provides a more
integrated picture of how these concepts are related to generalized development and operations
processes, and how to apply them over the system lifecycle. We also provide examples of systems
developed under the conceptual framework to illustrate how to apply these ideas to real systems.

By reading this document, readers will come away with the motivation and knowledge to apply these
ideas to their own problems. While making the reader an expert is out of the scope of any one
document, the reader will gain an appreciation for how these ideas can apply to their own projects, and
have the insights and references to follow up on issues in their particular areas of focus.

1.3 Overview
This document provide readers with an introduction to the theory and practice of specifying, designing
and operating robust, reliable, human-rated automation using the state analysis conceptual framework.
The first portion of the document makes the case for a control-focused view of automation, rooted in
the formalism of classic control and generalized through the agency of goals. The reader is then
introduced to the state analysis model framework, along with a description of the benefits of models in
architecting, developing and operating systems.

The remainder of the document covers the practical aspects of architecting, developing, testing, fielding
and operating systems realized through this conceptual framework.

• Chapter 2: Introduction to the goal-based systems view for human-rated automation. The chapter
begins with definitions and then moves on to describe benefits of the goal-based view. The chapter
ends with a qualitative description of the span of applications, as well as brief descriptions of some
of the systems that have been fielded using these concepts.

• Chapter 3: Further description of the notion of explicit control, developing it from the formalisms
of classic control theory. We introduce the notion of goals as a means for specifying desired system
behavior, and explain how goals fit into the overall specification of system requirements. The
chapter ends with a look at the key models used in state analysis.

• Chapter 4: This chapter focuses on the practical details of specifying, developing and testing goal-
based systems. It begins by describing the practices employed in specifying goal-based systems,
along with examples of the resulting products. These practices are woven into an example of a

 3
This document has been reviewed and determined not to contain
export controlled technical data.

lightweight systems engineering process that illustrates how to employ the practices in
development. We include a section on verification and validation, describing the mechanics and
advantages afforded by model-based development for system integration and testing.

• Chapter 5: This chapter describes how goal-based systems are operated, making reference to
“traditional” sequencing while contrasting it with goal-based behavior specification. The chapter
covers the concepts and mechanics of both nominal and off-nominal execution, with added
emphasis on the advantages of cognizant control for critical, human-rated applications.

• Appendices: In addition to a list of cited works and glossary of terms with definitions unique to
state analysis, we include overviews of two demonstration systems realized through application of
the concepts and techniques described here.

1.4 Guide to Using this Handbook
The following guide is a set of recommendations on the content and depth of a first reading, based on
the reader’s particular interests. While an overall appreciation of the concepts, arguments, and practical
details can best be achieved through a complete reading, this document was written so that a reader
could focus on their critical interests initially, and refer back to other sections as needed.

The following categories will help readers identify their project role and the recommended readings for
that role in Table 1:

• Technologists: People in this category are looking to leverage new tools to tackle existing or
emerging problems.

• Architects: People charged with specification of the abstract structural and behavioral
characteristics of the system-to-be so that it is responsive to requirements. Their architecture
specification informs subsequent design and development.

• Developers: Developers are charged with detailed design and creation of the system in accordance
with the guidance codified in the Architect’s specification.

• Operators: Personnel who use or interact with the system to achieve mission objectives.

• Testers: Testers provide objective evidence of system compliance with requirements (verification)
and the system’s suitability for its intended purpose (validation). Testers may or may not be distinct
from Developers (depending on the project).

• Managers: Managers are charged with ensuring the delivery of a product with the agreed
capabilities while managing technical, budget and schedule risks.

Human-Rated Automation and Robotics

4
 This document has been reviewed and determined not to contain
 export controlled technical data.

Table 1. Chapter priorities and key lessons, categorized by stakeholder group.

 5
This document has been reviewed and determined not to contain
export controlled technical data.

2 Introduction and Motivation

2.1 What is Goal-Based Control?
In this section we introduce the concept of goal-based control by way of building from a short
description of control in the context of systems. From this description, we also begin to relate some of
the important advantages of goal-based control in development, verification and operations.

As a complement to this introduction to Goal-Based control, we address some common
misapprehensions regarding systems using goal-based automation.

2.1.1 The Goal-Based Control Perspective
In the Goal-based Control perspective, the foremost question for the architect when carrying out the
specification is “what means are necessary to get the system under control to exhibit the desired
behaviors to satisfy mission needs?” Development is done by iteratively asking this question, refining
the answers and associated assumptions, and capturing these insights in a system specification
represented as a set of complementary models.

Two very important concepts in the goal-based control perspective are the concepts of Behavior and
Control. Behavior is the expression of time-varying qualities of interest. The room temperature is a
behavior of interest to a heating/cooling system designer. It varies with time in accordance with
understood and modeled principles, and would be featured in any specification of what the control
system is supposed to do. Control is the business of manipulating the system to achieve desired
behavior. Through control, we define and enforce limits on behavior to achieve user objectives (i.e. not
to bake or freeze in this example).

Through the goal-based control perspective, we focus special attention on the process of translating
user needs into a set of required system behaviors to be achieved by a control system. Fundamental to
this perspective is the assumption that a significant fraction of the mission needs will be satisfied by
system behaviors; the system will have to do things to satisfy the customer. Bridges and unmanned
aerial vehicles are alike in that they both have requirements, however, the nature of the behavioral
requirements (e.g. response time, imaging, etc.) that are critical to the UAV differ in important ways
from the classic static requirements of the bridge (e.g. load capacity, clearance above highest waterline).
Specifying and addressing these behavioral requirements is our focus in this perspective.

Successful system engineering starts with a rigorous understanding of mission and user needs. These are
customarily traced to a set of requirements for a system that satisfies the identified needs. The goal-
based perspective also follows this approach. However, as alluded to in the bridge versus UAV example,
we must differentiate between the static and dynamic (behavioral) requirements.

The Behavioral requirements are expressed as goals. A goal is a prescriptive statement of intent that the
system must satisfy through the cooperation of its agents. Goals are requirements; they express a
quality the system must have as a condition for stakeholder acceptance. It is helpful to remember that
All Goals are Requirements, but not all Requirements are Goals. The necessary difference between
Behavior and Static requirements is the nature of the specification. For example, “system wet mass shall
not exceed 7500kg” is a static requirement. The agents responsible for ensuring that requirement is met
are outside the control system scope. An example of a goal would be “The antenna boresight shall point
within +/- 1mrad of commanded target within 1min of commanding”. This requirement is a specification
on desired behavior which must be satisfied by a control system.

Human-Rated Automation and Robotics

6
 This document has been reviewed and determined not to contain
 export controlled technical data.

As with requirements, goals are determined through careful analysis of the mission and user needs.
Goals and requirements share many techniques for elicitation and analysis.

Goals are a more natural, appropriate way of expressing desired qualities for behaviorally-dominant
systems and act as a powerful complement to static requirements. Goals capture the complete set of
information required to specify a needed behavior, namely what must be controlled, a constraint on it,
and an interval over which it must be satisfied. These ideas will be expanded at length over the course of
this document.

While we focus primarily on the role of goals in system specification in this document, the reader is
encouraged to remember that both kinds of requirements are needed to capture the full range of
stakeholder expectations to be satisfied by any system.

Goals provide an explicit specification of user intent; a proposition of desired behavior which must be
satisfied. An important advantage of goal-based systems is the capacity for true closed-loop, cognizant
control. Goal-based systems check as-run execution versus plans (intent as arrangement of goals). This
provides a running check of execution and allows users to specify appropriate measures for handling
situations where system and/or the environmental conditions are not as expected. Measures can be
defined to handle such situations by changing plans in accordance with desired behavioral
requirements.

Goals also provide a more transparent mapping from customer needs to system specification. Each goal
is explicitly traced to the elements of the system (sensors, actuators, estimators and controllers)
responsible for achieving it. This provides a ready mechanism for analyzing the effects of proposed
changes (changes in user need trace to goals and their supporting elements) and packaging the system
for verification. This architecture of components traceable to goals also facilitates isolation and
debugging in development.

In addition to goals leading to proper packaging of a system for verification, the specification of desired
behavior we describe is readily verifiable. Goals are testable propositions readymade for verification.
This structured, unambiguous expression of intent also enables the use of powerful analytic methods for
verifying systems designs by use of formal model-checking methods. Formal methods provide powerful
guarantees of design correctness, resulting in early and effective mitigation of risk.

2.1.2 Common Misapprehensions about Goal-Based Control

Myth 1: Goal-based Control Systems are Non-deterministic

A key distinction of goal-based control systems is that instead of specifying behavior in a procedural
manner (commonly as timed lists of commands), goal-based control systems are operated by specifying
intent over time. The mistaken understanding about non-determinism springs from a different
understanding of what it means to control a system.

In a procedural system, control is tied to the idea of effecting change (by issuing commands) at
particular times to satisfy user objectives. In goal-based control systems goals are used to express the
behavioral requirements we want achieved. By proper specification of the goal, and how the goal is
achieved and verified by the system, we get a guarantee that the system behavior will conform to our
desires. Such guarantees are not afforded by procedural systems.

The key to this guarantee is the cognizant control afforded by a goal-based specification. We explicitly
state the property that should hold (e.g. the switch should be closed from t1 to t2); the system controls

 7
This document has been reviewed and determined not to contain
export controlled technical data.

based on the knowledge of what the current state is and compares to the desired state expressed in the
goal. The goal-based system commands to rectify the difference between actual and intended state. In a
procedural system, you do not have this explicit statement of desired state. Without the notion of
desired state to enforce, procedural systems work in open-loop commands. While an operator of a
procedural system knows when commands will be issued, they do not have the closed-loop guarantee of
satisfaction of intent. This scheme is vulnerable to situations where the system or environment are not
as expected (e.g. events such as switch failures). As a result, procedures can run, resulting in commands
inappropriate for the current state.

In contrast, the goal-based system, by closed-loop control, is always checking at execution what the
state of the system is versus what the operator wants. Through models of the system under control, the
control system can determine in the current context which commands are appropriate to achieve the
user-specified goals. For all times, users know what they will get with a given system state. As a result,
goal-based systems can be even more deterministic than procedural systems.

Myth 2: Goal-based Systems afford Limited Insight into Run-time Behavior

The roots of this misapprehension also spring from the key differences between procedural systems and
goal-based systems. In actuality, goal-based control systems can offer as much or more visibility into
why commands were issued at run-time. Goal-based control systems command to satisfy user-specified
intent over time while procedural systems issue commands as specified in time-ordered lists. Both types
of systems can return a diagnostic merged list of commands and times of issue in as-run logs. The
difference is that in the goal-based case, commands issued can be associated back to the goals that
spawned them through the command issue times in the log, goals active and state information kept by
the system. As a result, nothing happens in the system without traceability to the conditions true at the
time, and just as importantly the intent of the commanding. Procedural systems do not afford this
insight into why commands were issued at certain times. While it may be easy in systems running few
procedures in parallel, this lack of traceability between commands and procedures (and intent) can be a
serious impediment to analysis of execution.

Goal-based systems also carry out run-time and forward-looking checks of the effects of commanding to
ensure the system can and will properly carry out user intent. Procedural systems do not check the
effects of commands. This is an important drawback in systems where many procedures can run
concurrently yes may not have been written with consideration to the multitude of other procedures
which may run in parallel. The results may be execution of procedures with commands that may be
inappropriately interleaved.

Myth 3: Application of Automation is “All or Nothing”

What we are advocating in this document is an architectural approach for specifying, developing and
operating behaviorally-dominant systems. The goal-based approach we describe centers on the insight
that behaviorally-dominant systems are best described using goals, and that the systems that satisfy
them are collections of agents to achieve goals. The characteristics of the agents accomplishing the roles
of the system are up to the architect. The agents can be software components, outside systems, or
human actors. As we shall show in later sections, the canonical functions of the control system can be
allocated any number of ways to any set of agents and actors that make the most sense architecturally.

Operators also enjoy a great measure of latitude in specifying run-time behavior. While a full-up goal-
based system is “sequenced” using goals, users can also specify intent as lower-level goals with a degree
of specifics approaching individual commands. While operating in this mode allows the familiarity of

Human-Rated Automation and Robotics

8
 This document has been reviewed and determined not to contain
 export controlled technical data.

“traditional” sequencing, the underlying goal-based system still affords the benefits of model checking
providing run-time and forward looking verification of plans.

2.2 Motivations for Goal-Based Control
The benefits of goal-based control fall under two main areas, product and process.

2.2.1 Product Reasons
The product reasons focus on the intrinsic quality advantages of systems realized using goal-based
methods. Over the course of this document, we will make the case that systems specified through goal-
based architectures enjoy significant advantages over more traditional procedurally-based systems.

A key advantage of goal-based systems is the true closed-loop nature of operation they enable. Closed-
loop control is recognized as the most appropriate mode of operations in dynamic, often poorly-
understood environments. Closed-loop systems use information on actual conditions and system
performance along with an internal model of the system and environment in order to achieve and
maintain desired constraints on the dynamic features of interest.

Closed-loop operations are more robust against unexpected conditions, both in the environment and
the system itself (faults, flawed specifications). A closed-loop system constantly updates its knowledge
of the system context by polling for and integrating measurements of interest, ensuring appropriate
action in response to events.

Closed-loop systems employ explicit models to represent not only the current state of the environment
and system under control, but also the impact of commands issued or planned. As a result, the system
runs a constant check of commanding to ensure that its actions are in concordance (or at least do not
conflict) with operator-stated objectives. This checking is done both at run-time and out to the edge of
the planning horizon through the agency of state projection. As a result, operators are assured both at
planning time and run-time that the commanding will have the desired outcome.

Closed-loop systems implemented by goal-based architectures compare favorably with procedural
systems for a number of reasons in theory and practice. While it is not a primary purpose of this paper
to debate the relative merits of goal-based versus procedural systems, it does serve illustratively to
contrast these types of systems.

In Goal-based systems, operator intent is always explicit. While a procedure might have a command to
“close a switch”, the intent of the switch closing is not necessarily evident. While one might address it
with documentation, coordinating multiple concurrent procedures (often authored by separate teams)
can be problematic. Goal-based systems, as we shall describe, feature mechanisms for assessing and
deconflicting intent at planning and run-time. The intent of a goal is immediately inspectable, which
facilitates the review, maintenance and coordination of sequencing by operators.

Procedural systems lack the closed-loop guarantees of goal-based systems. Commanding is done
without cognizance of effects, often using timing as the sole criteria for issuing commands. While a
properly written sequence will work when the system is in the nominal configuration, this
implementation is not robust to off-nominal situations where the system or environment may not
conform to the operator’s expectations. Goal-based systems command to close the gap between explicit
user intent and actual conditions. A key byproduct is a constant check of the suitability of commands at
run-time.

 9
This document has been reviewed and determined not to contain
export controlled technical data.

2.2.2 Process Reasons
The process reasons focus on how model-based systems specification with goal-based architectures
enhances the overall systems engineering processes. These benefits increase product quality, reduce
costs and cycle time while reducing project risks.

Modeling is a key activity in engineering. Models are the prime means for capturing and conveying
understanding of the domain of interest. The inherent expressiveness of natural language proves a
double-edged sword in system specification. Natural language statements can have a number of
interpretations, resulting in ambiguity of specification. Models have proven to a powerful way to
express these complex concepts with a minimum of ambiguity.

Models are increasingly supplanting text-based documentation as the main products of systems
engineering practices. While models in the form of blueprints, equations and other representations have
been in use since antiquity, newer, structured and subtle modeling methodologies have come into use
to specify and analyze our increasingly complex and sophisticated systems.

Correctly carried out, the structure of the models allows the team to progressively ask and answer the
questions that capture stakeholder needs, specify and analyze a system that meets said needs and
fosters the communication of these insights to personnel at all points in the system life cycle. Text
documentation is often seen as orthogonal to the goal of fielding a system to meet user needs, as it is

Fig. 2.1. Document-based vs. model-based engineering

Human-Rated Automation and Robotics

10
 This document has been reviewed and determined not to contain
 export controlled technical data.

often not updated to capture changes. The result is a “document for documentations sake” which is
done, then forgotten as it becomes quickly irrelevant. In contrast, models-centric engineering uses
models as the venue where changes are proposed, impacted and effected. As a result, model-based
specifications can more relevant and value-added to the team.

While models have been coming into increased and formalized use in technical projects, a key problem
has been the parallel development of models by teams. This is particularly acute on larger projects
where a number of distributed teams may need to model the same domain. Due to limitations in their
tools, modeling methodology or organizational factors, it often happens that multiple models may come
into existence covering the same domain issues. As a result, the clarity afforded by modeling is negated
due to model conflicts when teams have differing understandings of specific aspects of a system.

In response, we advocate not only for an elevated role for models in systems engineering, but a
centralization of those models as well. In this document, we cover a modeling methodology and
architecture to realize this centralized, model-based vision with a goal-based control view.

The goal-based view emphasizes the description of desired behavior and the progressive specification of
a system to achieve it. By taking the right view of systems, we are set up to ask the right questions. The
beginning of this story is how the goal-based view facilitates requirements gathering and analysis.

It is a common observation in practice that requirements have the power to make or break projects.
Investing in better requirements elicitation and analysis has proven to be a potent measure for reducing
project risk. Having the right requirements (correct, well-stated, valid) saves development time and
costs associated with working toward the wrong problems.

By focusing on understanding how desired behaviors achieve user needs, we have the right starting
point to describe what should happen, as well as a stable point from where we can describe the
necessary qualities of the control system that will achieve the specified behavior.

Fig. 2.2. Relative cost to repair defects at different lifecycle phases (data derived from [Davis1993])

 11
This document has been reviewed and determined not to contain
export controlled technical data.

Goals are the specification of requirements on behavior. These specifications capture what must be
controlled, as well as the necessary constraints. The goal model serves as the starting point to specify
the system to satisfy the goals through the practices of state analysis. By modeling in this fashion, we
can ensure our understanding is complete (we consider everything we need and no more), consistent
(everyone uses the same models) and correct (the understanding is verified and validated). The model
of needs captured in goals and system specification are explicitly connected, ensuring design decisions
can be traced back to original rationale, and facilitating assessments of the impact of proposed changes.

Goals also provide a more natural representation of desired behavior for operators and testers. The goal
specification focuses on intent, representing desired behavior it a way that can only be interpreted as
success or failure. This provides the clear-cut pass/fail criteria necessary for personnel involved in
verification.

Goal specification also simplifies operations. System engineering knowledge, captured as models,
provides a library of specifications that can be used by operators to build more complex activities. As a
result, users are largely relieved of the need of detailed knowledge of the implementation details of the
system when specifying activities. For example, a scientist planning an observation using a goal-based
system can focus on what they need to happen, obtaining an image by a certain time, without having to
worry about data management, telecommunications, attitude control and other system concerns. These
other system concerns are captured in the integrated models, and provide the necessary elaboration of
the activity with the proper constraints for the activity for planning.

2.3 General Applicability of Goal-Based Control
As mentioned earlier in our introduction, the goal-based view is particularly appropriate to behaviorally-
dominant systems. These are systems where the balance of the critical requirements can be described
as behaviors; expressions of dynamic properties. To ensure compliance with user desires, we specify
control systems to achieve desired behaviors on the dynamic qualities of interest.

While the balance of this document will cover how to specify goal-based systems, in this section we
propose classifications of goal-based systems, and present brief descriptions of goal-based systems
which have been developed.

2.3.1 “Axes” of Application Types
The goal-based systems we present can be categorized by their position on two continua, Degree of
Control and Distribution over Deployments.

2.3.1.1 Degree of Control
Degree of Control is a qualitative representation of the amount of control authority given to the control
system. The element issuing commands as part of the execution function of the control system
(effecting change to achieve goals) does not necessarily have to be a part of the control system. An
example is an “advisory” system, employing models of the environment and system under control to
estimate system state and recommend commanding to achieve operator intent. The execution can then
be carried out by another system or a human operator (advisee), imbuing the human actor with
“authority to proceed” powers. This is an example of a “low” Degree of Control.

Systems with “high” degrees of control allocate the majority of execution responsibility to elements
within the control system. This is more appropriate for applications with higher autonomy
requirements.

Human-Rated Automation and Robotics

12
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 2.3. Classification and examples of goal-based systems

2.3.1.2 Distribution over Deployments
While Degree of Control concerns the degree to which the execution function is in the scope of the
control system, Distribution over Deployments focuses on the degree of distribution of all control
system functions over the elements inside the control system scope. As we will cover in later sections
(particularly section 4.1.3.10 on Deployments), the architect has wide latitude as to the allocation of
control system functions over the elements of the system. The reader is introduced to the complete list
of control system functions in section 3.1.2.

Systems with low distribution over deployments concentrate the bulk of the control system functions in
few or even a single element. This would be appropriate in situations where little coordination with
other elements is appropriate, desired or possible.

 13
This document has been reviewed and determined not to contain
export controlled technical data.

High distribution makes sense when the control system needs extensive outside information and/or
guidance to achieve its objectives. High distribution also makes sense in cases where a centralized
authority coordinates the actions of a number of agents to achieve goals not possible by any lone agent.

2.3.2 Examples of Applications

In Situ Advisory System: Lunar Habitat Airlock

The Lunar Habitat Airlock demonstration was conducted jointly between Johnson
Spaceflight Center and the Jet Propulsion Laboratory with the aim of validating
the use of a goal-based system to aid crewmembers conducting airlock ingress
and egress. Airlock operational procedures, along with system constraints and
physiological information were used to create a domain model for use by the
system to aid an astronaut running the procedures. This demonstration is
illustrated further in the appendix.

Self-Contained Autonomous System:
Mars Science Lander Entry Descent and Landing (EDL)

This effort was a demonstration of the suitability of a goal-based framework for
specifying and implementing the control system for the Mars Science Lander EDL.
EDL is a short, critical phase, requiring a robust autonomous implementation. The
team specified the set of goals (desired behaviors), supporting models and the
control system required to ensure vehicle safety in both nominal and off-nominal
situations over the event timeline.

Remote Advisory System:
Multi-Mission SEV Energy Management Advisory System

This is a demonstration of a goal-based system to aid astronauts managing energy
production and consumption for a deployed pair of SEVs. The system verifies plan
feasibility against projections of resources and advises human operators when
plans violate flight rules.

Distributed Autonomous System: Deep Space 1 Spacecraft Remote Agent

A joint effort between NASA Ames and the Jet Propulsion Lab, the Remote Agent
Experiment exercised sole control of the Deep Space 1 spacecraft in accordance
with operator-supplied goals using domain models developed for the control
system. The Remote Agent was hailed as a major advance toward less costly,
more capable and independent robotic systems and was selected as a co-
recipient of the 1999 NASA Software of the Year Award.

Distributed Autonomous Systems: Antenna Array Demonstration

The antenna array demonstration highlighted the utility of a goal-based system in
coordinating and controlling an array of small antennas. An example of
centralized planning and scheduling with distributed execution, the system used
operator and engineer specified goals to guide antenna configuration in nominal
and off-nominal situations.

Human-Rated Automation and Robotics

14
 This document has been reviewed and determined not to contain
 export controlled technical data.

This page intentionally left blank.

 15
This document has been reviewed and determined not to contain
export controlled technical data.

3 Control, Goals and Specification

3.1 The Idea of Explicit Control
In this section we expand on the definition of control using the ideas of classic control theory. This
definition is then used to make the case for conceptually partitioning the control system from the
system under control. We also introduce the functions and relationships of a goal-based control system.

3.1.1 What is Control?
As stated previously, control is the exertion of purposeful influence to achieve objectives. Control of
behaviorally-dominant systems involves determining the behavioral aspects pertinent to meeting user
needs and specifying the necessary constrains to satisfy those needs. Behaviors describe the dynamic
properties of interest.

Classic control theory first illustrated the concept of a control system distinct from a system under
control. This insight forms the cornerstone for the goal-based control perspective.

Fig. 3.1. Overview of classic control concepts

In classic control (and goal-based control), designers and operators use models of desired behavioral
properties (in terms of the system under control) and specify a control system (set of actuators, sensors,
estimators and their characteristics) necessary to enforce the desired constraints.

However, there is a key difference which will be developed at length in this document; the idea of
specification of intent as goals. Classic control focused on developing an overall (control system in
tandem with system under control) system with the right mathematical transfer function (mapping
inputs to desired output) to satisfy user intent, while goal-based control uses a more general of control
system characteristics to achieve a desired set of constraints on the system under control.

Human-Rated Automation and Robotics

16
 This document has been reviewed and determined not to contain
 export controlled technical data.

Classic control theory introduced the concept of a controller and a system under control. This explicit
partitioning between controller and controlled is key to the proper allocation of functionality. Problems
associated with self-reference are avoided by making this distinction clear.

In systems architecture, care must be exercised in the decomposition of functions between components
of the control system. Classic functional decomposition of systems often runs into problems as system
functions are often not uniquely assignable. This hierarchical approach also falls short in systems where
the assumptions of strict encapsulation and weak coupling are violated (common in complex systems).
The goal-based control method of proceeding from goals to achievers fosters a more natural allocation
of functions to elements than possible through classic hierarchical functional decomposition.

By focusing on what must be controlled, and how that control is exercised, architects are in the position
to make the best allocation decisions, with the right interface specifications to realize systems with the
desired properties. The heuristic “The greatest leverage in architecting is at the interfaces”
[Rechtin2002] bears testimony to the importance of proper partitioning in architecture.

Fig. 3.2. Control systems vs. system under control

The partitioning between the control system and system under control follows from the concepts of
classic control we described. The first step in specification is to model the desired behavior as sets of
goals derived from and developed in concert with requirements. Goals are specified as constraints on
dynamic properties of interest as determined from analysis of user needs and the problem domain.

Models of the problem domain capture the dynamic attributes pertinent in realizing the user goals. As
done in classic control, engineers must specify the particulars of interest in the system to be controlled
and the planned operating environments. These models are used to identify and characterize the
dynamic attributes of interest and begin mapping these descriptions to user goals.

 17
This document has been reviewed and determined not to contain
export controlled technical data.

From the integrated model, engineers progressively specify the control system (actuators, estimators
and sensors) required to achieve the necessary constraints on the dynamic quantities of interest in the
system under control subject to the modeled environment.

The result is a control system which exercises cognizant control of the system under control through a
model of both the system under control and environment. The control system acts by issuing
commanding to make system state conform to user intent specified though goals. The control system
makes estimates of current and future states based on the evidence provided by sensors and command
history using models.

3.1.2 Canonical Functions of a Goal-Based Control System
The control system does its job though the agency of a set of functions.

Fig. 3.3. Functions of the control system

The job of the control system is to enforce constraints on estimated states in the system under control
to accomplish mission objectives. Knowledge of the system under control and environment is
represented in models of state variables, complete with models of command effects and user intent.

While the blue and green rectangles contain the functions, the central circle represents the central role
of State Variables in the control system. State variables represent the expression of the dynamic
attributes of the system necessary for control. The state variables are the repository of state knowledge,
allowing the control system to exercise cognizant control over the system under control.

Elaboration, Projection and Scheduling

These functions describe how expressions of user intent (specified as goals) relate to the system under
control through the application of engineer-specified models.

Elaboration chiefly concerns how high level expressions of user intent are progressively decomposed
into finer specifications of behavior for sets of controllers to achieve. Scheduling covers the rules for

Human-Rated Automation and Robotics

18
 This document has been reviewed and determined not to contain
 export controlled technical data.

ordering the elaborated goals. Projection focuses on how effects of actions undertaken or planned will
affect the state variables of the system under control in the future.

Execution

Execution is the purposeful manipulation of state variables to effect needed change. Execution takes
user-specified goals and acts to bring system state into agreement with this specified intent. Execution
has two important aspects, Control and Estimation.

Control is the most obvious aspect of execution. Control is the issuing of commands to effect needed
changes in the system under control. Note that in goal-oriented systems, users do not specify
commands to guide the system under control. Users specify intent, which is compared to the estimated
state to determine the difference to be corrected. This comparison is directly analogous to the summing
junction of classical control (figure 3.1). The models of the systems specify how differences between
estimated and intended state are resolved through commanding. This comparison is represented by the
central circle in figure 3.3.

Estimation is the aspect of execution which achieves the desired quality of state knowledge. As we shall
describe more fully in subsequent sections, goals also have an important quality aspect concerning the
degree of uncertainty or latency in state variables. By the very nature of the domain, control systems
can not have true knowledge of system state; the best any control system can do is to estimate state.
Estimators work to achieve the desired quality of state knowledge as part of execution. The resulting
state knowledge is compared to intent though the comparison mechanism described in the control
aspect of execution.

3.2 The Role of Goals
Goals are a central concept in goal-based control. Through the agency of goals, engineers can specify
desired system behavioral properties in design and users can specify particular behaviors to achieve
mission objectives. In this section, we present a detailed description of goals and their role in the system
lifecycle.

3.2.1 Goals in System Specification
Goals are constraints on properties of interest necessary to satisfy system objectives. In particular, the
properties considered are dynamic properties; time varying aspects of the domain. Goals specify desired
behaviors through explicit constraints on the relevant properties.

The relevant properties are determined through analysis of user requirements for the system and/or
other goals. The relationship between goals and requirements can be summed up in the statement all
goals are requirements, but not all requirements are goals.

Goals specifications are comprised of 3 parts, State Variables, State Constraints and Time Intervals.

We can best define and illustrate these terms by way of an example.

 19
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 3.4. Camera heater example

Figure 3.4 depicts a simple circuit for powering a resistance heater for thermal control of a camera. This
circuit and the camera comprise the system under control. The designer must specify the right set of
actuator, sensor and controller characteristics to achieve the goals we will specify for the overall system.
A domain-appropriate example goal is…

State variables represent the dynamic attributes of the domain which must be controlled or accounted
for by the control system. State variables are quantitative (numeric) or qualitative (represented by
enumerated values) expressions of properties the control system must either directly control, or affect
properties that must be controlled. To identify these, users ask “what must I control to satisfy my
purposes?”

In this example, the goal may be determined by looking at the camera specification (e.g., temperature
requirements for camera hardware) and other related requirements. In order to ensure operations are
in conformance the camera hardware requirements, we identify Camera Temperature as an attribute of
interest; a state variable we need to control.

State constraints are the bounds applied to the state variable identified in the goal. In our example, the
state variable is a numeric quantity (temperature), so a continuous interval is a natural expression of our
desired bound. State variables can also be qualitative enumerations such as “Good”, “Fair”, “Poor”. In
such a case, the constraint would then be phrased as equalities on literal strings.

Individual state variables do not exist in isolation. Through further inspection of the schematic in figure
3.4, we can see that the state variable in our goal depends on a number of other dynamic properties in
the domain. The aim of modeling is to identify and understand the properties of interest for exercising

Human-Rated Automation and Robotics

20
 This document has been reviewed and determined not to contain
 export controlled technical data.

effective control. Part of this is explicitly representing the relationships that affect the state variables of
our goal. These relationships are captured in state effects models.

Fig. 3.5. State effects model of camera temperature

State effects diagrams can be read as “State Variable X is a function of input state variables A, B, C…” In
the above example, Camera Temperature is determined to depend on Heater Heat Flow, Camera Op
Mode, Camera Thermal Mass, Ambient Temperature and Thermal Resistance. These quantities are also
state variables requiring their own modeling and possibly control. As part of the modeling, the architect
makes determinations as to which state variables will be in the scope of the controller, requiring their
own goals to satisfy the original goal. This practice will be described in detail in the section on state
analysis (section 4.1.3.4 in particular).

The time interval of the goal defines the interval of time the proposition stated in the goal must hold for.
While temporal expressions in goals ultimately must be translated into numbers, early specification can
use “shorthand” (e.g., “during imaging) as we’ve applied above. Through progressive specification,
terms such as “imaging” are elaborated into descriptions of the domain resulting in unambiguous
specifications of the desired outcomes in terms of the models.

3.2.2 Classification of Goals
Goals can be broken down into two classes based on the inherent nature of their specification (“type”
dimension). In addition to this “type” dimension, goals can be also by broken into categories based on
their subjects (“category” dimension). The resulting class for any goal is a function of these two
dimensions.

3.2.2.1 “Type” Dimension
The “type” dimension specifies whether a goal concerns intended system behaviors or acts as a gauge of
preferences among alternatives.

 21
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 3.6. The “Type” dimension of goals

Behavioral Goals

Behavioral goals are declarative prescriptions of intended system behaviors. These statements delineate
a maximal set of admissible system behaviors for the system. These specifications must be evaluable to
true or false to be valid.

Achieve Goals

Achieve goals are prescriptions of intended behavior where a target condition must be achieved by a
specific (bounded) time. To satisfy the goal, the condition specified must be achievable by the time
specified and hold for the time interval desired. An example is

• The battery rate of charge must be greater than zero from 10:00 to 11:00.

Maintain/Avoid Goals

Maintain/Avoid goals describe conditions which must always (or never) be true in order to be satisfied.
A common term for Maintain/Avoid goals is invariants. Examples include

• The battery state of charge must always remain over 30% (Maintain Goal)

• The power bus shall never allow prime and backup CPUs to simultaneously draw current (Avoid
Goal)

Soft Goals

Soft goals describe the “sense of preference” among alternatives behaviors. Soft goals differ from
behavioral goals in that they do not evaluate into true or false; their satisfaction is a matter of degree.
Soft goals are commonly qualified with “maximize” or “minimize”. Examples include

• Minimize antenna switch actuations

• Maximize antenna gain

3.2.2.2 “Category” Dimension
The “category” dimension of goals represents the subject of the state variable specified in the goal.
These categories are the same as the categories used for requirements.

Human-Rated Automation and Robotics

22
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 3.7. The “Category” dimension of goals

The majority of goals we consider come from the Functional branch. Again, goals are specifications on
behavior, which are dynamic attributes of the domain and in the scope of the control system. For
example, an interface definition may be addressed by a requirement which would be satisfied by a
designer/implementer. The actions of the designer/implementer are, understandably, out of the scope
of the control system, and would be captured as static requirements.

Of the non-functional branch, quality-of-service concerns (e.g., level of service, etc.) lend themselves
most readily to goals.

3.2.3 Goals over the System Lifecycle
Goals are specified and progressively refined over the system lifecycle as mission objectives and system
requirements are discovered and modified due to document the evolving understanding of user needs.

Fig. 3.8. NASA project lifecycle phases, key events and major reviews

While we describe a high-level goal-based specification and development flow in section 4.2, a brief
description of how goals factor into the activities of the lifecycle phases may prove illustrative.

Phase A: Mission and System Definition

In this phase, the project specifies high-level mission objectives to realize the approved mission concept.
The mission objectives are analyzed in order to specify the requirements and goals necessary to achieve
them. The system concept of operations (ConOps) is as a key source of scenarios, providing important
context for the definition, analysis and refinement of goals and supporting models. The preliminary high-
level goal model describing the desired system-level behaviors is reviewed along with the attendant
modeling of key relevant domain concepts.

 23
This document has been reviewed and determined not to contain
export controlled technical data.

Phase B: Preliminary Design

In Phase B, the project converts the baselined set of system-level behaviors into specifications of the
control system necessary to achieve them. The preliminary, high-level goals are elaborated as the
concept of operations is further refined. The domain model is expanded to describe the attributes
controlled or affecting the achievement of the expanded and revised set of goals.

The integrated set of models informs architectural decisions regarding system scope, partitioning of
functionality and definition of interfaces. The models also give architects a resource for representing
and communicating system-level characteristics and performing analysis and trades to support decision
making.

Phase C/D: Design, Develop, Test and Launch

During this phase, the system architectural specification becomes detailed design, and the design is
instantiated as the system-to-deliver. In addition to guiding design, the system specification provides the
criteria for system verification and validation.

The goal model now covers all the identified system behavioral threads at a level of definition high
enough to confirm that all necessary goals are identified. The team also ensures that all goals have the
necessary control specified to achieve them. The relationship between goals is fully defined, resulting in
a rigorous description of system behavior in nominal and off-nominal situations. This specification
provides guidance for the detailed design; making the implementation-level decisions necessary to
realize the system.

The goal statements of desired behavior provide readily inspectable descriptions of proper system
functioning for verification. The integrated goal and domain model provides traceability from the
original system objectives through the specification to the design artifacts, aiding change management
and facilitating test planning.

Phase E: Operations

In the operations phase, users employ the system in the mission environments to satisfy the mission
objectives. The goal and system models used in system specification and development are now used by
operations personnel to plan activities and specify desired system behavior to carry out activities. These
same models are used by the control system to carry out cognizant control of the system under control.

The integrated models serve as the main repository of system knowledge, providing an authoritative
(always updated and relevant) and inspectable specification of the system and its domain. This proves
invaluable over the remainder of the mission as needs and objectives shift and personnel turn over.

3.3 The Role of Models
While the goal-based view of systems shares the basic characteristic of general model-based
engineering, models as the primary means of specification, the goal-based approaches we will detail
enables a more pervasive use of models throughout the project over the entire lifecycle. This section
begins with a quick overview of the benefits of model-based systems engineering. The section concludes
with an introduction to the state analysis model framework for specifying, developing and operating
goal-based systems.

Human-Rated Automation and Robotics

24
 This document has been reviewed and determined not to contain
 export controlled technical data.

3.3.1 Model-Based Systems Engineering
Goal-based specification is a conceptual framework for developing and operating behavior-dominant
systems. The concepts of this framework are expressed primarily in models, availing practitioners to the
insights and tools of the rich and expanding field of model-based systems engineering. In model-based
systems engineering, models largely supplant documents as the primary repository for system and
domain knowledge. Through considered, disciplined application of systems engineering processes,
projects develop the necessary models to specify, design, integrate, test and operate systems that meet
user needs.

While system engineering processes are key to ensuring the quality of results, we make no
recommendations to the reader as to the “whats” or “hows” of these processes. We seek to introduce
the reader to a particular view under model-based systems engineering, that of goal-based control,
along with its associated concepts and modeling. It is left to the reader to tailor the overall process to
best fit their needs.

The Need for Model-Based Systems Engineering

Model-based systems engineering (referred to as MBSE hereafter) evolved as a response to the growing
needs of stakeholders and developers for higher quality documentation of increasingly complex
systems. Developing and fielding increasingly capable, subtle and critical applications in an environment
of compressed schedules and fluid objectives has illustrated the need for more relevant, flexible and
powerful means of specification than text alone.

MBSE is a means to cope with the realities of the often dynamic, uncertain nature of technical
enterprises. This environment can be understood by considering what authors Holt & Perry consider
“the vicious triangle of engineering evil”, Complexity, Lack of Understanding and Communication
Issues[PerryHolt2008].

Growing complexity is a natural consequence of increasingly capable, interoperable and ubiquitous
applications. A major goal for developers is to ensure systems are only as complex as necessary to
satisfy the need. Models can provide a tool against the dangerous oversimplification that may result. By
modeling, developers can provide a solid specification of the problem to solve, identify the relevant
aspects of the domain, and integrate this knowledge into a comprehensive, integrated representation of
the shared understanding. These models are invaluable for coping with the inevitable changes resulting
from new insights and evolving needs.

Lack of Understanding pertains to how models help practitioners answer the “known unknowns” while
discovering the “unknown unknowns” in the lifecycle. Models enable practitioners to describe and
capture the evolving understanding of the need, domain and systems in an expressive, unambiguous
fashion. Models help us to certify “we know what we need to know”. This knowledge is instrumental in
identifying, quantifying and reducing project risks.

The rigorous expressive properties of models help us to avoid the communication issues possible when
expressing complex information. An aim of modeling is to make assertions as clear as possible. As
illustrated in our example on the cost of defects in requirements in section 2.2, the cost of ambiguity can
be very high.

 25
This document has been reviewed and determined not to contain
export controlled technical data.

3.3.2 State Analysis Framework for Goal-Based Control
State analysis is a set of concepts, models and practices for specifying goal-based control systems. The
key concepts are rooted in classic control as described in section 3.1. In state analysis, models are used
to describe the user intent, the system under control, and the functions of the control system which
exercise cognizant control.

Fig. 3.9. Mapping of control system functions to state analysis models

Figure 3.9 above illustrates how the functions of the control system (first introduced in section 3.1.2) are
represented as models in the state analysis framework.

Objectives and Goals

System objectives are high-level, implementation-independent expressions of what the system must do
or be to satisfy stakeholders. These are specified via the systems engineering approach selected by the
project. Since the state analysis framework does feature explicit models for expressing objectives,
practitioners are encouraged to use whatever methods are most appropriate for their problem.

However determined, objectives are an important link between the expression of user need, the domain
description and resulting system specifications. This traceability between system behavior and original
objectives is key to the eventual verification of the system.

Goals (orange items) are specifications of desired behaviors derived from analysis of objectives. It is
through goals that the analysis of the domain begins. Through goals, engineers progressively answer
“what must be controlled, and what are the constraints?” in the domain to achieve stated objectives.

As first covered in section 3.2, goals are expressed as constraints in terms of state variables. The white
rectangle in the right figure is meant to convey that all the contained models (Knowledge Goals, Control
Goals and State Knowledge) are represented in terms of state variables. These state variables represent
the dynamic aspects of the domain relevant to accomplishing the stated goals.

Goals are expressions of intent for the system under control. Goals are compared to estimated states
(represented through state knowledge models) at run-time and in the future through projections based
on the mechanics described in system models.

Human-Rated Automation and Robotics

26
 This document has been reviewed and determined not to contain
 export controlled technical data.

State Knowledge

State Knowledge (green rectangle with blue border) is the control systems internal representation of the
aggregate state of the system under control. The blue trim around the state knowledge model in the
right figure alludes to the central role that state knowledge information plays in the elaboration,
projection and scheduling functions of the control system.

State Estimation and State Control

The execution function is captured in the State Estimation and State Control models (red items). The
execution function makes needed changes in the system under control by translating the measured
differences in estimated state and intended state (specified in goals) into the appropriate commanding.

State Estimation models describe the translation of evidence (measurements, commands) into updated
state information in accordance with knowledge goals. Knowledge goals govern the quality of state
variable knowledge and are specified in concert with control goals.

3.3.2.1 Goal Models
Goals are assertions of desired system behavior in terms of state variables. As specifications of
necessary system qualities, they are subject to the same criteria as requirements (e.g., unambiguous,
quantifiable, testable). In the case of behavior goals, these statements must evaluate to true or false in
order to differentiate between control system success and failure. Assertion success or failure is
evaluated with respect to the state variable history (to be described in section 4.1.3.5) for the applicable
state variable of the goal.

Fig. 3.10. Evaluation of goal over timeline

Goals specify a constraint on a dynamic attribute of interest for a defined interval of time.

 27
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 3.11. Composition of a goal specification

The state variable is a dynamic attribute which must be controlled to meet the need. State variables are
identified through analysis of the domain though the practices we will cover in section 4.1. The state
constraint is a specification of what must be true about that state variable of interest. The time interval
gives a temporal span for which the constraint must be true for the goal to evaluate as successful.

High-level goals are determined as part of requirements analysis. Like requirements, goals are found
through analysis and decomposition of higher level goals into finer specifications until the resulting
statements can be readily verified.

Human-Rated Automation and Robotics

28
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 3.12. Analysis/decomposition of goals from requirements

In the example above, a high-level requirement (in blue) is broken into smaller requirements by analysis
(interpretation) of the statement. The system attribute in the green box (camera pointing) is an example
of a dynamic property, making it a candidate for representation as a goal.

The power draw requirement serves as a counter-example to the pointing example above. While
instantaneous power draw is a dynamic quality (changes over time), peak power draw can be
considered “static”. The measures for achieving the goal (e.g., fuse rating, load sizing) are outside of the
scope of the control system, so a static requirement is appropriate.

Writing Goals

By ensuring goals specify a state variable, constraint, and time interval and applying thought to how the
goal success and failure relates to the objective, engineers can increase the validity and correctness of
the specifications. However, it is instructive to consider some examples of specifications that fall short
as goals…

Bad Example #1: Commands are not Goals

“Issue the Close Switch Command at time X”

This statement does not capture the user intent as a goal does. Goals, specifications of intent, are key to
the specification of a cognizant, closed-loop enforcement of desired state. Closed-loop enforcement
provides a measure of protection against cases where the environment does not conform to
expectation, such as a case where the switch is already closed, or a condition where the switch is known
to have tripped previously.

 29
This document has been reviewed and determined not to contain
export controlled technical data.

A closed-loop implementation provides checking as to the appropriateness of commanding as it
processes intent into action. In the case of a tripped switch, the closed-loop system would not attempt a
switch closing (system knows tripped switches are invalid targets for close commands). Similarly, a
closed-loop system would not issue a close switch command if the switch was already shut.

Another benefit of a goal specification is its inspectability vis-à-vis a procedure (listing of commands).
The user intent is immediately inspectable in the case of the goal.

Bad Example #2: Activities are not Goals

“Charge the Battery”

What if you are charging the battery, but the load is more than the supply resulting in net discharging?
Again, a specification of intent, coupled with a closed-loop controller provides a more robust control.
The operator could state their intent as a goal such as “Battery State of Charge shall be >= 90% from t1
to t2”. To accomplish this, we represent the mechanics of the power management of the system under
control in models. These models described how goals are met in terms of the workings of the system.
Using the integrated specification of system mechanics and user intent, the system finds a path that
satisfies the stated goals.

Behavioral Goal Types

As first described in section 3.2.2, behavioral goals are functional goals that can evaluate to success or
failure. This type of goal is the most common, and features in the bulk of the examples of this
document. Behavioral goals can specify intent for both system state (control goals, described in section
3.3.2.4) and system knowledge (knowledge goals, described in section 3.3.2.3).

Achieve Goals

Achieve goals are goals that must be true over a defined interval to succeed. Whether the specified
state constraint is satisfied or not outside of the indicated interval does not matter.

Achieve goals (especially goals based on physical properties, which do not change instantaneously) often
must be preceded with transition goals to support a maintenance sub-goals.

Fig. 3.13. Transition and maintenance sub-goals of an achieve goal

Human-Rated Automation and Robotics

30
 This document has been reviewed and determined not to contain
 export controlled technical data.

In the preceding example, the original goal (left figure) specifies a desired temperature over a defined
interval. The physics (captured in the domain model) dictate that a warm-up period is necessary in order
to achieve the original goal. The user would need to define a transition goal based on the expected
starting temperature, the modeled heating rate and the time remaining before the maintenance portion
must be true.

Maintain Goals

Maintain goals are specifications of invariant properties; conditions which must always (or never) be
true. Classic examples would be safety properties (e.g.,” train never in motion with passenger door
open”).

Soft Goals

Soft goals are functional goals that do not evaluate to true false. These goals specify a “measure of
suitability” in evaluating alternate plans. Satisfaction of soft goals is “a matter of degree”. Soft goals
commonly use “Maximize” or “Minimize” in their specification (e.g., “minimize total slew distance”).

3.3.2.2 State Knowledge Models
The state knowledge models address how state variables are represented in the control system. State
knowledge captures what the control system knows and can know about the system under control. This
modeling enables the control system to exercise cognizant control.

As first conceptualized in classic control, the control system does not have direct knowledge of the
system under control. Due to the nature of the applications, sensors must be used to collect evidence on
the true state of the system under control (also known as the physical state). This true state is
continuously defined. Control systems must get by with the system under control’s estimated state. The
estimated state is calculated by fusing the available evidence, Sensor input, command history and
models of the system. The estimated state is represented in state knowledge models.

While the examples of classic control typically focus on state knowledge of continuous, physical
attributes of systems of interest (e.g., position, velocity), goal-based control covers an expanded set of
system properties, making it more widely applicable. As described in the sections relating goals to
requirements, goals cover any dynamic property designers need consider in specification. As a result,
any description of a behavior can be described as a goal and all goals require state knowledge models.

State Variables: The system dynamic attributes of interest

State variables represent the dynamic attributes of the domain we must control or affect the exercise of
control. While all goals involve a state variable, not all state variables can be controlled. For instance,
while we may not be able to control the ambient lighting in the environment, we still need to be aware
of it in order to get the right exposure for an image. In this case, while we may specify a goal on the light
level as part of an imaging activity, the “control” to achieve the goal might be to wait until the (modeled)
light is intense enough to image.

Some examples of dynamic attributes covered by state variables…

• Resources Environment: Power, Energy, Data Storage, Bandwidth Light Levels, Ephemeris, Ambient
Temperature

• Dynamics Device Status: Vehicle Position, Attitude, Gimbal Angles Configuration, operating modes

 31
This document has been reviewed and determined not to contain
export controlled technical data.

• Data Product Collections Data Management/Transport Policies: Science data, Measurement Sets
Compression/deletion, transport priority

• Externally Controlled Factors Parameters: Link schedule, Link configuration Scale factors, biases,
alignments, noise levels

State variables are discovered through analysis of goals and requirements. As described earlier in this
chapter, state variables represent what must be controlled in the goal specification. Upon finding the
state variable, the next question is “what affects it?” This question is answered through the application
of state effects models.

Fig. 3.14. State effects modeling

State effects models describe the causal relationships between state variables. As illustrated in figure
3.14 above, there is a graphical (left) and algorithmic (right) view of the model. The graphic view serves
as an easily inspectable, concise representation of the causal relationships. The state variables (labeled
circles) are related to each other through arrows. The causal relationships flows from the arrow source
to the arrow sink. Circles being pointed to represent state variables which are a function of the circles
pointing at it.

Modelers can use the graphic view as part of capturing the domain; ensuring that all relevant concepts
are named and related.

Once the appropriate relationships are captured graphically, the modeler completes the picture by
defining an algorithmic representation of the relationships. While the graphic view is a descriptive
representation of the relationships, the algorithmic model is a predictive model describing how the
affected states are determined by the affecting states. The algorithmic relationships can be described
using whatever the modeler deems appropriate to capture the logical or physical relationship. The
model in the example above uses pseudocode and an equation.

The state effects model serves multiple purposes. In addition to being a shared understanding of system
composition and behavior, it also forms the basis for system simulations as well as the governing physics
and logic representations the control system uses in estimation and projection. The state effects model
also helps guide modelers in elaborating goals. If we specify a goal on a state variable which is affected
by another state variable, the affecting state variable may require a constraint on it as well. This new
goal would be a sub-goal in the elaboration of our original goal.

Human-Rated Automation and Robotics

32
 This document has been reviewed and determined not to contain
 export controlled technical data.

As we shall also see in the coming sections, the state effects model also guides modelers in designing
estimators and controllers by highlighting relevant state variable relationships.

State variables values are determined by fusing the evidence provided by sensors, current state and
command logs. This process is accomplished through estimation and will be described in this next
section.

3.3.2.3 State Estimation Models
State estimation is the process of interpreting the domain information available to generate state
knowledge. As covered section 3.1.2 on the control system functions, estimation is part of the execution
function of the control system. Estimators are the achievers of state knowledge, updating state
knowledge in accordance with knowledge goals.

Fig. 3.15. Overview of state estimation

The interpretation of the evidence (sensor measurements, commands and state estimates) into state
knowledge is accomplished via measurement models. Modelers have a wide variety of options for
modeling measurements and are encouraged to select what is appropriate given the evidence available
(as determined through the state effects model). Examples range from simple direct interpretation and
inference methods to Kalman filters or Bayesian analysis.

Through measurement modeling, modelers represent not only the nominal causal links between the
evidence but consider the off-nominal situations (sensor faults, lost data) that can distort
measurements. This capability makes the control more robust against local faults and systemic failures.

Estimators are the achievers of knowledge goals. Knowledge goals specify a desired quality on state
knowledge (e.g., precision, certainty) for the estimator to serve. Referring once again to the goal
example in section 3.3.2.1, we have

Original Goal:
• Camera temperature mean value is in the range 10-20° C and standard deviation ≤ 3° C from t1 to t2

The knowledge goal implicit in this statement refers to the certainty of the Camera Temperature
estimate.

 33
This document has been reviewed and determined not to contain
export controlled technical data.

Implied Knowledge Goal (from inspection of original goal above):
• Camera temperature estimate standard deviation ≤ 3° C from t1 to t2

The control goal (mean value in range) is achieved by the state controller, while the knowledge goal is
achieved by the estimator. This knowledge goal is elaborated as a sub-goal to the original control goal.

3.3.2.4 State Control Models
State controllers achieve control goals as part of the execution function of the control system described
in section 3.1.2. Controllers issue commands to close the difference between the user intent (described
in control goals) and the current estimated state. The necessary commanding is determined through
referencing the command model. The controllers issue commands to hardware actuators to alter the
physical state of the system under control.

Fig. 3.16. Overview of state control

Controllers can be software agents or people, depending on the particulars of the problem. In the case
of human actors as controllers, the control system is acting as an advisory agent with authority-to-
proceed remaining with the human actor.

As with estimators, there is a wide variety of options for controllers. Examples include modal (state
machine) or continuous (Proportional-Integrative-Derivative: PID). Algorithm complexity and selection
will depend on the application requirements and the data available.

Controllers should also be designed to handle off-nominal situations. As with estimators, this ability to
define and handle faults at design time in models helps make the system more robust. Let’s explore this
point with an example.

Simple Controller Example

As defined in the overview, the controller is a mapping of how estimated state and intent result in
appropriate commands. In this example, we have a switch, with two possible goals for it, to be open or
closed. There are four possible estimated states for the switch, opened, closed, tripped or unknown. The
proper command to issue is a function of the goal and estimated state and can be represented in this
case using a matrix.

Human-Rated Automation and Robotics

34
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 3.17. Example controller specification: switch position

As recommended earlier, we explicitly represent possible faults (switch trip, or switch position update
not received) as well as how the system should handle them (default to opening the circuit).

The ‘no-command’ options provide another example of the benefit of cognizant control. If the system is
already in the proper configuration, the system will not issue unneeded commands. This is especially
important in systems with requirements for parallel execution of activities. The ability of the system to
forgo unnecessary commanding reduces the chance of interference between processes configuring the
system.

It is also important to note that the controller does not perform any estimation. Estimation is performed
solely in the estimator. This partitioning aids in specification (knowledge goals to estimators only and
control goals to controllers) as well as the inspection and debugging of controllers.

 35
This document has been reviewed and determined not to contain
export controlled technical data.

4 Specification, Verification and Validation with State Analysis
In this chapter, we illustrate how practitioners employ the concepts developed thus far into system
specifications ready for detailed design. It is a recurring observation in systems engineering practice that
the best systems are consciously and rigorously architected; crafted with a coherent strategy for
realizing a responsive and balanced solution to the user need. Through worked examples, we will detail
how the practices of state analysis are used to capture and analyze user needs and specify a solution to
meet them through a framework that promotes a strong architectural view of the emerging system. In
section 4.2, we present an example of a development process for specification using the introduced
state analysis practices. In section 4.3 we present a set of over-arching guidelines and patterns that have
proven useful in practice. Lastly, in section 4.4 we illustrate how the models of state analysis enhance
verification and validation efforts.

4.1 From State Analysis to Design Elements
This section describes the practices of State Analysis, their relationships and resulting products.

4.1.1 Overview of State Analysis
State Analysis is a set of practices for the progressive identification, specification and analysis of domain
and system concepts for the purpose of developing systems. As its name implies, State Analysis focuses
first on modeling the system under control, and then the design of mechanisms to control it. Through
State Analysis, practitioners describe the system under control and specify the goal-based system that
achieves the user needs in defined operational environments. As a model-based systems engineering
framework and methodology, the domain and system knowledge are primarily captured as an
integrated set of models. These models provide a means to provide tailored views to accommodate the
differing needs of respective stakeholders.

State Analysis also facilitates a truly architecture-centric approach to specification and development. By
application of the goal-based perspective of State Analysis, practitioners have a natural set of concepts
for expressing the user need, domain knowledge and system specification. The modeling captures the
structure and behavior of the emerging solution at a number of levels of abstraction, allowing designers
to alternately “dive” and “surface” as part of iteration.

Development of the specification is the progressive introduction and refinement of domain elements
involved in the solution that will meet the user need. This process, carried out through applying the
practices of state analysis, can be described as an interactive net of questions that we must answer in
increasing detail over the development portion of the lifecycle.

Commensurate with the iterative nature of development, all the practices of state analysis are done in
parallel. Through simultaneous execution of the state analysis practices, the development team
“bootstraps” toward a balanced, responsive specification from which detailed design development can
implement with a minimum of project risk.

Human-Rated Automation and Robotics

36
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.1. Overview of state analysis practices

While the practices of State Analysis (pictured in figure 4.1) are employed simultaneously over
development, the level of effort for each will depend on the state of development the project is in. This
will be covered in the development example in section 4.2.

4.1.2 Introducing the System Example
As a subject to help illustrate the practices of state analysis, we introduce a simple, yet non-trivial
behaviorally-dominant system. This system is simple enough to describe in a meaningful way in short
order, but careful consideration of the system can (and should) uncover a level of complexity for which
the practices and concepts we will describe are well-suited.

 37
This document has been reviewed and determined not to contain
export controlled technical data.

The system is a remotely operated, gimbal-mounted imaging system. The imaging portion of the system
will be located in a location for which real-time operation is impractical. While this situation is obviously
the case for unmanned deep space systems, it is often the case for terrestrial systems operating in
environments with intermittent or unreliable communications (e.g., poor networks, jamming).

Fig. 4.2. Imaging system example

The primary components of the imaging system are a CCD camera, an active heating system for the
camera, a scan platform to provide proper pointing and a data management system for retrieving,
processing and storing science and engineering data.

In the sections below, we will describe how state analysis is applied to specify a control system to satisfy
user needs using the physical system just introduced. The examples will cover how user needs are
expressed as goals to be achieved by controllers. We also describe how the state analysis practices are
used to specify the set of controllers of the control system and the set of models comprising this
specification.

4.1.3 Realizing the Design Elements
State analysis is the set of interrelated practices for producing a system solution responsive to user
needs. This specification of structure, behavior and interfaces serves as the basis for subsequent
detailed design. The specification also serves as the link between the subsequent design and the original
specification of user need, providing an invaluable resource for V&V as well as configuration
management over the lifecycle.

In addition to being a vehicle for communication in development, the specifications also serve as the
prime repository of system understanding for operations as well. This provides operators and
maintainers with easily-understood, authoritative and relevant information on the system and domain
as well as a ready means for updating this knowledge base and disseminating changes as the project
moves along in its lifecycle.

The design elements we refer to are the system elements, attributes and relationships that must be
described as part of specification. These descriptions are primarily captured as elements of the models
introduced in section 3.3.2. The mapping of design elements to the state analysis models is presented as
a meta-model here.

Human-Rated Automation and Robotics

38
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.3. Mapping of design elements to state analysis models

While the models of state analysis were summarized in section 3.3.2, we shall cover the design elements
comprising these models in our descriptions of the state analysis practices below.

 39
This document has been reviewed and determined not to contain
export controlled technical data.

4.1.3.1 Requirements/Goal Elicitation
An often asked (and understandable) question asked by people being introduced to state analysis is
“where do I start?” As with other systems engineering techniques, the answer is “start with defining the
need”. Requirements/Goal Elicitation is where the modelers first consider the translation of user needs
and objectives into the desired qualities the eventual system solution must have. This practice covers
the same ground as the requirements elicitation practice commonly described in system engineering
literature, the difference being how state analysis treats the specification of behavioral requirements.

Fig. 4.4. Requirements/Goal Elicitation practice detail

In the Requirements/Goals Elicitation practice we identify goals through analysis of the overall system
requirements. Goals are best understood as the subset of requirements concerning the specification of
desired behavior. The product of this practice is a catalog of goals from which to elaborate further into a
complete specification of system behavior. This listing, along with the description of the relationships
between goals comprises the goal model.

Fig. 4.5. Primary model focus for Requirements/Goal Elicitation Practice

Human-Rated Automation and Robotics

40
 This document has been reviewed and determined not to contain
 export controlled technical data.

Define System Goals is the primary activity of the Requirements/Goals Elicitation practice. In this
activity, user needs and domain descriptions are analyzed in order to specify the behavioral
requirements of a system to meet the original needs. As the name indicates, the primary product of the
activity is the specification of goals captured in a goal model.

The goal specifications of Define System Goals are output to the Goal Elaboration and Planning practice
(covered in section 4.1.3.2). While the focus of Define System Goals is to identify and describe goals, the
Goal Elaboration and Planning practice covers elaboration (defining sub-goals) and projection (define
effects of goal accomplishment).

The goal specifications are also important to the Define Scheduling Rules (section 4.1.3.3) practice. The
scheduling rules capture how the goals identified in Define System Goals can be ordered with relation to
each other.

Goal definitions are also a key way of discovering the dynamic attributes of interest. As we have stated
previously, goals are specifications of necessary constraints on properties important to meeting system
objectives. The dynamic attribute identified in the goal is a state variable. The specification of state
variables is the focus of the Define State Variables practice (section 4.1.3.4).

Example of Goal Elaboration and Planning Practice

The initial requirements for the imaging system are determined through analysis of high-level mission
descriptions such as a ConOps, user surveys and interviews. Requirements are further refined and
broken down until the requirements are detailed enough to describe qualities that can be satisfied by
individual elements of a system specification and can be verified. In our example, we start with a
pointing requirement for the camera and follow the decomposition of the requirement through analysis
into other requirements and goals.

Fig. 4.6. Specification of goals from requirements

 41
This document has been reviewed and determined not to contain
export controlled technical data.

Figure 4.6 starts with a static requirement on imaging performance. Through analysis, the engineer
determines that behavior will be part of the means to satisfy the performance requirement. To
accomplish this, a goal describing the desired pointing performance is derived. This is represented as a
control goal on the off-boresight angle of the camera. The goals is further refined into sub-goals as part
of this early elaboration, providing more insight into the attributes affecting our original goal. At the
bottom, we see a case where a requirement (Update Requirement) is derived from a goal. This case
reflects a design decision to model the target’s position using a time-dependent polynomial. To ensure
the required accuracy is achieved, a static requirement on the update frequency is defined. This is
modeled as a static goal, reflecting the initial decision to update the file though the agency of elements
outside the control system (i.e., operations processes).

The goals identified also serve to identify the state variables we must control, as well as the state
variables that affect them. We begin capturing this information in a state effects diagram.

Fig. 4.7. State effects diagram of goals in figure 4.6

In this diagram, we capture the causal relationships between the state variables specified in the goal
model of figure 4.6. The state variables are then grouped to identify items in the domain such as ‘Clock’
or ‘Gimbals’.

4.1.3.2 Goal Elaboration and Planning
While Requirements/Goal Elicitation is done to identify goals, the further decomposition of goals into
sub-goals is done through the practice Goal Elaboration and Planning. Elaborations are blocks of goals
that can be assembled into practicable plans, accounting for the necessary causal relationships between
state variables.

Elaboration is carried out to identify and specify sub-goals on related state variables that are necessary
to achieve the original goal or simply make the original goal more likely to succeed.

Human-Rated Automation and Robotics

42
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.8. Primary model focus for Goal Elaboration and Planning Practice

Fig. 4.9. Goal Elaboration and Planning practice detail

The Goal Elaboration and Planning practice is closely related to the Requirements/Goal Elicitation
practice described in section 4.1.3.1. They differ in that the Requirements/Goals Elicitation practice uses
the original high-level requirements as its starting point, while the Goal Elaboration and Planning
practice uses the resulting goal and state effects information to start. The Requirements/Goals
Elicitation practice must provide a set of goal definitions before elaboration and planning details can be
added. The two main activities of this practice are Define Elaborations and Define Projections.

 43
This document has been reviewed and determined not to contain
export controlled technical data.

Defining Elaborations

The Define Elaborations activity takes the high-level goal model from the Requirements/Goals elicitation
practice and further refines these goals into sets of sub-goals. The activity results in a goal specification
at a level of detail sufficient to assure modelers that the necessary set of propositions to accomplish the
original high-level goal is known.

This work is guided by the state effects model. Starting at the state variable constrained by the original
high-level goal, the modeler identifies the affecting state variables and specifies goals on them as
applicable.

Basic Rules for Elaboration

Rule #1. A goal on a state may elaborate to control sub-goals on directly affecting states

Goal elaborations are defined locally for each goal, resulting in a linked set of sub-goals. The sub-goals
can be thought of as propositions that must be true in order for the goal they elaborate to succeed. Goal
elaboration is a nested process, as goals are progressively elaborated into sub-goals until the lowest-
level goals (the leaf goals) are atomic enough for one controller to achieve them.

Figure 4.10 is an example elaboration, where a main goal (Camera Power is On) is elaborated into a set
of sub-goals. The original goal is made up of a state constraint and a temporal constraint (1 to 2 hours).
This goal is elaborated into both a knowledge goal (Camera Power is Known) and a control goal (Camera
Power Switch is Closed). Notice the goals do not specify commanding. Proper commanding is
determined via comparison of measured state and intent at run-time and specified in the command
model. This is covered in detail in section 4.1.3.6.

Fig. 4.10. Elaboration of main goal into supporting sub-goals

Figure 4.10 also introduces the reader to the notation of goal net specification. This notation provides
for the description of ordering rules for goals as determined by temporal and causal constraints
between goals. Goal-net specification will be discussed at length in subsequent sections.

Human-Rated Automation and Robotics

44
 This document has been reviewed and determined not to contain
 export controlled technical data.

Rule #2. A control goal on a state may elaborate to a knowledge sub-goal on the same state, and vice
versa.

This was demonstrated in figure 4.10, as the knowledge goal ‘Camera Power is Known’ was defined to
support the original control goal. This rule also states the knowledge goals can elaborate into control
goals. As covered earlier, knowledge goals are specifications of intent for the estimator that achieves the
knowledge goal. The knowledge goal is elaborated into control goals for the estimator to achieve to
satisfy the original knowledge goal.

Rule #3. A knowledge goal on a state may elaborate to knowledge sub goals on its directly affecting
and affected states.

Rule #4. An “achieve”-type goal on a state may elaborate to a “transition”-type goal on the same
state, with an ending time point.

Knowledge sub-goals are specified in order to make control and other knowledge goals more likely to
succeed. As rule 3 states, the supporting knowledge goals are not restricted to the original state
variable, but can be specified on affecting state variables. When considering knowledge sub-goals to
support goals, modelers should ask “what does the control system need to know to do this (the original
goal) and how well does it need to know it?” In figure 4.11, the original knowledge goal is specified on
the Gimbal Motor Angle. However, the modeler considers knowledge of the affecting Motor Mode and
Health state variable important to accomplishing the original knowledge goal, so they specify a
supporting knowledge goal on it.

Fig. 4.11. Example of elaboration rules 3 and 4

Rule 4 concerns how an achieve-type goal (a condition must be true in the future) may require a
preceding transition goal in order to succeed. In this example the modeler specifies a transition
knowledge sub-goal (Gimbal Motor Steering Angle is transitioning to Known with σ ≤ 0.5°) that makes it
more likely that the achieve-type main goal will be successful. Transition type goals are especially useful

 45
This document has been reviewed and determined not to contain
export controlled technical data.

when the achieve goals involve continuous phenomena that cannot be expected to become
instantaneously true at the beginning of an interval specified in an achieve goal.

Rule #5. A goal’s elaboration may include temporal constraints to reserve time in the schedule for
actions required by the goal.

Temporal constraints are the part of the goal specification pertaining to the time a condition must hold
in order for the goal to succeed. Another way of thinking about this constraint is that a temporal
constraint is an expected duration for the achievement of a condition. The implication of such a
constraint is that if achievement takes any longer, there must be something wrong and the goal should
fail. Such temporal constraints account for transition activities that the modeler believes will take a
finite time to achieve (e.g., physical transitions, performance of calculations, movement of data, etc.).

In our example, the knowledge goal (Gimbal Angle is transitioning to known with σ ≤ 0.5°) is composed
of a control goal and a knowledge goal, both of which are judged to take a finite amount of time to
accomplish. Through engineering analysis, it is judged that this set of supporting activities will take at
most 1 minute to accomplish. This required time is captured as the temporal constraint of the original
requirement (0 to 1 min).

Fig. 4.12. Example of elaboration rule 5

Rule #6. Consider alternate elaborations

Specification of multiple sets of elaborations (known as elaboration tactics) provides a measure of
flexibility and robustness to planning and execution. By specifying alternate elaborations, modelers

Human-Rated Automation and Robotics

46
 This document has been reviewed and determined not to contain
 export controlled technical data.

provide the system with an expanded range of execution options and conditions for selecting
appropriately among them. This results in a system with an appropriately rich (elaborations for all
contingencies) yet bounded set of behaviors for accomplishing goals.

Tactics are selected at run time according to user specifications. This capability gives the controller the
ability to select a situation-appropriate set of sub-goals at run time or planning time. This capability
makes plans and execution more robust, as the system uses the specified tactics to achieve goals while
considering the current system state.

One means for specifying the selection of tactics is to condition on state information. The selection of a
tactic would then be conditioned on the evaluation of a state variable at run time. Stepping away from
our camera example, imagine a monopropellant thruster system with parallel valves feeding a
combustion chamber. Being redundant valves, only one must be opened in order for propellant to reach
the combustion chamber. The main behavior, propellant is flowing, can be modeled as a set of alternate
tactics.

Fig. 4.13. Specification of alternate tactics

While both tactics are elaborations of the same goal and share the same knowledge goal (Thruster Inlet
Flow is known with High Certainty), the bottom control goals are reversed. As part of the specification of
the tactics, the modeler must specify criteria to select between them. An example of conditioning on a
state variable might be to select Valve A (left tactic) by default unless Valve A Health is “Failed”, in which
case Valve B is selected (right tactic).

Another means for selecting between tactics involves employing “soft” goals to evaluate the resulting
plans. A “soft” goal (described in section 3.2.2.1) is a goal that does not evaluate to succeed or fail, but is
accomplished as a matter of degree. Considering the thruster example, the modeler could specify a goal
to maximize the certainty of valve actuation. This goal would select the tactic based on the valve with
the highest open position certainty (as determined from supporting knowledge goals on valve position).

Defining Projections

This activity responds to the question “what will the effects of achieving this goal be?” The resulting
specifications enable the control system to project future state resulting from current actions and future
plans. Projections are based on the latest estimated state of the system and environment.

 47
This document has been reviewed and determined not to contain
export controlled technical data.

Projection uses integrated set of models, state knowledge, commands, measurement and goals that
comprise the state analysis model framework. This integration provides a consistent specification for all
control system functions and supporting development and operational tasks enabling and supporting
the system.

Projection of system performance is key to the system’s ability to exercise cognizant control as well as
providing developers and operators with insight into system planned and actual behavior. As we have
described, models enable developers to specify and communicate an understanding of how the system
works in a problem domain, enabling early validation of assumptions before committing resources to
detailed design and development. Projection of system performance provides qualitative and
quantitative information for trade studies, guiding architecture efforts through the evaluation of
alternate configurations at design and run time. Projection through models enables designers to do
early analyses of system design suitability in models of the intended environment. This is especially
important in applications where testing in the actual intended environment would be impractical (e.g.,
Mars Entry, Descent and Landing).

Projection aids verification and validation by providing evidence on the correctness and suitability of the
emerging design. By running the design through operational scenarios, designers get an early look at
how the system achieves goals given the modeled set of resources and environmental constraints the
system will face. The projection capability also comes into play at run time in operations. Through the
cognizant control enabled by projection, the system constantly checks intent against both current state
(run-time verification) and projected state (planning-time verification). Operational constraints such as
flight rules and system constraints such as resources are captured in models and enforced in operation
by use of projection.

Projection is performed to forecast the value of state variables that matter to the accomplishment of
goals. Projection allows designers to specify how the system can get from an estimated state at one
time to a set of reachable states in the future.

Returning to our example, imagine we’re operating our imaging system, which in this case is located on
the planet Mars. At the end of our last Sol’s (day on Mars) downlink, we saw that our camera heater
switch was estimated as “Stuck Open”. From the Switch Position state variable model, we see that a
“Stuck Open” fault is permanent. As a result, it makes no sense to schedule plans that specify the switch
should be closed in the future. Unfortunately, the current plan onboard reflects our intent that the
switch be closed as part of imaging for a number of occasions in the future.

Through projection, we identify this future conflict, using the current estimated state and comparing to
future intent. What to do about the conflict is built into the specification of the activity that called for
the switch to be closed. The engineer might specify that imaging should not occur unless the camera
heating was done (switch closed), in which case the onboard plan would drop the future imaging goals.
The engineer could also use more subtle tactic for handling this issue, allowing imaging if the estimated
temperature is above a specified threshold.

Human-Rated Automation and Robotics

48
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.14. Anticipating and correcting planning issues through projection

4.1.3.3 Define Scheduling Rules
Scheduling rules are the specification of the temporal logic that must be followed in achieving goals. This
specification is captured through goal nets as introduced in section 4.1.3.2. The Define Scheduling Rules
practice adds transition rules to the elaboration and planning specifications of the Goal Elaboration and
Planning practice. We also consider how specifications of intent covered in goal nets are translated to
goals executable by the system known as executable goals, or x-goals.

Fig. 4.15. Define Scheduling Rules practice detail

Goal nets provide an ordered and continuous specification of intended system behavior. The
specification of intent (constraints on state variables) rather than time ordered actions (e.g., commands)
is a distinguishing feature of goal-based control. By specification of intent, the system can use models to

 49
This document has been reviewed and determined not to contain
export controlled technical data.

achieve stated user intent as part of a closed-loop mechanism. Specifically, goal networks express
continuous intent over time where this continuity is only implied in procedural command systems.

By focusing on intent, goal nets provide designers and operators with a powerful and intuitive means for
specifying behavior. Goal net flexibility can be tailored to the degree appropriate for the application or
sequence. At the most constrained, goal nets resemble traditional sequences, with static or highly
constrained orderings and few alternate elaborations. The operators also have the capability to write
more flexible specifications of behavior in which only essential ordering specified. In both cases, the
system provides the safeguards of closed-loop control and exception handling through the agency of
cognizant control.

Define Scheduling Rules involves specifying how the elaborated goals can be ordered on timelines in goal
nets. In addition to integrating the goals needed to carry out specific actions (usually provided as
achieve goals), goal nets also include specifications of behavior that must hold in all operations such as
flight rules (specified as maintain goals).

Models of the system under control guide the specification logic used in scheduling. Derived from goal
descriptions, scheduling rules specify the necessary goal inclusions, relative ordering, compatibility and
timing of goals. Models are also used to predict goal compatibility with future states through projection.
This allows checks on future goal achievability and allows early changes to avoid problems if conflicts are
predicted.

In our example, a goal network (Figure 4.16) is begun by specifying intent from a main goal (Camera
Power On from t1 to t1 + 1 hour). By using the elaborations defined for the goal, we expand our goal
into a network of supporting goals.

Fig. 4.16. Expansion of a goal into goal network

Human-Rated Automation and Robotics

50
 This document has been reviewed and determined not to contain
 export controlled technical data.

The goal network includes the necessary state constraints on the applicable state variables (as modeled
in the state effects model), and includes their ordering and durations. The goal net above is an
exhaustive description of the possible ways the main goal can be achieved. Note that the system does
not specify explicit epochs as a procedural specification would. Instead, the goal net specifies the
allowable range of executions along with criteria for success, which are checked continuously.

Goal-nets are used to specify intent for planning, but execution requires more specific guidance to
execute on. The timeline information that is executed (in the execution function by estimators and
controllers) is provided as timelines of x-goals. While goal-nets capture intent, x-goal timelines
represent the system configuration that realizes the intent. X-goals are directly compiled from goal nets
through the use of the integrated system models.

Fig. 4.17. From goal nets to x-goal timelines

The use of x-goals allows the planner to consider and operate the system at a higher level of abstraction,
with the assurance that the abstract goals of the goal net are consistent and complete and the necessary
level of implementation detail is provided for execution.

X-goals also capture merged intent. While goals may be specified individually in a goal net, the x-goal
specification passes a merged goal on for execution as applicable. However, the goals specified in the
original goal net are still checked individually. This preserves the capability to alter intent or handle goal
failures at the original level of intent.

 51
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 4.18. Merging of goals into x-goals

X-goals are the product of merging all concurrent constraints over a time interval. In the example above,
we see a case where the overlapping portion of two goals is merged into single goal, with individual
goals for the non-overlapping portions.

The dashed oval highlights a problem in the x-goal timeline. Without a transition between “Camera
Temperature between 10°C and 20°C” and the more restrictive subsequent goal, we are likely to have a
failure. As we have seen in situations with continuous physical phenomena, transition goals are often
necessary. Figure 4.19 illustrates a fix to the above problem.

Fig. 4.19. Fix to merged timeline by adding a transition goal

4.1.3.4 Define State Variables
State variable definition is a central practice in state analysis. Through state variable definition, we
progressively refine the state knowledge model of the system and domain by discovering, defining and
relating the state variables relevant to achieving the goals.

Human-Rated Automation and Robotics

52
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.20. Define State Variables practice detail

The centrality of this practice can be understood by the role of its primary product, the state knowledge
model. State knowledge represents everything the system can know about the system under control
and the environment. Control is exercised through comparing this knowledge against user-specified
intent (goals specified in terms of state knowledge in the form of state variables). The attributes
represented in the state knowledge model, state variables, are also primary inputs to the other models,
command and measurement.

The Define State Variables activity begins with the high-level goal descriptions from the
Requirements/Goal Elicitation practice described in section 4.1.3.1. The primary question here is “what
state variables are in this goal?” From these, the modeler can specify just what must be controlled by
the system. From these state variables, the modeler analyses the domain to determine the state
variables that affect those identified, and the effects they have on yet other state variables. This activity
is done iteratively until the modeler is confident that all state variables featured in or affecting goals are
accounted for in the state knowledge model.

The primary tool for this activity is the state effects model, as introduced in previous sections. In our
example, we first consider a control goal, which must be achieved by a control system.

Goal: Camera Temperature is 20°C +/- 5°C from t1 to t2

Analysis of this statement yields a state variable, Camera Temperature, which we must control. Further
analysis of the system under control and the domain is necessary to determine the set of affecting and
affected state variables.

 53
This document has been reviewed and determined not to contain
export controlled technical data.

The state effects model is a graphic representation of the relationships between state variables. The
diagram can be read as “Camera Temperature is a function of Heat Flow, Op Mode, Thermal Mass,
Ambient Temperature and Thermal Resistance”. These affecting dynamic quantities are determined
through analysis of domain representations such as the circuit schematic on the left of figure 4.21. The
modeler would continue to iterate on the state effects model until the individual state variables are fine
enough for a single controller (for controlled states) or a single model (uncontrolled states).

Fig. 4.21. State effects model from domain analysis

The state effects model is a graphic representation of the relationships between state variables.

When the state effects model is populated, the modeler can consider the quantitative effects of state
variables on each other. These quantitative models enable the projection capability described in section
4.1.3.1. These relationships can be expressed through equations, truth tables or other representations.
To illustrate this example, we reintroduce a related figure from section 3.3 (see figure 4.22).

In this example, the modeler identifies the affecting states for their state variable of interest, Heater
Heat Flow. Through an analysis of the domain, the modeler identifies a set of affecting state variables,
Switch Position, Heater Health & Resistance and Battery Voltage. The qualitative aspect of the
relationships (i.e., state variable A affects state variable B) is captured in a state effects diagram.

To model the physics of the effects, the modeler writes an algorithm for determining the heater flow
state variable from the affecting state variables.

Human-Rated Automation and Robotics

54
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.22. State effects modeling example

 55
This document has been reviewed and determined not to contain
export controlled technical data.

4.1.3.5 Define State Value Histories
State value histories, as the name indicates, represent the internal data structures used by state
variables to store and express their values over time. These value histories can contain state estimates,
commands, measurements and other data products. State value histories are an element of the state
knowledge model (see figure 4.3).

Fig. 4.23. Define State Value Histories practice detail

Value histories reside with the system under control. This data is stored in the memory of the system
under control and in the hardware adapters.

This data must be retrieved both to satisfy the mission objectives (i.e., science data), as well as to run
the enabling control system (engineering measurements and other truth data). The management and
interpretation of this data is accomplished using models of the system under control.

The control system manages this history through achieving goals on this data (specified as goals on data
state variables) in the same way it controls other state variables. The intent (goals) is compared to the
estimated state as represented in data state variables, and commands are issued by the control system
to reconcile the difference in accordance with models of the data in the system under control.

Delivering data to the end user is an important part of achieving mission objectives. Some examples of
goals that implement how data management is accomplished are data latency requirements, data
priorities and data storage resource limits. As covered elsewhere, these are necessary constraints on
dynamic attributes for which goals are a natural expression.

Data State Variables

Data state variables represent the state of one or more value histories. They can be thought of as
“metadata” (data about data) on value histories. It is through data state variables that the control
system manages the data state histories in the system under control. Data management is accomplished
through goals specified on data state variables.

Data state variables are described by Data Attributes specified by the systems engineer. Data attributes
are specifications on what is important about individual entries as well as histories of entries in terms of
managing that data.

Human-Rated Automation and Robotics

56
 This document has been reviewed and determined not to contain
 export controlled technical data.

The value history entry data is metadata applied to individual entries to support data management. This
data provides the control system with a means to discriminate between entries for the purpose of
management.

The value history data is metadata on the entire set of entries of a particular value history. This data
represents information about the entire set history entries in terms of the individual value entry data
points. For instance, ‘time range’ is an example of a value history data point. To determine it, you would
look at a value history data entry field, ‘creation time’ for each value history data point to find the oldest
and newest data points.

Common Examples of Data Attributes

Value History Entry Attributes Value History Attributes
• Transport Priority • Number of Entries (in volatile/non volatile store, etc.)
• Transport Status • Time Range (in volatile/non volatile store, etc.)
• Content (e.g., unique ids, quality tags)
• Compression Status

In this example, we consider a temperature measurement value history. To manage this data, the
systems engineer must specify a temperature measurement data state variable. The engineer decides
that to manage this data, the number of entries and time range are important. The engineer then
specifies the data state variable as having these attributes.

To realize the data state variable, the engineer must specify value history entry data fields to apply to
the individual measurements. ‘Number of entries’ is determined from the number of unique ids. The
data state variable attribute ‘time range’ is specified to be the oldest and newest measurement. To this
end, a value history entry field of ‘creation time’ is specified. Figure 4.24 describes the application of this
data state variable definition.

Data state variables are described by state effects models in much the same manner as other state
variables. The state effects models serve as a guide for discovering data states and effects needed for

managing data content and data
transport.

Data state variables are defined
for each of the state variables we
specified part of modeling the
system under control. The
specification of these data state
variables represents how we plan
to manage the state variable
data.

As we see in figure 4.25, a data
state variable is defined for all
elements of the state effects
model, including commands and
measurements. Notice that data
state variables can represent
multiple elements (i.e.,

Fig. 4.24. Data state variable definition example

 57
This document has been reviewed and determined not to contain
export controlled technical data.

commands, state variables,
measurements) in state effects
models. When measurement and
command data are strongly
associated with a single state
variable, as with the camera
mode state variable, it makes
sense to manage this data as one
data state variable. To
understand the camera mode, we
would need the camera mode
measurements and commands as
well as the state variable data. To
manage this data, we would
apply the same goals (e.g.,
latency constraints, compression
rules), to all of this data, so a
single data state variable for
command, measurement and
state data is the best choice.

Data state variables can be used to represent how state variables affect the content of data. For
example, image resolution (hence image size) can be affected by Camera Operating Mode.

 Another way state variables can affect data is the quality of measurements. Here quality refers
to the user-defined attributes (modeled as value history entry attributes) flagging facts about the data in
accordance with rules. For example, the engineer may specify that a temperature measurement quality
attribute bit should be set to ‘No Data’ if the temperature sensor is not healthy.

Both cases where state variables affect data are represented in state effects models as shown in figure
4.25.

Managing Data through Data Goals and Commands

Data commands are the interface to the data store in the system under control. Data commands, issued
by data controllers, command the data management and transport software in the system under
control, governing such actions as data retention, compression, and transport.

As introduced earlier in this section, data management begins with a consideration of the state
knowledge model of the system state variables. By inspection of the state effects model, we can
determine appropriate groupings of state variables to manage with single data state variables.

Data goals represent required constraints on data state variables. Data goals are achieved by data
controllers, providing data management in support of system objectives. As described previously, the
systems engineer considers data management requirements when specifying desired state behavior.
The integrated state knowledge model of state knowledge facilitates this concurrent specification,
providing a means for designers to realize more rounded, well-considered behavior specifications.

Data goals are elaborated from the goals on state variables we have covered so far. As with other sub-
goals, the purpose of elaboration is to determine supporting goals that make the original goals possible

Fig. 4.25. State effects diagram with data state variable annotations

Human-Rated Automation and Robotics

58
 This document has been reviewed and determined not to contain
 export controlled technical data.

or more likely to succeed. As described in the Goal Elaboration and Planning practice (section 4.1.3.2)
sub-goals are determined by progressively asking “what propositions must be true in order for this goal
to succeed?”

As they govern the flow of data to the control system, data goals specify the accomplishment of the
knowledge goals that support control goals. The elaboration of data control goals from knowledge goals
is expressed as a last elaboration rule to the set introduced in section 4.1.3.2.

Rule #7. A knowledge goal on a state may elaborate to control goals on:
 (a) the state’s data state variable, or
 (b) the data state variables for commands that affect the state, or
 (c) the data state variables for measurements that are affected by the state

Data state variables are defined on sets of data (state variables) for which it makes sense to manage the
data the same way. As we see in Figure 4.26, the data for state variables Camera Temp and the
temperature measurements of Temp Meas are managed through goals on a single data state variable,
Temp Data.

Fig. 4.26. Elaboration of knowledge goals into data goals

In the above example, a knowledge goal on a state variable (Camera Temp) is elaborated into a set of
supporting sub-goals via the elaboration rules presented. The elaboration begins with a transition rule
for the state variable (the leftmost goal). At bottom, two data goals on the data state variable Temp
Data are included, providing the data required to achieve the original goal.

4.1.3.6 Define State Controller
The Define State Controller practice concerns the specification of the state control model described in
section 3.3. The state control model specifies how the control system rectifies the difference between
the estimated state of the system under control (as estimated using the state estimation model) and the
user-specified intent (specified in the goal model) through issuing commands to the system under

 59
This document has been reviewed and determined not to contain
export controlled technical data.

control. The state controllers of the control system issue commands to actuators in order to satisfy the
behavioral constraints specified in the goal model

Fig. 4.27. Define State Controllers practice detail

The Define Control Goal activity begins with the state effects descriptions from the state knowledge
model, coupled with the attendant goal model. From these models, the modeler identifies the states
that must be controlled (i.e., the state variables with goals constraining them), and focuses on
answering how the control system can best enforce the constraints specified in the goals. This activity
differs from other elaboration in that the focus here is more on the implementation aspects of achieving
the goals. Whereas the earlier elaborations focus on the specification of user expectations (outcomes),
this specification gets into the details of how control is achieved (mechanics).

Note that not all goals can be achieved by controllers in the scope of the control system. In these cases,
the control system must model the uncontrollable state variables in order to either exercise indirect
control of the state, or wait until the state variable constraint is satisfied. An example of this would be
waiting until sunrise for the right ambient luminosity (our uncontrollable state variable) to take an
image.

The level of the specification detail for these control goals needs to be at the level that the modeler can
consider implementation options for exercising control on the respective goals. Where this is not the
case, the under-specified goals are processed by further elaboration.

Applying the Define a Controller practice takes the implementation-grade goal specifications of the Goal
Elaboration and Planning practice, and results in the selection and specification of controllers that
achieves the specified goals. As in classic control, controllers interact with sets of actuators, estimators
and sensors. The controller is designed through selecting the proper elements and element
characteristics that will yield the right performance with the right system architectural qualities (e.g.,
robustness, security, reliability, responsiveness, scalability, etc.). These architectural concerns also factor
into decisions about where control happens, and is an input to the Consider Deployments practice
(section 4.1.3.10).

Human-Rated Automation and Robotics

60
 This document has been reviewed and determined not to contain
 export controlled technical data.

The engineer has the widest latitude to select the controller appropriate for the problem at hand.
Algorithm complexity is driven by the application requirements. Algorithm choices include modal (e.g.,
state machines, truth tables) or continuous (e.g., PID) methods. In all cases, the controller algorithm
determines the commands to issue based on the current estimated state and the goal.

Human operators are also an option as controllers in goal-based systems. In “advisory” applications, the
goal-based system provides state information on the system under control to a human actor who
exercises control authority.

Reactive versus Deliberative Control

Part of controller definition is selecting between reactive and Deliberative control for each controller.
Deliberative control works through pre-planned, system-wide coordination of control system elements
to achieve goals, while Reactive controllers receive control goals from other achievers. Controller choice
is driven by architectural considerations, such as a need for high-rate (real-time) control.

Deliberative control is achieved through applying Elaboration, Projection and Scheduling functions to
translate user intent into directives for the goal executive. The executed goals had been previously
checked against future predicted system conditions and integrated with other goals through projection.
This integrated timeline represents user intent out to the end of the planning horizon.

Control through deliberation, while still closed-loop, is similar to “traditional” modes of control.
Deliberation, as the name implies, works through coordination of activity planning against a set of
resources over longer time frames. Deliberative controllers are best when there is a high amount of
coordination (i.e., different activities requiring shared resources) involved between control system
elements and a low level of responsiveness (i.e., necessary time between control and planning)
required.

Fig. 4.28. Delegation pattern for reactive control

 61
This document has been reviewed and determined not to contain
export controlled technical data.

A prime example of deliberative control would be planning rover position on Mars. The planning team,
due to constraints such as round-trip light-time and availability of communication links must work at a
remove from the on-board executor. Planners work from models of the necessary resources (e.g.,
mobility models, availability of solar power, communications schedules) to represent plans as sets of
goals, which are forwarded to the on-board executor at an arbitrary time before actual execution.

Reactive control is an alternative control method enabling tighter (real-time or near real-time) control.
In a reactive controller, the achiever, instead of directly achieving the goal itself, sends the goals to
subordinate delegate controllers.

Reactive controllers are best suited for situations where it is impractical to expect to directly control the
state variables in question with a significant delay in the control loop. Let’s again consider the previous
rover example. The position and heading of the rover are state variables of interest in mobility planning.
Given that these state variables can be planned on operational time scales (i.e., over a planning shift),
these state variables are controlled through a deliberative controller.

However, the wheel positions are another matter. The wheel positions are described by state variables
that are controlled through sub-goals of the deliberatively-control position and heading goals. The
actual wheel pointing will depend on real-time interactions with the soil and rocks, which can’t be
known at planning time. Reactive control enables the operators to specify how the delegated controller
for the wheel must behave to support the higher-level deliberative goals. These controllers work on the
necessary time scale (real-time), in support of the deliberative goals from the delegating achievers they
support.

The delegation goals achieved by the delegate controllers are elaborated from the higher-level
deliberative goals for the delegators. This specification ensures that these elaborated sub-goals are
compatible with other sub-goals.

Controller Definition Example

For this example, we refer back to the imaging system introduced in this chapter. As described in the
process detail, the first activity is to define control goals for the state variables of interest. The modeler
starts by inspecting the goal model to determine the state variables that must be controlled to meet the
high-level objectives. As mentioned part of the elaboration practice, sub-goals are defined to the level
they can be controlled by individual controllers.

From the definition of the sub-goals, we determine that Switch Position is the state variable to control.
The modeler determines the values possible for this state variable by analysis of the nominal and off-
nominal conditions possible for this attribute. Considering the off-nominal cases at this point in design
helps engineers “build in” robustness. The system will have an appropriate command response for all
possible conditions. To this end, the engineer specifies “tripped” and “unknown” conditions in addition
to the nominal “open” and “closed” states for the switch. These state variable conditions are then
mapped to commanding for each of the goals as the command model for this state variable. Being an
enumerated state, a matrix-style command mapping is considered appropriate for this state variable.

Now that the controller algorithm is determined, the modeler can consider the estimator (section
4.1.3.9) and actuator (section 4.1.3.7) to achieve the goals described in accordance with the specified
control algorithm.

Human-Rated Automation and Robotics

62
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.29. Determining state variables and goals from goal models

Fig. 4.30. Command model for switch position state variable

 63
This document has been reviewed and determined not to contain
export controlled technical data.

4.1.3.7 Define Actuators
Actuators effect changes to the system under control in response to commands issued by the controller.
The changes can be to physical attributes (e.g., gimbal position, switch position) or to software states
(e.g., camera mode).

All states variables for directly controllable states are assigned controllers in the control system. The
assigned controllers are responsible for actively ensuring the constraints specified in their attendant
goals are met during the entire duration when they are in effect. However, state variables we constrain
with goals are not necessarily controllable by agents in our system scope. For example, we might have a
requirement described as a goal for a certain light level for imaging to take place. The light level in this
design is purely a function of the location of the sun in the sky, so while we might have a goal and
controller for light level (satisfied by waiting until a time of day the sun is bright enough), that controller
would not have an actuator. These considerations are addressed in the Define an Actuator activity.

Fig. 4.31. Define Actuators practice detail

State variables that can be actively constrained have actuators assigned to their controllers. The
controller algorithm is used to determine the commanding the actuator must accept. The commands
the actuator must accept are then modeled as part of the Model Commands activity.

In modeling the commands, the modeler considers the effects the actuator-serviced commands have on
the system under control. These effects are modeled using the state effects diagrams from the state
knowledge model. In addition to the first-order effects of the commands (i.e., the state variables we
want to affect), the modeler must also consider the second-order effects that go with the commands.
The state effects model helps the engineer define and determine these effects, helping ensure that
resulting system behavior is understood.

Where the commands are issued is another architectural consideration, addressed in this practice by the
question “should commands be transported?” The answer depends on partitioning considerations
covered in the Consider Deployments practice (section 4.1.3.10).

Human-Rated Automation and Robotics

64
 This document has been reviewed and determined not to contain
 export controlled technical data.

Practice Example

This example continues with the switch position command model we developed in section 4.1.3.6. From
the command model, we determine the list of commands the actuator must service as well as the model
of the actuator (i.e., the switch). The actuator model includes both the nominal and off-nominal
conditions possible.

Fig. 4.32. From command model to actuator models

To understand the effect of the commands on the system under control, we analyze the state effects
model. We see that switch commands directly affect switch position, but due to our analysis of off-
nominal states, we must consider switch actuator health as well. To complement the qualitative
representation of state effects diagram, we specify how the respective switch commands drive the
physical switch state (lower right of figure 4.32). In this diagram, switch states are represented by the
white rectangles and transitions are described as combinations of received commands and estimated
states of the actuator. Together, these representations specify the actuator that effects the changes
required in the command model.

It is important to note that the command effects model is defined in terms of true state. True states
represent the actual physical conditions the switch can be in. The state “Unknown” from the
commanding model at top is part of the estimated states (as defined in estimation modeling section
4.1.3.9), which must explicitly represent uncertainty and potential failure states as well.

 65
This document has been reviewed and determined not to contain
export controlled technical data.

4.1.3.8 Define Sensors
Sensors provide measurement evidence (physical readings, or other sampled data) from the system
under control to estimators in the control system. The estimator (described in section 4.1.3.9) uses the
sensor measurements to estimate the state of the system under control.

Fig. 4.33. Define Sensors practice detail

By modeling measurements, engineers make the system robust against incomplete and inaccurate
readings caused by missing packets, data hits and faulty sensors. This practice is analogous to the classic
control technique of “filtering” input considered as noisy to improve controller stability and
performance.

Sensors, along with actuators, are specified along with goal controllers. A sensor for a particular goal is
defined in response to the question “can the state variable be measured?” In the affirmative case, a
sensor is specified in the Define a Sensor activity.

In cases where the state variable cannot be measured, the engineer must still model the state. This
model information is integrated into the environment portion of the domain model for use by the
control system. Recalling our example in section 4.1.3.7, consider the Sun’s position as a state variable.
Again, our imaging system needs knowledge of the Sun’s position to determine whether we have the
right light levels for imaging. As an alternative to adding a sensor to track the sun, the engineer could
decide to model the position of the sun, saving on the weight, cost and complexity of an extra sensor.
This solar position model (captured as a time-dependent Azimuth-Elevation function) feeds the Solar
Position state variable and is used instead of a sensed state in the control system.

Part of the sensor definition is representing the measurements produced. This specification is captured
as the measurement model in the Model Measurements activity. The measurement models describe
how one or more state variables affect the sensor’s measurements. To do this, the modeler analyses the
state effects model to determine if all the relevant states for a measurement are included.

The resulting measurement model is a predictive specification of what a sensor produces given a true
state of the system. This specification will reflect the requirements for the hardware sensor making the
measurements and any supporting software modeled as part of the system under control.

Human-Rated Automation and Robotics

66
 This document has been reviewed and determined not to contain
 export controlled technical data.

Example of Practice

Sensors output measurements based on the evidence provided on state variables in accordance with
user-specified measurement models. This measurement model captures the specification that the
sensor must satisfy. In this example, we specify a sensor for temperature measurement.

The modeler first begins with the state effects model to determine the state variables that factor into
the measurement. In addition, the modeler determines secondary state variables that affect the
measurement. As expected, Camera Temp is a primary state variable to consider in our measurement. In
addition to this state variable, analysis of the sensor yields three related state variables, Temp Sensor
Health, Sensor Scale Factor and Sensor Bias. These state variables capture attributes of the sensor that
can affect the measurement we want to make.

Fig. 4.34. Temperature sensor specification

Once the complete list of state variables affecting a measurement is determined, an algorithm for fusing
the state variables into a measurement is written. In this case, a simple pseudocode algorithm meets
our needs. This model features an explicit means for handling a broken sensor through testing for sensor
health (Temp Sensor Health). In the case the temp sensor is off-line, a flag value of “255” is returned,
giving the control system an indication that the sensor measurement is suspect.

 67
This document has been reviewed and determined not to contain
export controlled technical data.

4.1.3.9 Define State Determination (Estimators)
State estimators use sensor measurements and command histories to supply state knowledge on the
system under control. State estimators act as the achievers of knowledge goals, in the same way that
state controllers achieve control goals. As achievers of knowledge goals, state estimators are the only
element of the control system allowed to update state information.

Fig. 4.35. Define State Determination practice detail

The state estimation practice begins with the state variable model. To be used by the control system, all
state variables must be estimated. This includes states that are not directly controlled. As described in
the Define State Variables practice (section 4.1.3.4), all state variables that are modeled are either
subject to goals, or affect controlled state variables. From the state knowledge model, modelers begin
with answering “how well must the state be known?” to start the Define Knowledge Goal activity.

Defining knowledge goals actually starts as part of the Goal Elaboration and Planning practice (section
4.1.3.2). However, the Define Knowledge Goals activity of this practice takes the high-level knowledge
goal definitions and further refines them to the point that they can be achieved by individual estimators.

Estimators are defined by considering two main questions in parallel. The answers to these questions,
along with the attendant controller specification, feed the Define an Estimator activity of the Define
State Determination practice.

Estimator design can begin once knowledge goals are refined to the point that the modeler can ask
“how will the knowledge goal be achieved?” The goal elaboration provides the modeler with the
necessary context for understanding the control goals the knowledge goals serve.

Similarly, the goal elaboration provides context for answering “how should state knowledge be
updated?” The answer to this question is determined by considering the nature of the data (e.g., modal,
continuous) and the requirements of the application (e.g., accuracy, latency).

Estimation provides the control system with the most likely value of the state variable based on all of
the evidence available. This process can also feature discrepancy checks, fault detection and diagnosis
commensurate with the estimate quality required by the knowledge goals and the nature of the
available evidence. This is especially important in systems where estimation is accomplished through the

Human-Rated Automation and Robotics

68
 This document has been reviewed and determined not to contain
 export controlled technical data.

fusion of data from a variety of sensor types. By explicit handling of discrepancies and other faults,
engineers can imbue the control system with an added measure of robustness.

As with sensors and controllers, the estimation algorithm selected is up to the engineer. The choice will
depend on factors such as speed, accuracy and robustness, and options range from simple modal filters
to Kalman filters. Another important concern when designing the estimator algorithm is to ensure that it
is transparent. Inspectability is key to good modeling. This aids not only developers doing debugging, but
also aids reviewers and personnel charged with operations and support later in the lifecycle.

Example of Practice

In this example, we continue developing the switch position state variable specification from the
previous sections. The modeler wishes to specify an estimator to estimate the value of the switch
position state variable.

Estimation is the process of providing the most likely values for a state variable based on the
information available. To this end, the modeler first analyses the attributes of the domain that can be
expected to affect the quantity we want to estimate. These can be determined through inspecting the
state effects diagram of the state knowledge model.

Fig. 4.36. Determination of state variable states from state effects model

Through the state effects diagram, we see that the state variable of interest, Switch Position, is directly
affected by two state variables, Switch Commands, and Switch Actuator Health. The Switch Position
state variable factors into one available measurement, Switch Position Measurement, which is in turn a
factor of the state variable Switch Sensor Health.

The modeler determines the states for the switch through analysis of the physical switch (employing
schematics, Failure Modes and Effects Analysis and other means). This process was detailed in the
Define State Variables practice (section 4.1.3.4). It is important to remember that these states are
written from the standpoint of the control system, and the control system deals with estimated states.
Therefore, uncertainty must always be modeled as part of the state variable definition. In our simple
modal model, we define a state “Unknown” to represent uncertainty. For numeric states, statistical
representations (e.g., descriptions of variance about an estimated mean) would be more appropriate.

The job of the estimator is to determine which of these states are the most likely at particular times,
based on the evidence available. As the analysis of the state effects diagram suggests, looking at the
switch command effects and the switch position measurements looks to be a good place to start.

 69
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 4.37. Deriving estimator algorithm from available evidence

In this example, the estimator algorithm is specified by combining the measurement, command and
state variable models as illustrated in figure 4.37. The measurement and command models, reflecting
physical effects, are expressed in terms of true state. Therefore, the command and measurement
models do not include the state “Unknown”.

In the estimator, all the possible permutations for commanding, measurement and affecting state
variables are mapped to the estimated states. In the estimated states, we include states to model
uncertainty (i.e., “Unknown”) to complement the true states of the physical switch model. In this
example, the “Unknown” state provides a means of coping with inconsistent evidence that could result
from a measurement (bad sensor) or transport (data point lost) failure.

Human-Rated Automation and Robotics

70
 This document has been reviewed and determined not to contain
 export controlled technical data.

4.1.3.10 Consider Deployments
Deployments in state analysis describe the partitioning of the functions of the control system (as
introduced in section 3.1.2) between physical elements of the overall system. A typical spacecraft
system might have separate spacecraft and ground deployments (the ground system is part of the larger
control system that includes the spacecraft). A spacecraft may be composed of subsystems including a
launch vehicle, cruise stage, lander, and science instruments each with their own embedded control
systems. Partitioning can consider hierarchical partitioning where elements are accessed as subsystems
or peer partitioning. This practice primarily covers peer partitioning where each deployment contains
part of the control system (some state variables and associated estimators, controllers, sensors and
actuators) and the deployments have to communicate with each other via remote data transport links.
In a hierarchical decomposition, part of the control system (e.g., a science instrument) might have its
own embedded goal-oriented control system. In a hierarchical decomposition like this the subsystem
might interact with the parent control system in terms of goals and state variables, or the system might
model the instrument as part of the system under control (sensors and actuators) depending on the
level of system engineering interaction and cooperation between teams (this is just a matter of where
the system architect draws the line between control system and system under control). This partitioning
is done in response to architectural considerations illustrated in this practice.

Fig. 4.38. Consider Deployments practice detail

In the Define Deployments activity, architects begin to plan where the control system functions can best
be performed to realize a satisfactory balance of emergent concerns (e.g., reliability, safety, robustness,
maintainability, scalability). Each deployment may be responsible for an arbitrary amount of each of the
functions of the control system. It is up to the architect to select the physical architecture instantiating
the functional architecture in the most suitable fashion.

Allocating different parts of the system to different physical deployments can serve several distinct
purposes. First, in spacecraft systems it addresses a basic requirement of carrying out science
investigations in remote environments; that you have to get the instruments into the remote
environment and operate them there. Spacecraft can be highly autonomous but they still need to return
results to scientists on Earth to “close the loop” on their primary goals. This requires allocating some of
the functionality to the remote platform, and some to computers and people who on Earth. Similarly,
the flight system might need to have distinct stages or parts that can be discarded or operated

 71
This document has been reviewed and determined not to contain
export controlled technical data.

separately such as an orbiter and lander. Deployment decomposition also addresses organizational and
development process considerations such as contracting requirements. Science instruments are often
contracted out as separate subsystems. In all such situations state analysis is primarily concerned with
the information (state estimates, goals, measurements, commands) that has to cross boundaries
between deployments, and the qualities of that information exchange (latency, completeness, etc.).

It is important to note here that the control system functions can be deployed differently for individual
sets of goals. The choice is up to the architect.

Fig. 4.39. Canonical functions of the goal-based control system (as introduced in section 3.1.2)

An advantage of the state analysis approach is that the candidate architectures, due to the specification
we’ve detailed in the preceding practices, can be simulated and run in order to analyze them in modeled
operational contexts. These simulated configurations can be compared on their relative suitability, using
the domain and system models developed in the course of state analysis. This ability to specify and
compare executable architectures provides the architect with a powerful tool to assess candidate
architectures early, further reducing project risks.

The Consider Deployments practice begins by asking “are physical system segments significantly
separated?” By “system” we must consider the control system in addition to the system under control.
For example, a rover on Mars is an element in an overall “system”. This system includes elements with
the responsibility for operating and sustaining to rover, as well as retrieving and processing data. The
scope of the control system we specify through state analysis must be similarly broad.

The proper degree of separation will depend on the particulars of the system. An architect can answer
the question on distribution by thinking about where it is appropriate to accomplish the functions of the
control system as described in section 3.1.2. Section 2.3 covers a number of examples of systems
categorized partially by the degree of distribution of the control system functions.

Another question to consider in defining deployments is “how much control latency is acceptable?” This
can be thought of as the required speed of the control loop between stimulus, planning and response.
The “faster” the state variables being controlled, the faster the required control.

The location of the execution function is important to the speed with which commands can be issued to
the system under control, and estimates of state variables can be obtained. For real-time applications, a

Human-Rated Automation and Robotics

72
 This document has been reviewed and determined not to contain
 export controlled technical data.

typical choice is to co-locate the execution function with the system under control. This is especially true
of the distributed autonomous systems described in figure 2.3 of section 2.3.

To exercise true cognizant control, the execution needs to be tightly coupled (little latency of command,
feedback) with the system under control. While it is conceivable to have execution performed remotely
from the system under control, sending commands over a medium and making measurements
remotely, the latency involved largely negates the closed-loop advantages of goal-based control.

Elaboration, projection and scheduling use the specifications from state analysis to define the set of
behaviors that achieve user objectives, and analyze the results of this behavior against intent. These
functions typically work on a slower schedule than execution since intent changes more slowly than the
phenomena modeled by state variables and handled by execution.

Elaboration, projection and scheduling also involve many of the most CPU-intensive tasks of the goal-
based control system. In applications where the computational power available to the remote asset is a
premium (as is the case with many space applications), it makes sense to perform these functions off-
board (on the ground). It is also often the case that the performance of these functions requires a
significant degree of non-automated analysis, or human interaction, weighing the balance in favor of
keeping these functions on the ground.

With the system functional partitioning specified in the Define Deployments activity, we are now ready
to consider how to handle the flow of information between deployments. Addressing remote
information is done through two tasks, Define H/W Adapter Proxies and Define State Variable Proxies.

Hardware adapters provide an interface between the hardware of the system under control and the
control system. They serve the control system by translating commands to hardware input and data
from the hardware into output. The hardware adapters are physical sensors and command decoders.

Proxy State variables refer to state variables that reside in deployments other than the one where they
are originally estimated. An example of this would be a case where the estimator is co-located with a
remote system under control. The state variables are then produced locally by the estimator, these
being Basis State Variables. The control system determines the required commanding by comparing
state variable value to the user-specified goals. In this remote case, control system needs local copies of
the basis state variables. This is accomplished through the use of proxy state variables. The next
following example should clarify this distinction.

Deployments Practice Example

In our example, we locate the system under control on the surface of another planet.

The deployments example above is typical for a space system application. The Consider Deployments
practice is accomplished by selecting the proper allocation of control system functionality between
deployments. In our example, the architect has determined that two deployment classes are
appropriate, Ground and Flight.

As indicated in the instantiation of the functional partitioning, all elements of the control system use the
same models for the system under control, allowing the functions to be executed anywhere in the
system the architect chooses and ensuring control system element actions are consistent with each
other as well as the original, integrated system specification.

 73
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 4.40. Example of partitioning of functions of control system into deployments

Looking at the functional partitioning at the upper left of figure 4.40, we see the architect has allocated
the Elaboration, Projection and Scheduling functions to the Ground deployment. The rules driving
Elaboration and Scheduling are captured as models (goal elaboration and scheduling rules) as part of
state analysis. A system could carry out the translation of intent into executable timelines through
elaboration and scheduling anywhere in the system. In this example however, the architect decides that
allocating elaboration and scheduling to the flight computer would be too computationally demanding
or risky. By doing the elaboration, scheduling and projection on the ground, the operations team can
turn intent specifications into executable timelines (which we will cover in section 5) through their
accustomed planning and sequencing process, and validate the executable file (x-goal timeline) before
uplink. The operations team uses the execution, planning and scheduling functions to turn their intent
into executable times captured as goal-nets.

At the bottom of figure 4.40, we have operations team members carrying out execution monitoring of
the system. In this example, the architect decided that execution monitoring should be done by human
operators in addition to onboard.

The execution function onboard the remote site estimates and stores the original state variable values,
the basis state variables. As part of remote execution, the architect must define a set of proxy state

Human-Rated Automation and Robotics

74
 This document has been reviewed and determined not to contain
 export controlled technical data.

variables for the ground deployment. The proxy state values are local copies of the basis state variables
copied from downlinked telemetry from the remotely executing deployment. These proxy state
variables serve the same purpose in the Ground element as the Flight element. As denoted in the circles
of the functional portioning portion of the figure, the goals specifying user intent are compared with the
state variable values to analyze execution and determine the appropriate commanding.

4.2 Development Path
The purpose of this section is to illustrate how the state analysis practices introduced in section 4.1
relate by use of a generic development process. As stated in the beginning of this document, specific
process prescriptions are not in the scope or intent of this work. However, the strawman development
path introduced here serves to give the reader a sense of the ordering of effort involved in specifying
systems using state analysis.

The development path follows the classic systems engineering progression from high-level, user-focused
concept and artifacts, to solution-specific implementation deliverables. A central theme of this work is
the efficacy of models for eliciting, expressing and analyzing requirements. The models of state analysis
provide the necessary context to describe the domain, and understand how that domain must be
manipulated to achieve user needs. The models of state analysis also provide a rich set of concepts and
relationships to specify an architectural solution to meet the stated need. This architecture demarcates
the possible design space, encompassing the range of suitable designs and providing a means to gauge
the relative merit of particular implementations. Models also aid by tracing implementation items back
to specifications of needs and expectations. This integrated, navigable set of specifications enables
developers to more readily discern how capabilities (goal sets) can be packaged for integration and
testing.

Fig. 4.41. Generalized development path

 75
This document has been reviewed and determined not to contain
export controlled technical data.

The development path outlined in figure 4.41 is a generalized set of steps for progressively realizing an
architecture specification and instantiating a solution in design. As with other systems engineering
processes, the flow is top-down, starting with user requirements definition and proceeding to the
technical details of implementation. This flow is reflected in the division of the process into two general
areas, Preliminary Specification and Technical Specification.

The result is a progressive refinement of the solution, answering the big questions first in order to
reduce risks.

Each of the state analysis practices of section 4.1 are accomplished to varying degrees in all of these
steps. This parallelism reflects the iterative nature of development, where questions answered by
specification answer and raise other questions until convergence is achieved around the “go” for critical
design. The steps of the process in figure 4.41 overlap as well. Dashed arrows indicate where
intermediate products are fed back to previous steps to resolve earlier issues.

4.2.1 System Requirements Specification
The goal of System Requirements Specification is to capture user requirements and necessary domain
knowledge from which the solution architecture will be defined. This aggregated specification, captured
as an integrated set of models, enables the stakeholders to specify early what is desired (in terms of
goals), and what is important to satisfying them (largely in terms of the state knowledge model). While
the requirements and expectations are largely captured as models, the aggregated specification is
complementary to the traditional text-based user requirements specification.

As with the traditional text-based specification, the preliminary specification should not favor any
particular implementation. By focusing on user wants and domain realities, the team deals with the
“whats” before diving into the “hows” of technical specification.

4.2.1.1 Step 1: Build a Preliminary Goal Model
The focus of this step is on identifying the stable system-level requirements (goals) and elaborating
them through sets of sub-goals. By “stable”, we mean goals that are valid for any implementation that
might be selected. This ensures that developers keep the focus on what conditions must be true to
satisfy the user, not on premature implementation specification. These goals typically represent high-
level system behavioral requirements.

Fig. 4.42. Development path detail on step 1: build a preliminary goal model

Human-Rated Automation and Robotics

76
 This document has been reviewed and determined not to contain
 export controlled technical data.

The elaborations of this step are also key in identifying the aspects of the domain that must be
controlled to achieve goals, as well as the domain aspects that affect what we need to control. These
attributes are the “subjects” of the goals we identify and elaborate, and are represented as part of the
state knowledge model. This is discussed further in Step 2: Derive Preliminary Concept Models (section
4.2.1.2).

Goals are identified by following the Requirements/Goals Elicitation practice (section 4.1.3.1) and
elaborated via the Goal Elaboration and Planning practice (section 4.1.3.2) once the definition is mature
enough (i.e., in terms of accepted concepts from the domain model developed in step 2). The
elaboration into sub-goals continues until the system boundary is reached (i.e., all domain aspects
controlled or affecting control are accounted for in models).

Vignette

We return to the remote imaging system introduced in section 4.1 to illustrate each step of the
development path. In step one, the team works to identify top-level goals by analysis of existing system
requirements, ConOps and other documentation describing user expectations for the system-to-be. The
team starts development with the Requirements/Goals Elicitation practice (section 4.1.3.1), determining
and describing the top-level goals that guide subsequent efforts. In this vignette, we are provided a
Functional Flow Block Diagram from an existing ConOps for the remote imaging system.

Fig. 4.43. Functional flow block diagram for the remote imager system

The Functional Flow Block Diagram describes the basis system-level activities, making it a good starting
place for identifying the goals representing desired behaviors. Starting with the top-level expression of

 77
This document has been reviewed and determined not to contain
export controlled technical data.

user objectives, we progressively refine terms until requirements are stated. Requirements on dynamic
attributes of the system are then refined as goals.

Fig. 4.44. Progressive refinement from objectives to goals

Goals are derived from analysis of requirements, particularly requirements on dynamic attributes. In the
example above, a goal, Image Exists, is derived from analysis of a functional requirement for Science
Imaging.

High-level goals are refined by carrying out preliminary elaboration (bottom of figure 4.44). Through
elaboration, the modeler identifies the sets of necessary sub-goals to satisfy the original high-level goals.
This activity is described in the Define Elaborations activity of the Goal Elaboration and Planning practice
(section 4.1.3.2).

The end result of this step is a preliminary set of goal and sub-goals definitions from which to anchor the
domain analysis of step 2. This specification forms the beginning of the system goal model introduced in
section 3.3.2.1. The “subjects” of the goals comprise the basic domain vocabulary that will be elaborated
in subsequent steps.

Human-Rated Automation and Robotics

78
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.45. Examples of preliminary goal/sub-goal definitions

4.2.1.2 Step 2: Derive a Preliminary Concept Model
Step 2 focuses on the definition of domain concepts identified in the preliminary goal model from step
1. The modeler identifies and defines the stable concepts from the stable, high-level goal model. These
concepts are the subject nouns of the aforementioned goals. These subjects describe dynamic attributes
of domain we need to control, or affect the attributes we need to control. The result is a complete,
consistent set of universally-understood definitions and descriptions of the aspects of the system under
control and environment relevant to satisfying the identified objectives. This domain specification is
specified in the resulting preliminary state knowledge model.

Fig. 4.46. Development path detail on step 2: derive preliminary concept models

The Define State Variables practice (section 4.1.3.4) is central to this step. The domain information that
will feed the state knowledge models is determined through analysis of the preliminary goal model and

 79
This document has been reviewed and determined not to contain
export controlled technical data.

available domain descriptions (e.g., schematics, operator interviews, supporting system specifications).
The goal definitions from step 1 begin to list and describe the states we must consider with our control
system. By identifying and relating the “subject nouns” of the goals and sub-goals, we begin a top-down
description of the scope of the domain to address with the control system. The subject nouns of the
defined goals and sub-goals are the system state variables. We also begin to relate the state variables to
each other through state effects diagrams.

Vignette

Step 2 begins with the goal model definitions from step 1. The modeler analyses the goal definitions and
available domain documentation to determine state variables. Relationships between identified state
variables are represented in state effects diagrams.

Fig. 4.47. From goal models to state effects

In the example above, we identify Boresight Off-Angle as a state variable from the goal model and
definition. We follow the Define State Variables practice to refine the state variable in terms of related
domain concepts (in this case, Azimuth and Elevation Offsets). This process proceeds until the state
variables are specific enough to be addressed by single controllers in the case of controlled state
variables, or single models in the case of uncontrolled state variables.

Note that this entails early decisions on the scope of the control system. While the decision to control or
not to control is easy in the case of state variables like Sun Angle, it is not as clear cut in other cases and
will depend on larger architectural concerns.

As the state variables are refined into greater detail, the modeler may find relevant state variables that
are not covered by goals in the original goal model. These newly-identified state variables are then
addressed by updating the goal model as part of the iteration between steps 1 and 2.

Step 2, and by extension the preliminary specification phase of the development process is complete
when the team is able to demonstrate to stakeholders that…

All desired system-level functionality and behavioral qualities are specified.

Human-Rated Automation and Robotics

80
 This document has been reviewed and determined not to contain
 export controlled technical data.

The goal specification exhaustively lists and describes what the system should do (i.e., goals describing
the realization of functions) as well as the system “quality” constraints (e.g., level of service, latency,
etc.). The goals are traced back to objectives and user needs, providing a means for reviewers to validate
the specification.

The scope of the system is appropriately defined.

The system scope is represented in the specification as the portion of the domain that must be
controlled or coordinated to achieve the identified user needs. This is reflected in the set of state
variables represented, as well as decisions to control (requiring active measures to enforce constraints)
or coordinate (model state variable and use information to influence other controllers) the respective
state variables.

These and other questions are answered as part of a System Requirements Review.

4.2.2 Technical Specification
In the technical specification phase, modelers complete the architecture specification by describing how
a system would meet the user requirements developed in the previous phase. While the user
requirements (captured in goal and state knowledge models) are described in “operations-centric”
terms (focused on desired outcomes and free of details of particular implementation details), the
specification resulting from this phase will have a level of detail from which design decisions can be
made. The resulting specification is reviewed in the Preliminary Design Review at the conclusion of the
phase.

4.2.2.1 Step 3: Elaborate the Goal Model with Supporting Goals
The goal model developed and validated in the previous phase is a high-level, operator-focused,
implementation-neutral description of what the system needs to do to achieve user needs. We now
must further refine this model using sub-goals describing the technical aspects of achieving the user
goals. The ultimate result of this step is an implementation-ready (i.e., we can realize the controllers to
implement them) set of goals that can be achieved to satisfy the user need.

Fig. 4.48. Development path detail on step 3: elaborate the goal model with supporting goals

In this step, we refine the aforementioned user goals through devices such as operating scenarios.
Operating scenarios provide a framework to fill in the practical details necessary to specify how a system
can satisfy the constraints described by the goals. The scenarios also guide analysis on necessary

 81
This document has been reviewed and determined not to contain
export controlled technical data.

relationships (e.g., timing, ordering) between goals. The resulting elaborations and relational constraints
are captured in the updated goal model.

Scenarios are also a means to identify alternate elaborations (tactics) to satisfy goals. As part of making
implementation decisions, the architect analyses the alternate elaborations to determine which sets are
suitable for the class of designs that are being considered. The architect also must begin to specify
criteria for selecting between alternate sets of suitable elaborations as well as mechanisms for selecting
between them.

The primary state analysis practices for this step are Goal Elaboration and Planning (section 4.1.3.2) and
Define Scheduling Rules (section 4.1.3.3). The goal model from step 1 is refined into sets of
implementation-level sub-goals through the Goal Elaboration and Planning practice. The Define
Scheduling Rules practice guides the specification of constraints (e.g., ordering, concurrency, timing)
between sub-goals.

Step 3 is carried out simultaneously with Step 4: Derive Updated Concept Model. As we shall see in the
vignette below, refining goals in scenarios goes hand in hand with refining the state variables.

Vignette

We refine the original Image Exists goal from the preliminary goal model developed in step one into a
set of sub-goals. As before, this representation of goals can be thought of as, “these sub-goals must
succeed in order for the top goal to succeed”. At this point, there is little ordering specification given,
besides loose ordinal words such as “during” or “before”.

Fig. 4.49. Elaborating of original goal model

As mentioned previously the state effects accompanying the goals are also required for scenario
definition. The interactions between state variables guide the specification of constraints, and ensure
that the modeler does not omit state variables necessary to achieving goals. We determine the state
variables through analysis of the sub-goals and other domain specifications.

Human-Rated Automation and Robotics

82
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.50. Determination of state variables from sub-goals

Scenarios, particular threads of execution, provide a framework for elaborating goals in an operational
context. Scenarios are specified as related timelines of state variable values and constraints. System
scenarios are found in documentation such as the ConOps.

Scenarios are defined as sets of parallel state variable timelines. The necessary timelines are the set of
state variables constrained by the sub-goals of the elaboration set of the original goal (see figure 4.49).
To define the scenario, the modeler specifies boundary conditions; assuming starting states and
imposing ends states. In imposing states, the modeler is in effect specifying goals (constraints on states).
By refining the specification of the constraints, the modeler is able to update the loosely-defined
previous goal definitions into more operationally-relevant constraints.

Fig. 4.51. Scenario definition from state variables

 83
This document has been reviewed and determined not to contain
export controlled technical data.

The scenario above describes the ordering of state variable constraints necessary for imaging with our
remote camera system. Through the integrated models, we can begin to predict necessary durations,
and side effects of activities. By iterating with step 4, we progressively refine the state variable
definitions and relationships as well.

4.2.2.2 Step 4: Derive the Updated Concept Model
Step 4, the updating of state variables, is closely related to the previous step of goal refinement. As with
step 3, we add operational details by elaborating how elements relate in accomplishing scenarios.
Refinements in goals lead to refinements in state variable models and vice versa. This iteration is
represented in the development path detail below.

Fig. 4.52. Development path detail on step 4: derive the updated concept model

As goals are elaborated, new state variables may be identified and related to existing state variables.
This is done through application of both the Goal Elaboration and Planning and Define State Variable
practices.

While previous steps focused on identifying state variables necessary to meet objectives, we now begin
to consider what control is needed to enforce the necessary constraints on the state variables. In
addition to identifying and describing supporting state variables as part of elaboration, we also begin to
consider implementation details such as how to manage state variable data to support data
management goals. This analysis and specification is accomplished through the Define State Value
Histories (section 4.1.3.5) practice.

Vignette

As mentioned, step 4 is accomplished in parallel with step 3. The refinement of the goal model leads to
refinements in the state variable models and vice versa. The original goal is decomposed into a
supporting set of sub-goals describing constraints on the updated state variables. Through scenario
definition, we can refine our state variable descriptions and relationships to the point where we can
define controllers to enforce constraints. Scenarios also help us specify resource and other constraints
based on system limitations (e.g., slew times, required power, bandwidth) that must be included in the
updated system model. Figure 4.53 represents the updated imaging scenario, with early specification of
temporal constraints based on preliminary durations from modeling of actions (i.e., time to slew
camera, represented as Camera Pointing = “Turning”). The modeling of resource usage, and durations of
actions is part of the state knowledge model (state effects).

Human-Rated Automation and Robotics

84
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.53. Updated scenario with durations

Comparing the above scenario figure with the initial scenario model (figure 4.51), we see that the state
variable timelines are now divided into intervals with concrete states and more precise ordering
constraints. The state variable states are included into the definition of the respective state variables,
along with rules for transitioning between the states. The specified states on intervals are the state
variable constraints to be enforced by controllers.

4.2.2.3 Step 5: Analyze Responsibilities and Elaborate Controller Models
In step 5, we use the updated state variable constraint (goal) definitions from the previous steps to
define the controllers to enforce the constraints, and the estimators to determine current state. As we
covered in section 3.3.2, state control and state estimation are both activities under the control system
function of execution. Both activities of execution involve achieving goals; control goals for controllers,
knowledge goals for estimators. The focus of this step is to define how the necessary constraints will be
satisfied, either directly by active control, or through other controllers acting on models of state
variables outside of the scope of the control system. As a goal of the architecture is to explore the
design space in order to “bracket” the span of suitable designs, we can specify alternative controllers for
goals where applicable. We decide between alternative controller implementations in later steps.

 85
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 4.54. Development path detail on step 5: analyze responsibilities and elaborate controller models

In step 5, we detail the agents charged with ensuring the outcomes specified in the previous four steps.
To analyze responsibilities, we must answer “what is capable of controlling the state variables
constrained by goals?” and “what how can we monitor the variables to be evaluated for that goal?” In
determining agents to control goals, we have the flexibility to select software, human agents or
combinations of the two (e.g., software sensors, human executives with software executive backup).

The initial controller specification should be an “abstract” (i.e., specify what the controller needs to do,
not “how”) description. This gives the architect the flexibility to decide between implementation options
based on which option can best satisfy the initial specification in accordance with wider architectural
concerns (e.g., reliability, responsiveness, cost).

The key state analysis practices of this step are Define State Controller (section 4.1.3.6), Define
Actuators (section 4.1.3.7), Define Sensors (section 4.1.3.8) and Define State Determination (section
4.1.3.9).

Vignette

Iteration on the goal model in the previous steps results in a full set of sub-goals for achieving the
original high-level goals. The definitions of the “leaf” (bottom-most) sub-goals are refined enough to
specify controllers to enforce them, and estimators to estimate the values of their state variables. In this
example, we begin to consider control and estimation of a sub-goal to close the power switch for the
camera. This sub-goal supports a higher-level goal that the camera be powered, and this connection is
documented in the goal and state effects models (figure 4.55).

Controller specification begins with defining a control algorithm. The algorithm expresses each of the
actions a controller can accomplish to satisfy the goals allocated as a function of estimated states.

Human-Rated Automation and Robotics

86
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.55. Allocation of controller to goals

Controller algorithms are driven by the requirements of the particular application. Algorithm suitability
is driven by architectural concerns such as accuracy requirements and computational complexity
limitations. In our switch position controller example, a modal controller meets these requirements.

Fig. 4.56. Controller algorithm and related specifications

The controller algorithm is a function of the states of the state variable controlled, as well as the set of
goals allocated to that controller. The states are determined through from the state variable definition.

 87
This document has been reviewed and determined not to contain
export controlled technical data.

The state variable definition consists of both a physical and estimated set of states. The estimated states
extend the physical states by including modeling of uncertainty. We also include faulted states, as
applicable in the physical definition. In this case, we determined that switch trips are a contingency that
must be explicitly addressed by the controller.

As articulated in classic control, and further explained in the Define State Controller practice (section
4.1.3.6), the controller must use estimated state, as is does not have direct access to system state
variables. These estimated states are included in the controller algorithm. To complete the specification,
we add the goals allocated to the controller (i.e., Switch Open and Switch Closed). The commands issued
by the controller are a function of the estimated states and the current goal. These commands fill the
cells of the resulting matrix of goals and estimated states (top left of figure 4.56).

The physical and estimated states, along with the controller algorithm inform the command and
measurement models as well (left portion of figure 4.56). These specifications serve as requirements for
actuators and sensors, respectively. The estimator will use the command and measurement information
described here in its determination of the most likely state variable value. An example of this was given
in section 4.1.3.9.

4.2.2.4 Step 6: Make Choices among Alternative Options
In step 5, we wrote abstract specifications for sets of controllers, estimators, sensors and actuators.
These specifications serve as requirements for particular implementations of these elements and
configurations to accomplish them. In step 6, we make decisions on particular implementations based
on wider architectural considerations as well as compliance to the specifications developed in the
previous step.

Fig. 4.57. Development path detail on step 6: make choices among alternative options

At this point, all the state analysis models, goals, state knowledge, state estimation and control exist in
at least preliminary form. From here on, modelers will refine the existing models in order to facilitate

Human-Rated Automation and Robotics

88
 This document has been reviewed and determined not to contain
 export controlled technical data.

early design decisions. Unlike the previous step, step 6 does not involve specification, per se, but
selection among specifications based on an analysis of suitability.

In addition to the practices involving the specification of controllers, sensors, estimators and actuators,
we must refer to the Consider Deployments (section 4.1.3.10) and Requirements/Goals Elicitation
(section 4.1.3.1) practices to inform selection decisions. Through considering the appropriate
deployments, we can determine the context (e.g., distribution, relation of elements, latency) that the
items will operate in. The requirements/goals elicitation practice describes how modelers refer back to
the original system requirements, and demonstrate satisfaction.

Heuristics for Selection

There are many conceivable heuristics for making selection decisions in architecting; [Rechitin2002] and
[VanLamsweerde2009] are two excellent references. A couple of key heuristics to consider are…

• Use qualitative reasoning techniques to select options contributing the most to system higher
priority “quality” measures (performance, reliability, cost) without hurting the lower-priority
measures too much.

The explicit specification and traceability from needs to objectives to satisfying elements through
models makes this approach possible. The relative merit of particular implementation tactics in terms of
“quality” is determined through application of (usually normative) heuristic evaluations (e.g., “avoid
implementations using toggle commands”). The integrated model facilitates such global appraisals and
trades.

• Use quantitative techniques, such as multi-criteria analysis to gauge the relative suitability of the
available options.

This is also made possible by the traceability of need and requirements to the implementation
specifications. Another advantage of the state analysis model framework is the executable nature of the
models. These models can be used to specify the prospective system variants for simulation, allowing
modelers to evaluate alternatives prior to committing to any one design. Analysis of these executable
system models is key to the next step Build and Analyze the Behavior Model.

4.2.2.5 Step 7: Build and Analyze the Behavior Model
In step seven, we make the realized system behaviors explicit by completing the specification of the
dynamic system properties in the models. As mentioned in the previous step, the executable nature of
the models provides a capability to simulate systems based on the specifications developed. While
simulation in development is nothing new or esoteric, building useful, valid simulations is easier and
cheaper when using an explicit, structured ontology such as the state analysis framework.

Simulation provides developers, operators and other stakeholders the opportunity to perform earlier,
more frequent validation (demonstration of suitability) of designs. The structure (i.e., explicit, consistent
semantics) and transparency of the models enables the team to assess the completeness and
correctness of the specifications. The accessibility of the models leads to stronger designs and better
product decision making over the lifecycle.

 89
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 4.58. Development path detail on step 7: build and analyze the behavior model

In addition to aiding selection among alternatives, simulation using the executable models of the
architectural specification plays a number of important roles over the remainder of the system lifecycle.
While we touched on the utility of simulation using executable models for evaluating prospective
designs in trade studies in step 6, step 7 describes how simulation is used in detailed design and
operations. Analyses of the simulations feeds back into earlier steps (step 3 and 5) as well. Simulation of
the emerging system provides insights, guiding changes to specifications.

Behavior specification is an aspect of multiple state analysis practices, but this effort centers around the
Define Projections activity is the Goal Elaboration and Planning practice (Section 4.1.3.2). We describe
this activity as part of the vignette in this section.

The ability to simulate systems allows developers to answer important performance questions before
committing resources to implementation. While the use of simulation is well established among
individual hardware-centric fields (e.g., power, telecommunications, mechanical), the structured
analysis of system-level behavior has not achieved the same maturity. The state analysis models provide
a framework allowing the team to describe and simulate the overall system (structure and
relationships). This system-level analysis provides the insights into system issues (e.g., performance,
resource usage) at a precision and resolution previously achieved by subsystems only. Just as
importantly, the shared framework links the previously separate subsystem specifications, ensuring the
overall system specification is consistent.

Consistent specification provides assurance that all threads of the development effort work from the
same set of expectations and assumptions. The shared specifications also link the development
knowledge to operations. Operators use the models from development to specify, verify and validate
their goal nets.

Human-Rated Automation and Robotics

90
 This document has been reviewed and determined not to contain
 export controlled technical data.

The simulation capability described goes beyond simple projection of states based on extrapolations of
current conditions. The models (particularly the state effects models) feature rules describing how
projected states depend on other states. This explicit treatment of cross-system causality provides a
more valid system model with wider applicability and credibility. For example, a system with a heater
estimated as “failed” would take this into account when coordinating plans that require higher
temperatures in the future. Let’s elaborate projection with an example using a simplified heater model.

Vignette

Developers need to understand projected state to validate their designs (establishing the system can
meet objectives), while operators use the same projections to validate plans and verify sequences. The
projected state represents both the intended state (specified in the goals of the plan), and reachable
states (the range of possible values as a function of time) using a given achiever, estimated state, and
dynamic system model.

Fig. 4.59. Projected state prediction inputs

The physical model describes how the state variable in question responds to commands and other
events. This information comes from physical models of state knowledge and command models. The
intended state is specified as networks of goals for state variables. Goals represent the state we would
like specific state variables to be in as the plan executes. Estimated and projected states describe the
range of states possible for the state variable, including uncertainty. The estimated and projected states
are determined from the estimation model. Achiever behavior accounts for what the controller can do
to influence state. This is described by the command model.

Projected state is represented as function of intent (intended state) and projected/estimated state
subject to the physical and achiever behavior models (see figure 4.59). The projected state prediction is
represented in plans as goals (same as intended state). The future time history of predictions forms the
set of possible (estimated) state trajectories.

 91
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 4.60. Determining projected state from model inputs

Projections allow the user to validate the system by checking intent (the plan) against expectation.
While developers use projection to assess system capability (e.g., “does the heater selected meet our
thermal requirements?”), operators use projection to validate their plans (e.g., “does the heater have
enough time before imaging?”).

Fig. 4.61. Comparison of projected state to intended state

Figure 4.61 details how the projected state of the prediction model is compared at planning time to the
intended state specified in the x-goal. While the example on the left illustrates an x-goal’s predicted
success, the right example illustrates a failure due to a predicted “Failed Off” condition. Since the “Failed
Off” condition is modeled as persistent, there is no way to satisfy the x-goal, so an imminent goal failure
is flagged at planning time.

By projecting estimated current conditions and comparing to future user intent, the control system can
identify future conflicts of timing or resources. Having identified the conflict in advance, the system can
employ user-specified resolutions to repair plans or drop the offending goals. See section 5.3 for details
on this topic.

4.3 General Principles for Specification using State Analysis
In this section, we cover cross-cutting concerns practitioners should consider in the specification of goal-
based systems. In section 4.3.1, we introduce the reader to basic design principles for architecting goal-
based systems. Section 4.3.2 covers basic design patterns describing common arrangements of
framework elements to realize control system elements. Section 4.3.3 is a list of basic questions that the

Human-Rated Automation and Robotics

92
 This document has been reviewed and determined not to contain
 export controlled technical data.

integrated specifications must answer with references to the applicable state analysis practices covered
in section 4.1.

4.3.1 Guiding Design Principles for Architecture

Separation of control system from system under control

When designing a control system it is essential that the designer understand the difference between
what can be controlled and what can’t. This has to include what aspects of the design and
implementation can be managed versus what is given by the system decomposition. While it may in
some cases be possible to negotiate design changes to a subsystem, this becomes harder to do after a
system is initially decomposed, particularly if the subsystem is hardware. Where the line is drawn is less
important than the fact that it is clearly defined, and the interfaces across the line are unambiguous and
understood and accepted by implementers on both sides of the line.

Separation of estimation from control and the expression of state knowledge

It’s a common mistake in control system implementation to combine control decisions with logic needed
to make sense of the incoming measurements. Although this might seem efficient, it often results in a
system whose behavior is hard to explain in terms of what one can observe from the outside. If a
developer, operator, or tester can’t see what the control system believes the state of the system to be it
will be more difficult for them to verify that the behavior is correct, or to determine why it isn’t correct.
Furthermore, when state knowledge is needed to inform more than one control decision it is essential
that the system provide a single source for that knowledge in order to avoid the control conflicts that
can easily emerge when two different controllers are deriving their own estimates of the same state.

Expression of intent through declarative goals rather than imperative command actions

Imperative commands specify an action to change the state of the system. What they don’t say is what’s
supposed to happen after that. They merely imply an intent for the state of the system to remain in the
changed state, and may not even accomplish that. In large complex systems, particularly space systems
where dependability and safety are important, this can make it exceedingly difficult to predict what the
state of the system should be given a sequence of commands without performing a detailed simulation.
Imperative commands also may not work as intended if the target device has failed.

A goal is a constraint on a state variable of the system (the physical system) over a specific interval of
time. As such it is (can be) completely unambiguous about what the intended state of the system should
be at any given time.

 93
This document has been reviewed and determined not to contain
export controlled technical data.

4.3.2 Design Patterns (adapted from [Wagner2008])
Design patterns provide practitioners with normative guidance on solutions to recurring problems in a
domain. Pattern spares us the expense and risks associated with “re-inventing the wheel”; practitioners
can leverage accumulated experience and best practices in their own efforts. Control system designs
specify the instantiation of framework design elements (metamodel elements introduced in section 4.1)
to solve particular problems. In this section we introduce a number of recurring patterns for design in
the State Analysis framework. Readers may refer to [Wagner2008] for a more detailed treatment of this
topic.

Fig. 4.62. (Re-stated) Metamodel of state analysis design elements

4.3.2.1 State Estimation

Purpose

Define an architectural pattern for estimating the values of physical state variables based on available
evidence; cleanly separate estimation from control.

Motivation

It is a common mistake in control system engineering to make control decisions based on incomplete
knowledge of the state of the physical system as described in raw measurements. Measurements can be
noisy, and intermittent. Filters are commonly applied to raw measurements, but if the results are buried
in a control algorithm, they cannot easily be reused by other controllers. Worse, two different users of
the same raw measurements, using different filters, may arrive at different estimates of the state of the
physical system, resulting in control conflicts. Having a single explicit representation of any physical
state variable of the system under control, using a single estimator, ensures consistent representation of
that variable in the control system.

Human-Rated Automation and Robotics

94
 This document has been reviewed and determined not to contain
 export controlled technical data.

Structure

The primary structural elements that participate in this pattern are described in figure 4.63. First, the
State Variable provides an explicit representation in the control system of a corresponding physical state
variable of the system under control. This is also known as the software state variable to make the
distinction clear. State Variables are first-class entities in this pattern for three reasons. First, a direct
representation in software of the physical state being controlled makes the software more readily
understandable. In addition, telemetry based on state variable values is generally more informative than
raw measurements because they refer to a physical state being monitored and possibly controlled.
Second, the existence of the state variable permits a separation of concerns between estimation logic
and control logic. Third, the existence of a single software state variable for each physical state variable
ensures that there is one definitive source for estimates of a given physical state in the control system,
and only one way to access it. This avoids the common situation where two different controllers each
have their own private yet inconsistent estimates of a physical state, leading to surprising and
potentially hazardous interactions.

Fig. 4.63. Estimation pattern (minus command evidence)

An Estimator is responsible for actively providing values to populate the state variable with the best
estimate of its value from available evidence. In the simplest case an estimator may have only one
source of evidence, such as measurements from a single sensor, but in the general case there are
multiple sources of evidence: measurements from multiple sensors, commands sent to multiple
actuators, and estimates of other state variables. The role of the estimator is to combine that evidence
into a “best guess” of the value of the physical state, known as an estimate. Estimators must deal with
discrete and continuous values, noisy, missing or corrupted measurements, and inconsistent evidence
from multiple sources. These characteristics underscore why state estimation deserves special
attention, quite apart from control.

The Hardware Adapter is simply a formal interface to the system under control. It provides a command
interface for components that can be directly commanded (actuators), and a measurement interface to
components that provide measurements of the system state (sensors). Its main role is to formalize the
interface, but it can also serve to normalize the interface (like a device driver) and buffer data.

 95
This document has been reviewed and determined not to contain
export controlled technical data.

Measurements are raw samples delivered from sensors to an Estimator via a Hardware Adapter. They
can have any form, since this is often determined by the sensor hardware. They should have time tags to
eliminate timing ambiguity. It is important to remember that measurements are not state estimates;
measurements are a type of evidence used by estimators to generate state estimates.

Commands are another type of evidence used by estimators, though not shown in figure 4.63.
Specifically, a command issued to an actuator effects one or more physical states, and can therefore
provide evidence about the values of those physical states. Thus, estimators may acquire not only
measurement evidence from sensor hardware adapters but also command evidence from actuator
hardware adapters.

State Variables store information about the system state in the form of State Value Functions. These are
distinct from Measurements in that State Value Functions must be continuous over time, and explicit
about uncertainty. Measurements are readings at discrete points in time, and usually provide a single
uncalibrated value. The process of Estimation (the role of the Estimator) involves calibration, smoothing,
or noise elimination, and application of system models to determine and express uncertainty. State
values can explicitly represent the fact that the system state may be unknown in situations where
measurements are not available (e.g., if a sensor is powered off or failed). Estimators produce state
knowledge and repeatedly update software state variables. The precision and certainty of that state
knowledge depends is driven by need, typically the need to control one or more physical state variables
to a desired accuracy. Goals are used in this pattern to express constraints on the desired quality of the
state knowledge, which may vary over time. Thus, estimators can be viewed as “achievers” for these
goals.

Applicability

This pattern applies in any control system where knowledge of the target control states must be
inferred from sensors or other raw evidence available in the system under control. In any given system
the line between control system and system under control can be drawn somewhat arbitrarily, so the
“sensors” in the system under control layer can be arbitrarily complex. A measurement can be a raw
sample from an A/D converter measuring voltage on a line, or it can be a highly-processed position and
orientation vector produced by a complex navigation instrument. This pattern is usually applicable
regardless of the quality of the devices in the system under control producing the measurements. As
long as there is an inter-system interface the control system designer needs to consider the need to
account for missing or discontinuous samples. In the most ideal case where the system under control
produces values that can be used directly as state knowledge, the control system will still need to copy
values into a state variable using a trivial pass-through estimator. In a case like this, though, you may be
drawing the line between control system and system under control inappropriately.

Results

The existence of software state variables as first-class citizens in the architecture encourage a separation
of concerns between estimation and control. The State Estimation pattern—and the State Control
pattern that follows—formalize this separation. This separation is important because it decouples two
concerns that have often been intertwined in control system software, making each concern easier to
design, implement, verify, and reuse. Also, the role of a software state variable as the sole source of
information for estimates of its corresponding physical state variable eliminates the potential problem
of multiple, private-but-inconsistent estimates within a control system. This pattern also makes a clear
distinction between measurements and state estimates. This is an important distinction for robust
control systems because there are often multiple sources of evidence about the state of any single

Human-Rated Automation and Robotics

96
 This document has been reviewed and determined not to contain
 export controlled technical data.

physical state variable—sources that should be examined and reconciled before making control
decisions.

4.3.2.2 State Control

Purpose

Define an architectural pattern for exercising control over a given target system in a way that directly
uses knowledge of the state of the system under control.

Motivation

Consider a simple thermostatic temperature control system. The system under control includes a
temperature sensor and a heater that can be controlled by a switch. The goal is to maintain the
temperature within a target range, or within a target range. Designing and implementing a software
control system for this is straightforward. However, what if the underlying system changed (such as a
change to the sensor) after the software was written, or you had to port the control system to different
hardware? How hard would it be to pick apart the various models, assumptions, and algorithms from
the code? The closed-loop control pattern is intended to address this problem by defining placeholder
elements for each of the key roles in a control loop, and rules governing separation of responsibilities
between these elements.

Structure

The elements of this pattern are shown in figure 4.64.

Fig. 4.64. State control pattern

As in the State Estimation pattern, a Hardware Adapter provides a line of separation between an
Actuator in the system under control, and a Controller in the control system. Control intent is expressed
through the use of Goals, which express a constraint on the target state over an interval of time.

A Controller is responsible for any direct interactions with the system under control required to change
or control the target physical state. The controller can issue commands to the target system through a
Hardware Adapter. A controller is goal-directed in the sense that it issues commands as needed in order

 97
This document has been reviewed and determined not to contain
export controlled technical data.

to drive the state of the physical system into agreement with the goal, or desired state. Note that the
controller bases its decisions on the comparison between the goal and state knowledge provided by
state variables. In other words, the controller never examines raw measurements to make control
decisions (i.e., it never performs any internal state estimation).

Applicability

This pattern applies in situations where the control intent (the goal) can be expressed as a constraint on
state over a time interval, or as a sequence of such constraints, and where the target state can be
explicitly described in a state variable, and where the target state is directly controllable. This pattern is
typically limited to primitive states of the system under control that can be effected through actuators.

The controller may rely on models of the system under control to determine appropriate control actions
when the target state can only be indirectly controlled.

Results

This pattern, like the State Estimation pattern, supports the separation of concerns between estimation
and control, and therefore makes control software easier to design, implement, and verify because
control logic is cleanly separated from estimation logic. This pattern places responsibility for control of a
physical state variable within a single controller. As such, a controller may issue commands to multiple
actuator hardware adapters that have an effect on the physical state being controlled.

4.3.2.3 Reactive Closed-Loop Control

Purpose

Define an architectural pattern for exercising simple closed-loop control over a given target system in a
way that directly represents knowledge of the state of the system under control, distinguishes between
raw evidence and state estimates, cleanly separates state estimation from control, and bases all control
decisions on the relationship between estimated state and desired state.

Motivation

Consider a simple thermostatic temperature control system. The system under control includes a
temperature sensor and a heater that can be controlled by a switch. The goal is to maintain the
temperature within a target range, or within a target range. Designing and implementing a software
control system for this is straightforward. However, what if the underlying system changed (such as a
change to the sensor) after the software was written, or you had to port the control system to different
hardware? How hard would it be to pick apart the various models, assumptions, and algorithms from
the code?

The reactive closed-loop control pattern is intended to address this problem by defining placeholder
elements for each of the key roles in a control loop, and rules governing separation of responsibilities
between these elements.

Structure

The structure of this pattern is a simple composition of the state estimation pattern and the state
control pattern as shown in figure 4.65.

Human-Rated Automation and Robotics

98
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.65. Reactive closed-loop control pattern

What is important to note in the structure of this pattern is how it can be composed from the sub
patterns due to the clean separation between estimation and control. Estimation and control are
separate functions that only interact through the state variable.

Applicability

This pattern applies in situations where the intent (the goal) can be expressed as a constraint on state
over a time interval, or as a sequence of such constraints. In the simplest case, the goal may be statically
built into the system. In the more general case, an external sequencing mechanism delivers goals in
order, as described later in the section 4.3.2.7, Executive Control.

Results

Some states can only be controlled indirectly. In this case the pattern may extend, and control loops
may overlap one another via common state variables. As long as the system is accurately modeled and
estimation and control algorithms are faithfully executed, this pattern works for all control problems
where the intent can be expressed as a single constraint, or at least a single constraint at a time. The
pattern can be extended to support more complex behaviors in the following ways:

• Complex constraints (e.g., trajectory) – Here the goal includes timing information that describes a
path through state space over time. An example of this is a transition goal, which is defined as a goal
that allows for the transition from one stable state value to another. Transition goals express intent
to have the state arrive at a target value, yet avoid a determination of failure if the state is not
immediately being satisfied. For example, a transition goal on a temperature state variable might be
defined so that it is succeeding as long as the temperature is moving toward the target value,
whereas a maintenance goal would be defined so that any excursion from the constrained value
range would be considered a failure.

• Hierarchical layering of achievers – goal achievers can be organized in a control hierarchy whereby a
higher-level achiever issues goals to subordinate achievers to coordinate their actions in real time.
An example is a position & heading controller for a Mars rover that issues real-time goals to the
multiple driving and steering controllers.

 99
This document has been reviewed and determined not to contain
export controlled technical data.

• External sequencing of constraints – this approach is commonly used in robotic systems not only to
sequence the constraints on a single state, but also to coordinate the application of goals applied to
many states. See section 4.3.2.7, Executive Control.

These patterns can be combined in various ways to implement quite complex behaviors. A common
limitation, though, is the limited tolerance for faults. In particular, the sequencing of goals into complex
activities will typically describe one plan or script with all events ordered in time, or possibly sequenced
according to states being achieved. If something breaks, or something unexpected happens, these
scripts have only a limited ability to recover because there is no explicit representation of the higher-
order intent, and no formal mechanism for expressing alternative methods to accomplish them. This
limitation motivates the Deliberative Closed-Loop Control Pattern described in section 4.3.2.9.

4.3.2.4 Goal Network

Purpose

Define an architectural pattern to represent the relationships between a set of goals on a set of state
variables that specify control coordination across states and over time.

Motivation

The primitive patterns described thus far provide the means to control state variables individually. In
order to coordinate control of multiple states, a way is needed to represent relationships among goals
on different state variables.

Structure

A Goal Network (see figure 4.66) is primarily a container for a set of goals and their associated software
state variables. To make any sense as a plan, goals must be temporally related with one another. This is
done using Time Points and Temporal Constraints. A time point represents an abstract event. Every goal
associates with exactly one starting time point, and one ending time point. However, time points can be
shared by many goals. Time points carry no internal relationship to time. Instead, all temporal
relationships are represented through Temporal Constraint objects, which also associate with one
starting time point and one ending time point. A temporal constraint can specify a minimum and
maximum duration allowed between two time points, or simply a sequential ordering constraint.

A Goal Network contains goals, time points, and temporal constraints, as shown in figure 4.10 in section
4.1.3.2. The term “goal network” is used because the topology of the container is that of a directed
graph where the time points are the nodes, and the goals and temporal constraints are the edges. The
“parent” relationship illustrated in the figure means that each goal has a link to its parent goal. This
parent/child relationship is populated during goal elaboration, as explained in section 4.3.2.5, on the
Goal Elaboration pattern and the Goal Elaboration and Planning practice in section 4.1.3.2.

Human-Rated Automation and Robotics

100
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.66. Goal network

Since time points can be associated with different goals on different state variables, they enable
coordination of goals across different state variables. Figure 4.10 in section 4.1.3.2 depicts an example
of a goal network. The yellow circles represent time points. The green boxes represent goals aligned
along state time lines.

Time points joined by vertical lines indicate that those time points are shared, representing events that
connect the state time lines. The arcs between time points represent temporal constraints, in this case
indicating a minimum and maximum duration allowed between the given time points. Earlier, a goal was
defined as a constraint on the value of a state variable over an interval of time. Note that the goal’s
relationship with time is indirect, through its relationship with a starting and ending time point.
Constraints on the duration of the goal are specified through temporal constraints on the bounding time
points, and not as part of the goal itself. This separation of concerns allows for goals that do not have
any temporal constraints, but it also allows temporal constraints that are not elaborated from goals to
be added as part of the scheduling process, which will be described later. Every goal instance in the
network associates with a specific software state variable that it constrains. The set of goals associated
with a single state variable can be computed into a sequential timeline through the process of ordering
the time points into a topological ordering that satisfies all of the temporal constraints. This may result
in overlapping goals on the same state variable. Thus, goals must have the property that allows them to
be combined, or merged. The process of merging two goals may result in a new, more constrained goal.
Merging occurs as part of the scheduling process described later. A goal network can exist in two states.
When initially constructed, an unscheduled network is simply the aggregation goals, time points, and
temporal constraints representing a proposed plan. An executable plan has undergone scheduling and
verification (described later) to merge and order goals according to temporal constraints, and verified
that the proposed plan is achievable.

Applicability

This pattern becomes applicable as soon as coordinated control over multiples states is required.

Results

The use of temporal constraints to indirectly constrain event times allows for temporal flexibility in the
plan. Contrast this with sequences having fixed event times, or purely sequential ordering.

 101
This document has been reviewed and determined not to contain
export controlled technical data.

4.3.2.5 Goal Elaboration

Purpose

Define an architectural pattern to represent causal dependency relationships among a set of goals.

Motivation

Coordinated control is about controlling several component states to accomplish some higher intent. In
order to achieve intent on a given state variable, the control system may need to control other state
variables that are causally related. In other words, goals may beget other supporting goals.

The elaboration pattern provides a formal mechanism by which a goal (an expression of intent) can
specify dependencies on other supporting goals needed for their own achievement.

Structure

Elaboration is defined as the process of generating the additional supporting goals that would be
needed in the same plan in order to accomplish the “parent” goal. A goal can associate with an
Elaborator (see figure 4.67) whose job it is to provide the additional plan elements needed to achieve a
given goal. This set of supporting goals—plus any needed time points and temporal constraints—is
known as a Tactic. Tactics are small goal networks defined in support of a particular parent goal. A goal
can have more than one tactic, i.e., there may be more than one set of supporting goals that can help
achieve the parent goal.

Fig. 4.67. Goal elaboration pattern

When the elaborator provides multiple tactics, only one can actually be used at a time in a single plan.
An elaborator determines the tactic to apply depending on a variety of possible conditions, including
current state variable values, scheduling failures, and failures of supporting goals during execution. In
the latter case, goal elaboration in response to execution failures is called re-elaboration, and is
described further in section 4.3.2.8, Goal Monitoring and Fault Response. In the case of a scheduling
failure, a schedule using one tactic is determined to be unachievable, so the elaborator tries a different
tactic if one is available. The elaborator is separate from its goal mainly to separate specification of
intent (the goal) from planning behavior that may or may not need to exist where the goals are
executed.

The process of elaboration is performed at the level of an entire goal network. The initial set of goals is
elaborated and then their supporting goals are elaborated recursively until the process bottoms out

Human-Rated Automation and Robotics

102
 This document has been reviewed and determined not to contain
 export controlled technical data.

with goals having no elaborators (i.e., having no need for supporting goals). Goal elaborations are
normally defined such that supporting goals are on state variables that are either the same state
variable as the parent goal, or are state variables that affect the parent goal’s state variable.

The elaborator class can be more than a simple container of a set of predefined tactic sub-networks. It
can use information available in the network context including current and historic states of the system
(from state variables) to compute tactics appropriate to the given situation.

Applicability

This pattern applies to any system where coordinated control across multiple state variables is needed.

Results

A goal represents a desired outcome, and that encourages operators to think in terms of the outcome
rather than in how it will be achieved. Of course, somebody still has to design the tactics to achieve the
outcome, but that is done once, and then appropriate tactics are selected thereafter via goal
elaboration. The elaboration process can be invoked prior to execution (at plan design time) to
elaborate operator-specified goals into the complete set of goals needed to accomplish the intent. A
modified version of the process can be used during execution to respond to goal failures. (A goal with
failing tactics can be re-planned by removing its current tactics from the goal network, and elaborating
and scheduling an alternate tactic.)

4.3.2.6 Goal Planning and Scheduling

Purpose

Define a pattern for automatically preparing a goal network for execution.

Motivation

The power of the elaboration process is that it makes it possible to describe a high-level goal and all of
the supporting goals it needs to be achieved. Maximum flexibility is achieved if the elaborations specify
the fewest temporal constraints. Additional constraints need to be added to the goal network by the
planning and scheduling process to create an executable goal network that is known to be “achievable”.
Achievability is determined by the planner by checking the executable goal network against the
capabilities of the control system, and the physics of the system under control.

Structure

The planner/scheduler shown in figure 4.68 represents the object performing planning and scheduling.
A planner/scheduler is basically a constraint solver. Given a set of proposed goals, and temporal
constraints (edges in a directed graph) the planner first elaborates all goals recursively to populate a
complete set of goals needed to achieve the proposed goals. The planner then merges concurrent
portions of overlapping goals on the same state variable. Merges that result in unachievable goals are
rejected.

 103
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 4.68. Planner/scheduler Interactions

Scheduling a goal network is the process by which an elaborated goal network is prepared for execution.
At the end of elaboration, each state variable has goals and time points defined on it. Scheduling picks
an ordering of the time points for each state variable. Goals that overlap over time intervals are merged.
If merging results in an inconsistent goal, then a different time ordering is selected by the scheduler. In
addition, the temporal constraints in the goal network are propagated to determine if the goal network
is temporally consistent. Before a scheduled goal network is ready for execution it must be validated.
Validation of a scheduled goal network checks that sequential goals on state variable are consistent and
that state predictions based on the ordered and merged goals meet the intent of the ordered and
merged goals. Sequential goals are checked against transition achievability criteria to determine if a goal
can begin executing when the previous goal’s end condition is met. Predictions are computed using a
mechanism called state projection that takes into consideration models for the effects of goals on
affecting states, initial state variable values, physical models of state variable behavior, the behavior of
the control system when it executes goals, and temporal constraints on the goals. If a consistency check
for sequential goals or a state prediction check fails, the scheduled goal network is rejected, and the
scheduler attempts a different ordering of time points. If all consistency checks succeed, then the
ordered and merged goal net is promoted for execution as an executable goal network. The projections
for each merged goal are saved with that merged goal in what is called an executable goal. If no ordering
of time points results in a valid goal network, the planner/scheduler backtracks to choose another
elaboration tactic.

Applicability

Needed if goal elaborations are to allow for temporal flexibility.

Results

A key advantage of the planning and scheduling pattern is that problems can be detected before they
happen by checking predictions for planned executable goals. An executable goal network has been

Human-Rated Automation and Robotics

104
 This document has been reviewed and determined not to contain
 export controlled technical data.

validated against models to ensure that every goal is achievable, and every transition from one goal to
the next is achievable. Although the order in which goals are executed along any given state variable
timeline will be fixed by this process, the network may still permit flexibility in the order in which events
occur on different timelines, and the firing of time points.

4.3.2.7 Executive Control (Timeline Execution)

Purpose

Define an architectural pattern for execution of a planned and scheduled network of goals (an
executable goal network) that will execute goals associated with planned activities according to a time-
driven, and state-driven schedule.

Motivation

Given that operator intent is captured within a goal network as a series of goals placed upon state
variables, how is this translated into activities performed by the system under control? Using the simple
thermostatic control example, the switch to the heater must be turned on at time t0 and turned off at
time t1. During that span of time, the heater must remain within a certain temperature range. In this
example there are two events that must occur; turning the switch on then turning it off. During the
period of time the switch is on the temperature of the heater must be monitored to ensure it remains
within the range specified by the goal. The Executive Control pattern ensures the events occur within
their temporal windows.

Structure

The purpose of the Goal Executive, as depicted in figure 4.69, is to carry out the intent represented in an
executable goal network by dispatching goals for execution at the appropriate times. The executive
relies on the fact that goals express a continuous intent on a target state variable as long as they are in
effect, and it is the responsibility of the control system to continue to try to achieve each assigned goal
for each state variable until the next goal is dispatched for that state variable. The executable goal
network specifies the intent timelines for each of the state variables modeled within the control system.
An intent timeline for a state variable is represented in the executable goal network as of a series of
time points connected by merged, executable goals. Scheduled time points can retain some temporal
flexibility as allowed by the set of temporal constraints in the goal network. As time is advanced by the
executive, it is the responsibility of the executive to continually propagate the temporal constraints to
refine the schedule of each time point.

 105
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 4.69. Executive pattern

Like goals, executable goals are bounded with starting and ending time points, some of which may have
been generated during the scheduling process due to partially overlapping goals. A time point
represents a time at which the executive must perform an action. The temporal constraints of the
contributing goals determine the valid range of times, or window, in which the time point is considered
open, or eligible to fire. To fire a time point, the Goal Executive checks that all the goals that have this
time point as their starting time point are “ready” to start executing; that is, the post-conditions and
pre-conditions associated with the transition from the current executable goal to the next executable
goal on the timeline have been satisfied . When the Goal Executive fires a time point it becomes
“grounded” in time, removing any temporal flexibility it may have had, and the next executable goal’s
constraint is dispatched to the control system for execution. The Goal Executive will honor a not-ready
transition status while within the eligible window of the time point and not dispatch the next executable
goal; however once past the window the Goal Executive will fire the time point and issue the next
executable goal even if it is not ready for transition. Thus a temporal problem in execution will be
manifested as a potential goal failure by the goal that was not ready to transition.

Results

Executive Control provides for the sequencing of activities on individual state variable time lines and the
coordination of events across all state variables modeled within the system. As an independent
functional entity, the Goal Executive may continue to execute the latest mission plan while other
planning activities occur. It provides an intermediate rate of execution between potentially long-term
planning activities and rapid execution cycles of a reactive control system. As such, care must be
exercised when choosing a rate of execution for the Goal Executive.

Human-Rated Automation and Robotics

106
 This document has been reviewed and determined not to contain
 export controlled technical data.

4.3.2.8 Goal Monitoring and Fault Response

Purpose

Define a pattern for monitoring the execution of goals in order to respond to goals that cannot be
achieved (goal failures).

Motivation

Time continues moving forward regardless of what happens in the system. Although a reactive control
system, with the knowledge of intent available in a goal, may be able to compensate for some
unexpected events, things can still fail. Since the current goal network was planned using a specific set
of tactics to achieve certain goals, there may be other goal networks (using alternate tactics) that could
still achieve the plan’s intent. For example, consider a goal to drive a mobile robot from point A to point
B through city streets. The set of available routes is constrained, and a given plan may choose one route.
However, after executing part of the route, an obstacle is encountered, preventing further advance
along that route. Now the only option is to give up the current plan, and try another route. Since the
current plan may also contain goals that are still relevant, the executive and the goal achievers cannot
just stop – they must continue trying to achieve the current plan until a new plan can be produced. So, a
separate mechanism is required to notice that the plan is failing, and notify the planner to do something
about it.

Structure

The Goal Monitor is a separate element of the control system that monitors the status of all currently
executing goals. The Goal Monitor consults each executable goal’s associated state variable to check the
estimated state against the intent of the goal. The Goal Monitor may also check temporal constraints
and projections to determine if a goal can still be satisfied. If the state variable reports that a given
merged executable goal is no longer satisfiable, the Goal Monitor will then initiate a fault response.

Fig. 4.70. Goal monitor pattern

First, it will attempt to determine which of the contributing goals merged into the failing executable goal
have failed. To do so, it will query each of the contributing goals to see if it is still satisfiable. For each
failing goal it then finds that goal’s parent goal (using relations in the goal network), and notifies the
parent goal’s elaborator, which in turn determines an appropriate fault response.

 107
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 4.71. Fault response

The parent goal’s elaborator has several options. It can decide to do nothing (i.e., just let the plan
continue to execute and hope for the best); it can assert an error condition that would stop and safe the
system; it can propose a change of plan by invoking re-elaboration of a different tactic; or, it can “fail
up” by consulting its parent for a fault response. The process of failing up the goal elaboration hierarchy
allows a fault to propagate up to the level of intent at which it can be appropriately dealt with.

Results

Separating the goal monitor from the executive allows the executive to continue trying to achieve the
current plan as best it can. Separating the goal monitor from the planner/scheduler allows the monitor
to continue checking the status of goals even after a fault is detected and a response initiated. If a
second fault occurs, the monitor and planner/scheduler can then prioritize their response based on
relationships between the failing goals. For example, if several goals are all failing at the same time (a
likely situation if their state variables affect one another), then the goal monitor, or planner can
determine that they are all children of the same parent goal, and then only have to replan that one
parent goal. Or, it can determine that the goals are entirely independent, and re-elaborate and
reschedule them separately.

Fault management is a key aspect of our robust control concept. While we have introduced the pattern
for monitoring and here, we provide a more in depth treatment of these topics in chapter 5.

4.3.2.9 Deliberative Closed-Loop Control

Purpose

Reactive control is very useful for many situations when control decisions can be made without looking
far into the future. However, sometimes the determination of what should be accomplished in the
present depends on what is planned or predicted for the future. Because reactive control systems have
no knowledge of future plans beyond the activity they are currently trying to accomplish, there is a need
for a mechanism to control systems that must consider the future. The deliberative closed-loop control
pattern provides such a mechanism. This mechanism constructs, monitors, and revises goal networks
that take into consideration requirements on what needs to be accomplished in the future. The
deliberative closed-loop control pattern monitor function responds to unpredictable or unanticipated
events as they occur during execution.

Human-Rated Automation and Robotics

108
 This document has been reviewed and determined not to contain
 export controlled technical data.

Motivation

Consider the problem of maintaining a battery state of charge through a series of activities that both
consume and produce energy. One can represent the requirement to maintain the battery state of
charge above a minimum limit as a goal on a battery energy state variable. The activities, represented as
a series of goals, need to be ordered in time into a plan such that the battery state of charge does not
fall below the minimum limit. The goals that affect the battery state of charge in the plan are used to
predict the battery state of charge, and validate that the plan does not violate the minimum battery
state of charge limit. The goal to maintain the state of charge can be monitored during execution, and
activities can be shed if the use an unexpected amount of power.

Applicability

This pattern is applicable to situations in which:

(1) A large number of state variables need to be controlled in parallel;

(2) The control strategy involves a series of activities organized into a long term plan;

(3) The activities can be expressed as goals on state variables;

(4) The state variables must be controlled to meet user-defined goals; and

(5) The plan needs to be able to be changed automatically in response to unanticipated or
unpredictable events.

Structure

This pattern is a composition the following patterns described previously:

(1) Goal Network

(2) Goal Elaboration

(3) Goal Planning and Scheduling

(4) Executive Control (Timeline Execution)

(5) Goal Monitoring and Fault Response

Construction of a goal network includes the elaboration of operator-specified goals, scheduling the
resulting goal network, and validating the result as an executable goal network. The executable goal
network is executed by the goal executive, and as each executable goal executes it is monitored by the
goal monitor. The goal monitor notifies the planner when an executable goal fails, allowing the planner
to modify the plan to respond to goal failures. Combining these patterns enables the kinds of complex
behaviors possible using traditional sequencing and fault management mechanisms, but in addition, it
accommodates dynamic changes to the plan. Specifically, it provides a coordinated mechanism for
responding to faults or other unexpected deviations from the plan.

Results

A key advantage of the deliberative closed loop control pattern is that problems can be detected before
they happen by checking predictions for executable goals. Corrective action can be taken before serious

 109
This document has been reviewed and determined not to contain
export controlled technical data.

consequences ensue. For example, if battery energy is being used faster than predicted, the goal
network may be revised to shed lower priority energy-consuming goals. Or it may schedule new goals to
charge the battery. The deliberative closed loop control pattern may require significant computing
resources and time for performing scheduling. This can be ameliorated by ensuring that goal networks
are scheduled for a limited time horizon, avoiding the computational expense of long-term planning.
Also, prescheduled networks can be quickly swapped in if a fast response is required. An example may
be a “safe-mode goal network” that puts the system into a safe state. This pattern needs good models
of physics and achiever behavior to validate scheduled goal networks. However, models only need to be
as good as necessary to achieve objectives. Many times conservative simple models are adequate.

4.3.2.10 Deliberative and Reactive Closed-Loop Control

Purpose

Reactive and deliberative closed-loop control patterns are combined into a single pattern to allow for
highly flexible and robust control system behavior.

Motivation

Control systems may need to be both reactive to small changes in the system under control, as well as
being able to plan and execute a long-range series of tasks. For example, a Mars rover needs to be able
to deliberatively plan a safe path across rocky terrain and also reactively control its wheel rotations to
accommodate slippage while maintaining forward progress.

Applicability

This pattern is applicable to most embedded and robotic control systems, which require both
deliberative and reactive control.

Structure

This pattern is a composition the following patterns described previously:

(1) Reactive Closed-Loop Control

(2) Deliberative Closed-Loop Control

These two patterns are connected through software state variables. State variables are estimated and
controlled by the reactive control system in response to executable goals metered out by the
deliberative closed loop control system. The deliberative control system sequences and validates the
plans for goal execution, and detects goal execution failures as the reactive control system acts on the
goals. The deliberative control system responds to goal failures through goal re-elaboration and
scheduling to produce a modified executable network.

Results

The integration of deliberative and reactive control brings some complexity in terms of interactions
between the two patterns, but this complexity is largely inherent in the challenging control problems for
which it is applicable. The intent of specifying this architectural pattern is to provide a structured means
of dealing with this complexity.

Human-Rated Automation and Robotics

110
 This document has been reviewed and determined not to contain
 export controlled technical data.

4.3.3 General Specification Questions
A complete goal-based specification carried out using state analysis must demonstrably satisfy the
original top-level requirements for the system. This is aided by the inherent traceability of the
implementation specification (e.g., controllers, sensor, actuators) to the domain (state variables) to the
intent (goals) back to the originating requirements.

To be assured of a complete specification, practitioners should consider this basic list of related
questions (figure 4.72). While this list is by no means exhaustive, it may serve as a starting point for
assessing the completeness of the description of the system. We continue this section with brief
descriptions of each question along with references to the most relevant state analysis practices from
section 4.1.

Fig. 4.72. Basic specification questions for state analysis

4.3.3.1 State Knowledge
State knowledge concerns how the control system knows about the system under control and the
environment. This should be an exhaustive description of the attributes of the domain that must be
controlled, along with the attributes of the domain that affect what we must control. This understanding
is captured in the state knowledge models.

Question: What state variables describe the system under control?

Primary Practice(s): Define State Variables (section 4.1.3.4)

To determine the necessary state variables for control, it is best to start with the goals derived from the
top-level system requirements determined through the Requirements/Goals Elicitation practice (section
4.1.3.1). By analysis of the goals, modelers get a better sense for what attributes of the domain matter
(what we want to constrain) and why (their links back to requirements, and effects on each other). By

 111
This document has been reviewed and determined not to contain
export controlled technical data.

starting top-down from the initial set of goals, modelers can avoid specifying state variables that do not
contribute to or affect the state variables of interest.

A related question is “when is state analysis done?” The aim of modeling is to provide a set of
specifications describing the problem along with the characteristics of solutions (to be instantiated in
design) responsive to the original problem. The models should only be as complex as to describe the
above. Engineering judgment and the project risk posture will drive the requirements for model detail.

Modelers can “prune” their models of unnecessary state variables by asking “why do we care about this
attribute?” If the state variable does not trace to a goal from Requirements/Goals Elicitation, or does
not impact such a state variable, consider taking it out.

Another sign of over-modeling is the same state being represented by more than one state variable.
State variables should be unique in the specification. This uniqueness ensures consistency and greatly
simplifies implementation.

Question: How do state variables represent variation in time and uncertainty?

Primary Practice(s): Define State Value Histories (section 4.1.3.5)
Define State Determination (section 4.1.3.9)

State value histories provide modelers with a means to specify how a state is expected to change over
time. Any deterministic progression of state (e.g., time or event based state machines, time-based
polynomial functions) can be accommodated. This specification also provides a means to specify how
long predictions last, allowing modelers to describe how certainty can degrade with time.

Robust controllers explicitly represent uncertainty in their knowledge of the system under control. This
uncertainty is specified as part of the Define State Value Histories practice for each state variable.
Uncertainty in state variables can be represented in a number of ways ranging from enumerated
confidence tags (e.g., “known”, “unknown”) to variance in Gaussian estimates or covariance matrices.
The only requirement is that the state function selected satisfies the modeler’s requirements on
certainty.

In the Define State Determination practice, modelers consider the allowable uncertainty for each state
variable. The resulting requirement on certainty is then allocated to the responsible estimator,
describing the required estimator capability.

Question: To what extent must state variables describe past and future?

Primary Practice(s): Goal Elaboration and Planning (section 4.1.3.2)

Answering this question is central to the Define Projections activity of the Goal Elaboration and Planning
practice. In this activity, modelers think about the system’s requirements for state information on future
events. The ability to estimate future state gives the system the ability to check the feasibility of plans
against the profile of available resources (e.g., power, storage space, bandwidth, angles). This is
especially important in applications where resources are relatively scarce and must be allocated
amongst multiple options in a deliberative manner.

Projection also lets operators check the validity of plans, providing assurance that the outcome will be
consistent with user intent.

Human-Rated Automation and Robotics

112
 This document has been reviewed and determined not to contain
 export controlled technical data.

The ability to project backward into the past is important for monitoring and diagnoses. The record of
state variable values gives analyst insight into why the system behaved as it did. This is invaluable in
validating the system models and verifying proper functioning of the system. The amount of historical
data stored may also be a function of how quickly or frequently it can be transported to remote
deployments that might be monitoring system behavior.

Question: How are state variables stored, managed and transported?

Primary Practice(s): Define State Value Histories (section 4.1.3.5)
Requirements/Goal Elicitation (section 4.1.3.1)

Acquisition of data is often the reason for missions. By modeling how data is acquired, managed and
transported, practitioners can better incorporate the data management requirements into the overall
system specification. This complete specification provides systems engineers with a means to specify,
analyze and optimize using a more operationally representative system model.

Data management models described in the Define State Value Histories practice specify how
engineering (onboard estimation and telemetry) and science (e.g., observations, health/safety
measurements) are merged, compressed, made persistent across system restarts, and transported to
other deployments of the system. These models also describe data attributes; relevant aspects of the
data used to control it.

4.3.3.2 State Constraints
State constraints describe the limits that we impose on state variables as part of achieving desired
system behavior to meet mission objectives. This specification proceeds from higher-level descriptions
in terms of desired user outcomes to implementation-level constraints on controlled state variables.
These two views are connected through the integrated set of state analysis models.

Question: What type of constraints must the control system be able to enforce?

Primary Practice(s): Requirements/Goals Elicitation (section 4.1.3.1)
Goal Elaboration and Planning (section 4.1.3.2)

The first step in answering this question is to first determine the high-level goals describing key safety
properties (maintenance goals) as well as goals describing the actions that accomplish mission
objectives (mostly achieve goals). This is determined through careful analysis of mission objectives and
system-level requirements in the Requirements/Goals Elicitation practice.

Once the high-level goals are identified, the goals are further refined by breaking them down into
supporting sub-goals. The sub-goals describe what it means to satisfy the abstract high-level goals in
terms of the domain objects (e.g., state variables, resources). This process continues until the abstract
goals are defined in implementable terms (i.e. all necessary sub-goals identified, sub-goal can be
achieved by a single controller, sub-goals can be evaluated for success or failure in terms of domain
concepts). This process is guided by the Goal Elaboration and Planning practice.

Question: How can state variable constraints be elaborated, projected, and scheduled?

Primary Practice(s): Goal Elaboration and Planning (section 4.1.3.2)
Define Scheduling Rules (section 4.1.3.3)

State variable elaboration is done as part of goal elaboration. Modelers use the state effects models to
guide the elaboration of goals into sub-goals. As described in the Goal Elaboration and Planning practice,

 113
This document has been reviewed and determined not to contain
export controlled technical data.

sub-goals can be identified by identifying the state variables that affect the state variable of the original
goal. Control of the original state variable involves controlling these affecting state variables through
achieving sub-goals.

With the sub-goals identified, we must also specify the rules for how goals can be arranged in relation to
each other (scheduled), as well as how they are evaluated against expectations (projection). This
description is the focus of the Define Scheduling Rules practice. Modelers add scheduling rules (e.g.,
resource requirements, relative ordering constraints) to the goal descriptions.

These specifications also utilize the projection models of the Goal Elaboration and Planning practice as
part of their evaluation at planning and run-time.

Question: How is state variable constraint execution regulated and monitored?

Primary Practice(s): Define State Controllers (section 4.1.3.6)
Define State Variables (section 4.1.3.4)

Control and estimation are the two parts of the Execution function. The controller specification
describes how individual state variables are regulated to satisfy user intent. Through use of the
integrated system model, modelers insure that the specification is consistent and complete. The
algorithm in the controller specification must be able to achieve all allocated goals. This specification is
the focus of the Define Controllers practice.

Estimation describes how state variable values are determined. The estimator specification uses
measurements (determined via the measurement models employed by sensors) with command and
state variable histories to calculate the most likely value of the state variables. Being estimates, the
estimator models must explicitly handle uncertainty for more robust performance.

While Estimation and Control use the same models, modelers are cautioned not to perform estimation
in the controller or control in estimation.

4.3.3.3 State-Based Model
The state knowledge model is the superset of the real (modeling continuous quantities such as position,
velocity) and modal (e.g., “healthy”, “unknown”) system state variables. This section focuses on the
modal state variables of the system. These modal state variables are aggregated to describe the control
states of the system, responsive to commands and key to estimating future states. As with all state
variables, these modal, state-based state variables are constrained using goals.

Question: How do state variable states behave and affect one another?

Primary Practice(s): Define State Variables (section 4.1.3.4)

The state variable physical model defines how states evolve over time and under the influence of other
states. The state effects view documents the affecting states, while the enumeration and transitions
between states for particular modal state variables is specified as a state machine. This specification
should clearly capture related assumptions and rationale for the transitions.

The physics model is the starting place for the estimation and control models defined in their respective
practices (see the next two questions).

Human-Rated Automation and Robotics

114
 This document has been reviewed and determined not to contain
 export controlled technical data.

Question: How do commands affect state variable states, nominally or otherwise?

Primary Practice(s): Define Actuators (section 4.1.3.7)

The command model describes how state variable state changes as a function of the current state and
commands issued. It is important to note that while the command model is integrated with the state
effects model, it is a distinct product in itself. The command model describes how issued commands
result in control states (modes governing system), while state effects is a wider description including
how the governing modes affect the wider domain (e.g., physics). An example would be a command to
change a motor rate profile. While the command model specifies that the result of receiving a particular
command would be that the motor rate profile becomes “ramp”, the state effects model would
represent quantities such as the resulting angular rate and position over time of in that mode.

In addition to serving as the “menu” of inputs to the actuator, the command model complements the
estimator and controller models of the framework. The command model describes the instantaneous
effects of issued commands on state for the estimator model. The controller algorithm uses the
command model to describe the commands required to achieve desired states.

Question: In what way do measurements depend on state variable states?

Primary Practice(s): Define Sensors (section 4.1.3.8)

The measurement model describes how the control system obtains evidence of the system truth as a
function of related estimated state variables and physical measurements. This specification is directly
utilized in the estimation model.

4.3.3.4 Goal Achievers
Goal achievers (controllers) enforce state constraints to satisfy system objectives.

Question: How are models used in determining state knowledge from potentially
inconsistent or uncertain evidence provided by measurements, commands,
and other states?

Primary Practice(s): Define State Determination (section 4.1.3.9)

Estimation is the achievement of goals on knowledge quality in support of controller goals. The
estimator accuracy requirements are driven by desired knowledge quality requirements, which are
determined as part of activity specification. Estimator specifications must explicitly handle quality of
evidence by considering the failure modes of sensors as well as their inherent capabilities.

4.3.3.5 Measurements and Commands
Measurements and commands are part of the definition of the interfaces between the control system
and the system under control. Measurements provide insight into the state of the system under control,
while commands serve as the mechanism for effecting needed changes to the system under control to
satisfy the constraints of goals. The systems we consider often have the system under control as a
deployment operating at a remove from the deployment specifying intent and performing analyses
based on measurements. In this case, the modeler must consider how commands and measurements
are transported, stored and managed.

 115
This document has been reviewed and determined not to contain
export controlled technical data.

Questions: How are Measurements and Commands stored or transported?
 And
How is system data managed and transported?

Primary Practice(s): Define State Value Histories (section 4.1.3.5)

 One of the focuses of the Define State Value Histories practice is the description of how data is
transported and managed. Using this practice, modelers describe how command and measurement data
is transported and managed to satisfy the demands of the controllers and estimators in the same
manner as the other data in the system. Modelers describe data management by grouping command,
measurement and state variables into data state effects, specifying attributes for the data, and writing
sub-goals based on the attributes in support of higher level goals.

The resulting data management specification describes how transport of data is accomplished in support
of data management goals. Examples of sub-goals to support transport objectives are constraints on
acknowledgement status (e.g., ensure product exists until acknowledgement of receipt) or sub-goals to
store data until it can be sent.

4.3.3.6 Deployments
Deployments describe how the control system functions are allocated to physical entities in the system.
This partitioning is driven by the architectural considerations of the problem at hand. Architects have
wide latitude as to how functions are allocated, with the option to allocate functions in multiple
deployments as well as locating them singly.

Question: How are control system functions deployed across the system?
 And
How can computing and communication attributes be used to assign
responsibilities among deployments?

Primary Practice(s): Consider Deployments (4.1.3.10)
Define State Value Histories (4.1.3.5)

The first question addresses how the control system functions (as first described in section 3.1.2) are
allocated to the physically distinct entities of the overall system (control system and system under
control). In allocating to deployments, the architect must take the widest view of the system, and work
“inward” to ensure the right scope is considered. For example, while we might be tasked with specifying
control for robotic system on the moon, we would also have to expand our scope to consider the
operators (on the moon and Earth) as well other interacting systems and actors (e.g., scientist waiting
for data, astronauts being aided by the robot). Each participating element would be a candidate for
carrying out a portion of the control system functions.

Allocation of functions to deployments must also take into account the native computing capabilities of
the elements. “Smarter” elements can take on higher-level functions of the control system such as
Elaboration, while computationally-limited elements would merely respond to commands from other
elements of the control system.

Lastly, allocation decisions must also take into account the communication requirements (e.g., latency,
bandwidth) between elements implementing control system functions. Modelers address the
requirements and mechanics of this aspect of the design in the Define State Value Histories practice.

Human-Rated Automation and Robotics

116
 This document has been reviewed and determined not to contain
 export controlled technical data.

4.4 Verification and Validation of Goal-Based Systems
System quality, conformance of the system with requirements and suitability of system for intended
use, is a key measure of project status. Quality provides the yardstick for assessing progress as well as
managing project risks. Verification and validation (V&V) is the ongoing assessment of system quality.
These assessments feed into project decisions on progress between phases, guiding allocation of
development resources, and gauge readiness for reviews and critical events. In this section, we describe
how goal-based specification through the state analysis framework enhances V&V. Through goal-based
specification, the state analysis model framework, and implementation measures, we can realize a
“defense in depth” approach to V&V, building in quality early and at all levels of detail.

4.4.1 Benefits of Models in Verification and Validation
Models provide abstractions of a system of interest in terms of relevant attributes. Being abstractions,
they can be available before the delivered system, enabling engineers to validate assumptions, explore
options and make decisions earlier in the lifecycle. As described earlier, models provide a shared
repository of system and domain understanding. This is especially important as an interface between
developers and testers, who are typically separated organizationally and temporally (bulk of test effort
comes later in development).

This communication aspect of models is vital to carrying out V&V of a concurrently-engineered product.
Systems engineers capture what the system should do in terms of requirements and goals, while
developers specify the system that responds to these needs. This integrated set of models provides
testers with easily inspectable verification and validation criteria (from traceability of goal statements to
system objectives and user needs), as well as insight into the workings of the system that satisfies the
goals. As a result, verification and validation are done earlier in the life cycle, and more often, saving on
development costs resulting from rework or late fixes. Goal specification breaks the system behavior
into a resolution fine enough to size and plan the test program, helping the program to allocate the right
resources and schedule for V&V.

These models also provide an avenue for operators to become involved earlier in development. The
models are abstract enough to provide users and other stakeholders a discipline-neutral means to both
convey their inputs and understand the emergent characteristics of the developer’s specification
responding to their needs.

Goal-based modeling through the state analysis framework provides systems engineers with a more
natural way of expressing and relating requirements than the traditional text-only approach. By
representing behavioral requirements as goals, systems engineers are able to clearly specify the desired
system behavior, relationships to supporting behavior, and specify the required behavior and attributes
of systems that enforce that behavior. The resulting set of mutually-referencing models provides the
project with an effective means to maintain traceability between requirements specifications. This
traceability is invaluable for test and integration planning.

The models created in the course of state analysis aid V&V managers and testers with the sizing and
planning of the concomitant test program. Test cases are directly determined from inspection of goals,
which is greatly aided by the fact that goals are inherently “Pass/Fail”. The job of satisfying each goal
falls on one controller. This set of goals and controllers (with their attendant sensors and actuators) are
included as part of test case specifications.

 117
This document has been reviewed and determined not to contain
export controlled technical data.

As a result of this explicit coupling of desired behavior specifications to executing elements, test
program planners can get an early and accurate sizing of the test program based on the number and
complexity of test cases. Having been determined by early yet descriptive models of the system-to-be,
the test planners are in a better position to budget, schedule and staff their test program, ensuring that
this crucial set of activities has the right allocation of time and resources to ensure an acceptable level of
residual project risk.

4.4.2 Architecture Benefits for Verification and Validation
Architecture frameworks enhance V&V by providing normative sets of patterns for specification and
designs. By using these established sets of patterns, practitioners tap into a store of “approved
solutions” to common problems in a domain. In addition to avoiding “re-inventing the wheel”, pattern
use provides some measure of assurance that the specification or design will be valid and consistent,
making V&V of such systems easier.

In addition to the state analysis set of patterns we’ve introduced, we cover the benefits of the
implementation architecture benefits of using the Mission Data Systems (MDS) component framework.
While the state analysis model framework we’ve covered provides a rich set of conceptual patterns, the
MDS component framework provides patterns for detailed design and implementation. These
complementary sets of patterns, one abstract and one concrete, provide layered benefits for V&V.

4.4.2.1 State Analysis Framework Architectural Benefits for V&V
The state analysis model framework, being a goal-based modeling framework, is well-suited to
specification of complex, behaviorally-dominant systems. Specification of behavioral requirements as
goals leads to unambiguous and traceable propositions that the system must satisfy. Requirements
specified in this manner are readily verifiable, and easily traced to the supporting specifications of the
elements of the control system responsible for achieving that goal.

In addition to the development and testing benefits of goal-based specification described, the state
analysis framework features a number of important operational and run-time benefits as well.

Goal-based systems control behavior via explicit constraints, specified as goals. These constraints range
from state variable constraints, to allocation constraints specifying allowed resource usage, to temporal
constraints. The state of compliance with these constraints is continuously checked during the course of
execution. Through the closed-loop evaluation of state and issuing of commands to bring state in line
with goal specifications, the system actively maintains desired user intent. As a result, the system
executes a running check at all times of whether the exhibited behavior is in accordance with user
intent. This continuous verification is a distinguishing feature of closed-loop, cognizant control. In cases
where system performance does not meet user-specified intent, the system can execute pre-defined
behaviors to compensate for failure or safe the system. This capability will be covered in detail in the
section on Robust Execution and Fault Management (section 5.3).

In addition to the run-time verification of execution, the system also can project state into the future,
enabling evaluation of future plans against estimated future states. This projection capability gives
operators a means for validating future plans. Projection can also be carried out by the executing
element, providing the system a capability to re-plan to deal with contingencies detected in-situ.

The concept of state facilitates direct comparison between flight, ground and simulation. State variables
are the domain attributes of interest the system must control. By modeling the rules governing state
variables and their interactions, the framework provides an unambiguous set of quantities with which to

Human-Rated Automation and Robotics

118
 This document has been reviewed and determined not to contain
 export controlled technical data.

compare expected versus actual system behavior and performance. In this framework, the same models
from development are used for operations and testing.

Being executable, the models of the framework facilitate Monte Carlo approaches to verification. These
approaches are especially important as test of statistically-specified requirements and goals. This
simulation can be done at three levels of increasing detail, State, Functional and Bit level.

State level simulation is made possible by the direct connection between simulated and actual state
variables of the state analysis framework. As mentioned before, state variables are the system level
expressions of behavior, and state level testing can rightly be considered system level tests. Operators
and testers can use state level simulations to tests systems either through hardware (higher fidelity, but
more expensive) or software (faster, often desktop machines) emulators.

Functional level simulations test subsets of elements of the total system as part of development before
integration. Examples would be tests of estimators or controllers. The state analysis framework makes it
easy to determine the proper set of elements for a function, as well as specifying the proper emulator
characteristics for the affecting elements which are simulated in the tests.

Bit level simulation allows testers to test the CPU running the flight code derived from the state analysis
specifications. These high fidelity tests provide concrete assurance of proper run-time behavior for the
given hardware, as well as provide model validation input to higher level tests.

In addition to verification at run-time and planning time, models play a major role in validation. While all
engineered systems utilize models, state analysis advances the practice by making the models easily
inspectable as the main repository of system understanding. Instead of inspecting source code (high
detail) or PowerPoint fever charts and diagrams (low detail), reviewers have access to an integrated set
of appropriately detailed models. Through the framework, these models are all traceable from a
user/stakeholder view (tilted towards objectives and intent) all the way to the development decisions
and rationale implementing the system. By bringing these models out of discipline-specific, separate
repositories and making them inspectable, reviewers charged with validation are afforded a broad, deep
insight into the system.

By specifying systems through models, engineers can utilize formal methods of verification. Formal
methods use specifications of desired system properties along representations of domain and system
behavior as input for proof engines to determine whether the desired properties hold in all executions
(possible paths). Executions where the system fails to satisfy the desired properties are flagged, giving
designers insight into weaknesses in design.

The power of these methods lies in the fact that designs can be checked not just against foreseen failure
modes, but failure modes not envisioned or deemed “not credible”. Formal guarantees of behavior
guarantee system safety and correctness of all possible executions for the given set of models, providing
a powerful confirmation of a proper design. This compares most favorably to testbed-only approaches,
where pass/fail tests are conducted to verify proper behavior over a single execution thread, omitting
the vast possible space of executions. Such test can be said to be “existence proofs” for proper behavior,
and not the global guarantees of proper behavior we need. Recent advances such as symbolic model
checking have proven valuable in contemporary problems in domains as diverse as aviation and
telecommunications [Berard1999].

The models of state analysis, with their unambiguous specification of “correctness” (goals) and the
explicit representation of properties, relationships and dynamics are readymade for formal verification.

 119
This document has been reviewed and determined not to contain
export controlled technical data.

In the formal verification of a system specified using state analysis, the modeler represents the goals
using temporal logic, describing how properties are constrained in a formally “correct” system. These
statements act as the propositions which must be proven to hold for the design by the proof engine,
using the system dynamics derived from the other state analysis models.

Fig. 4.73. Properties checked by formal methods

Since the state analysis models are a structured specification, this translation from state analysis models
to models for the proof engine can be automated, providing all the benefits of formal verification
without suffering the added overhead of a parallel modeling effort.

4.4.2.2 Component Framework Architectural Benefits for V&V
While the majority of our description of has focused on the conceptual state analysis framework, the
verification story would be incomplete if we did not consider implementation framework benefits for
V&V. The reader should note that the systems specified using conceptual framework we’ve described
can be implemented any number of ways. The conceptual framework focuses on what the system
should do, and describes the qualities of a system that satisfies user intent. What we now describe is an
implementation framework representative of the emerging preferred architecture framework for
distributed systems, that of component-based architecture. We shall relate how this implementation
framework enhances V&V through application of patterns.

Component-based architectures (CBAs) have emerged as a dominant paradigm in software. Component-
based systems are realized by coordinated sets of software elements, components interacting across
well-defined, shared interfaces. The modularity enabled by this architecture has resulted in systems
proven to be more flexible, adaptable, scalable and reliable than more traditional, monolithic software
architectures.

Human-Rated Automation and Robotics

120
 This document has been reviewed and determined not to contain
 export controlled technical data.

The component-based architecture we consider here is the Mission Data Systems (MDS) component
framework. The components of the MDS framework comprise the design elements of the state analysis
framework introduced in section 4 (see figure 4.3). As with other component-based architectures, the
MDS component framework is comprised of layers of components which are progressively combined as
you move up the stack into higher-level services.

Software agents are autonomous processes capable of reacting to and initiating changes in the
environment. These agents act in collaboration with human users and other agents to achieve user
intent. These agents are in turn composed of components.

Component architecture patterns guide practitioners in realizing solutions. By conforming to patterns,
practitioners increase the odds of design correctness. By providing a set of criteria for inspection, these
assurances serve as a layer of verification of design and implementation.

Fig. 4.74. Component architecture pattern concepts

Components interact with other components through interfaces specified as connections between
component ports. As practical applications have potentially thousands of components and connections
between deployments, it is important to govern the configuration with a small set of easy rules.
Architecture patterns provide this set of rules, enabling the practitioner to assess correctness at both
design and implementation time.

The patterns described in the above figure significantly reduce the potential for errors such as
unconnected ports, dangling or crossed connections and doubly-connected ports. The limited number
and simplicity of the patterns also facilitates review by outside parties such as independent verification
and validation (IV&V) teams.

 121
This document has been reviewed and determined not to contain
export controlled technical data.

Layered Implementation

“Layering” of applications has proven to be an effective way of simplifying the job of building and
maintaining mission software. By building new applications out of the services provided by more stable,
widely-used lower layers, developers can reduce development effort and costs with lower technical
risks. This model leverages the inherent advantages of re-use, while allowing developers the flexibility of
tailoring their solutions using the proven utilities of the lower levels.

Fig. 4.75. Layered implementation of systems

The MDS framework layer provides the most basic level of services such as interfaces with the operating
system. Being the most primitive, these services see the widest use between projects, as they are
intended to be widely applicable with little required change for particular applications.

The adaptation layer implements a more complex set of services using the framework layers services as
the building blocks. The adaptation layer is where developers begin to tailor their implementation for
particular applications using the proven services of the lower layers.

The deployment layer software comprises the high-level services directly used by user software or on
the flight system to carry out the control system functions.

4.4.3 Well-Rounded, Comprehensive Verification and Validation
It is commonly observed in practice that V&V is most effective when done early and often to best ensure
project success. V&V is best accomplished by involving key stakeholders, systems engineering and
developers, and providing a number of complementary checks on the specification, design and flight
code.

Human-Rated Automation and Robotics

122
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 4.76. Healthy, well-balanced verification and validation (adapted from [Feather2002])

Figure 4.76 is inspired by the federally-recommended diet pyramid, in this case giving a pictorial
representation of the recommended relative proportions of the respective V&V measures. While the
proportions above are not exact (no way they can be, the sizing is always a project judgment call), they
give an idea of the relative recommended use for each measure. The recommended “size” of a measure
is governed by the ratio of the utility of the measure (efficacy in reducing risk) to the cost of employing
the measure. The state analysis model frameworks we have introduced and described in this paper
increase the power of the less expensive measures, while reducing reliance on the most expensive
measure, debugging.

Checklists, inspection and reviews are relatively inexpensive measures of V&V. Models enhance the
utility of these measures by providing an expressive, cogent and integrated specification of the system.
While source code is still available, non-developer reviewers can avail themselves to appropriate views
of the domain and system. Views generated from the integrated model provide an appropriate level of
detail, and prove more easily navigable than disparate collections of system information.

Process and software metrics provide description of quality and guidance for development respectively.
Through providing a description of the system at an arbitrary level of granularity, models allow
developers to assess system quality on meaningful collections sub-units (functions, agents,
components), increasing the precision of software metrics. The aim of process in development is to
increase system quality through prescribing proven methods for realizing products. The state analysis
practices introduced in section 4.1, coupled with the appropriate implementation patterns can be
employed as part of a development process (as sketched in section 4.2). Anchoring on models as first-
class products of systems engineering gives the process guidance an elevated degree of meaning and
coherence.

Testing and Analysis, while powerful measures of V&V, are relatively expensive and resource-intensive.
Traditional software analysis also suffers from the common perception of being a specialist-intensive
measure of limited practical utility. Application of the state analysis model framework largely invalidates

 123
This document has been reviewed and determined not to contain
export controlled technical data.

this perception. By representing the system and characterizing the design through models, we get an
analysis-ready set of executable specifications. These specifications can be analyzed through simulation
at various levels of system abstraction, or can be run by a formal proof engine to assess the global
suitability of designs.

Analysis through formal methods also acts as a powerful complement to traditional testing. Traditional
testing is expensive and often of limited utility as the success criteria are often not clearly stated. Model-
based specifications of systems through state analysis provide clear success criteria (goal achievement)
as well as clear traceability to the system elements responsible for achieving respective goals.

Testing with models has the potential to significantly reduce the cost of testing, while increasing its
value. While testbed-centered testing programs test a limited fraction of the test space, model testing
allows developers to more exhaustively test the execution space, providing early verification of designs.
The system specifications can be validated through simulations, providing deeper and broader
guarantees of system correctness by covering many more permutations than practical by testbeds
alone. The ideal is to migrate the testbed from being a venue of system V&V to a venue for validating
the models.

Debugging is the most expensive and least effective means of insuring quality. Mistakes captured this
late in development are much harder to fix largely due to the ripple effects of late changes. As described
in section 2.2, fixing requirements is much less expensive than fixing the flight code. Models, by
increasing the quality of the intermediate products leading to the flight code, decrease the likelihood of
rework due to mistakes resulting from incorrect specification.

While decreasing the reliance on debugging, the model framework and component-based architectures
aid debugging by organizing the system as loosely-coupled, atomic units of functionality and code. The
modularity and granularity of the architecture and specification ease the isolation of problems, in
addition to enhancing the testing and maintenance of the code.

Human-Rated Automation and Robotics

124

This page intentionally left blank.

 125
This document has been reviewed and determined not to contain
export controlled technical data.

5 Operations, Execution and Fault Management

5.1 Goal-Based Sequencing
Sequencing, as commonly defined, is the specification of the activities or commands necessary to
achieve mission objectives. In traditional sequencing, a list of commands is specified with criteria for the
execution of each one (usually time). The traditional sequencing approach has many practical
limitations, as we have described in sections 2 and 3, chief among these being the lack of cognizant
control. Goal-based sequencing provides operators with a means to specify desired system behavior,
which, coupled with models of the system under control, enables truly closed-loop systems. In this
chapter, we cover how users specify system behavior in operations through the agency of goals and the
integrated models from state analysis. We also cover how the system recovers in cases where intent is
not satisfied, due to faults in the system under control, and unexpected environment or improper
specification (bad models). The control system functions most directly involved in sequencing are
Elaboration, Projection and Scheduling.

Fig. 5.1. Elaboration, projection and scheduling in the control system context

5.1.1 Coordinating Control through Goal Elaborations
Practical systems can have from hundreds to thousands of states that must be controlled in a
coordinated way. States are controlled through the enforcement of goals specified on them by
operators. These goals describe the system behaviors necessary to achieve mission objectives.

Goals break down into two major categories, maintenance goals and achieve goals.

Human-Rated Automation and Robotics

126
 This document has been reviewed and determined not to contain
 export controlled technical data.

Maintenance goals are specifications of behavior that must always hold. These are best understood as
system invariants; properties the system must exhibit in all operational context. Maintenance goals are
behavioral requirements that can be specified at many different levels of the system. An example of a
low-level maintenance goal (one satisfied by a single controller) would be “doors shall never be open
while the train is moving”. Goals at higher levels of abstraction involve more controllers and more
abstract/composite states. Flight rules and Mission Rules are examples of system constraints best
described by higher-level goals. “Do not point the camera boresight within 10 degrees of the sun” is an
example of a flight rule that can be written as a maintenance goal. Enforcing this goal would involve a
number of controllers (e.g., azimuth/elevation gimbals, relative geometry knowledge) working in
concert to control a number of related states.

Mission rules, while invariant, give descriptive rather than prescriptive guidance to
planners/sequencers. Mission rule guidance describes what makes better plans, giving planners a set of
normative guidelines from which to evaluate the “goodness” of plans. An example of this would be
“minimize gimbal actuation necessary in activities”. While invariant, this guidance does not succeed/fail;
this rule is satisfied to a matter of degree. These rules are best specified using the “soft” goals first
described in section 3.2. The soft goals give the system a means to discern between alternate courses of
action in accordance with user specification.

The maintenance rules, being invariants, are more commonly identified and specified earlier in the
system development by systems engineers as opposed to operations personnel. Being “always on”, the
maintenance goals serve as the background of the achieve goals.

Achieve goals are behavioral constraints that specify how a system goes about accomplishing activities.
Achieve goals describe networks of transient conditions that must be satisfied to accomplish system
objectives. Achieve goals are specified using sequencing rules and other models created by the systems
engineers using the state analysis practices. By using the integrated, shared set of system specifications,
operators are able to focus on the desired operational outcomes (state behaviors), while letting the
models account for the implementation details.

Specifying Operational Behavior through Elaboration

Operators specify the behaviors required for the system to meet objectives by providing sets of achieve
goals. Operators start with high-level objectives (e.g., an image exists) and progressively refine these
goals through the state analysis practice of elaboration. Guided by state effects diagrams and other
details from the integrated system models, the operators identify the required set of supporting and
precursor constraints needed to achieve the original high-level goal. The elaboration practice is
described in detail in section 4.1.3.2.

 127
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 5.2. Progressive activity specification through elaborations

While the depiction in figure 5.2 might suggest that elaboration is done by humans in the ground
deployment, the framework allows elaboration to happen in either or both deployments. Elaboration is
guided by the same set of rules captured in the integrated system models. As a result, any deployment
with the capacity to apply the system model logic can process user-supplied goals into networks of
executable goals (x-goals, introduced in section 5.2) for execution.

5.1.2 Planning and Scheduling
Once the necessary set of elaborations has been defined, they are integrated into plans through
planning and scheduling. Integration by planning and scheduling is done by the application of the
constraints between respective goals to the sets of goals defined in elaborations. The constraints
between goals were defined as part of the state analysis process (the elaborations of section 4.1.3.2 and
the scheduling rules of section 4.1.3.3). These constraints (part of the respective goal definitions) specify
restrictions on ordering of goals, duration and resource requirements of individual goals. These
constraints, along with scheduling rules, result in exhaustive descriptions of allowable behavior known
as goal nets (more on these in section 5.2).

Once the system constraints and behavior specifications of goal elaborations are integrated and
consistent, operators can build more complex activities up from previously-defined lower-level activities
with the confidence that the compositions will at least be minimally consistent. These activity
fragments, represented as macros, can be used to simplify the task of building larger activity plans.

Human-Rated Automation and Robotics

128
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 5.3. Example of a goal macro

Each goal-based macro encapsulates the necessary sub-goals for particular activities. The macros are
instantiated by providing the applicable macro parameters, and integrating the expanded macro into
the plan.

Reusing predefined macro compositions in operations is both safer and easier than creating plans from
primitive units because the larger units save steps and can be pre-validated.

5.1.3 Validation of Goal-Based Plans
Validation is the process of ensuring that a given activity plan specification is likely to succeed at run
time. Validation of goal-based activity plans involves certifying that the integrated expression of intent
will result in the desired system behavior, or at least will not result in any conflicts that would prevent
the desired outcome. Validation of goal-based plans relies first on the fact that goals only specify the
outcome to be achieved – not how the achievers in the control system will accomplish them. This
separation allows achievers to be verified independently from larger plan compositions (i.e., as unit tests
that can have provable completeness over the range of goals that can be specified). The elaboration and
planning process then ensures that compositions are achievable by first eliminating obviously
inconsistent combinations (e.g., zero-time transitions, constraints outside allowed operating ranges,
mutually conflicting goals on the same state variable, etc.) and then verifying through projection that
the sequence of goals specified in the plan is achievable. To do this the system uses projection models
for each state variable to project currently estimated states forward informed by physics and the
sequence of constraints being applied (so, projection models can take into account the expected
behavior of achievers to change or constrain system states). Projection models can also take into
account the projected values of affecting state variables. Then, the system checks that each goal
constraint is satisfied (system state remains within the constraints) across the entire plan.

If goals in the plan identify alternative elaboration tactics (different ways to accomplish the same goal)
the planning process can respond to conflicts detected during this verification process by automatically
backtracking and choosing alternate tactics. This process of automatically searching through the space

 129
This document has been reviewed and determined not to contain
export controlled technical data.

of alternatives can save a great deal of time and effort during planning, particularly if the choice of
elaboration tactics is optimally directed by the current state of the system.

5.2 Goal-Based Execution
Execution is the attainment of user-defined goals by the control system. The control system issues
commands to the system under control in accordance with user intent and the estimated system state
determined using model-specified interpretations of measurements from the system under control.

Fig. 5.4. Execution function in control system context

Execution exercises cognizant control of the plant through use of the integrated set of models defined
through state analysis. The state knowledge model (introduced in section 3.3) specifies the attributes of
the system under control that must be constrained in order for the system to meet user objectives.
While the execution function may be distributed over deployments, every executing element in every
deployment works from the same models, ensuring the elements can work in concert to accomplish the
user goals.

5.2.1 Accomplishing Intent through Goal-Based Sequencing
Goal-based control systems process specifications of user intent (goal networks created by sequencing)
into timelines of executable goals known as x-goals (first introduced in section 4.1.3.3). X-goal timelines
are comprised of ordered sets of state constraints at a level of specification executable by the control
system. The x-goal timelines are previously validated by applying the projection models described in
section 5.1.3.

Goal-based commanding is inherently closed-loop. Closed-loop control is achieved by providing the
control system with a model of the system under control, along with a specification of desired behavior
and a means of detecting and correcting discrepancies between actual and desired state. This
architecture is directly analogous to the feedback control concept of classic control. The goal-based
architecture also affords the analytical insights featured by classic feedback systems, namely

Human-Rated Automation and Robotics

130
 This document has been reviewed and determined not to contain
 export controlled technical data.

boundedness (statements on the range of behaviors possible) and stability guarantees. This is covered in
more detail in section 4.4 on verification.

Goal-based control systems accomplish intent in two ways. Designers have the option not only to
choose between these methods, they can also combine the methods as they see fit. The method that
makes sense will depend on the particulars of the state variables and the nature of the applicable user-
defined constraints.

The first option for accomplishing intent is to exercise active control of the system under control to
achieve specified constraints on state variables of interest. This is appropriate in cases where the state
variable in question represents a controllable (i.e., can be influenced by an actuator in the scope of our
control system) quantity for which it is possible and appropriate to assign a controller. As we have seen
in the state analysis practices (in particular Define State Controller section 4.1.3.6), the controller and its
subordinate sensors and actuators are specified using the integrated system and domain models. An
example of this type of accomplishment of intent is pointing control (gimbal controllers act to position
the boresight in accordance to goals).

The other option for satisfying intent is to wait for the conditions specified in the goal to be true before
attempting the activity using that goal. This option is especially appropriate in cases where the state
variable of interest is not controllable (e.g., sun must be up to do imaging). Keep in mind that while the
domain attribute in question might not be controllable, it must still modeled to enable the control
system to plan activities around it (we can know when the sun will be up and plan accordingly).

While the case where an effective actuator does not exist (e.g., no actuator can make the sun rise, so
the control system will wait for it) is the most obvious, there are other situations where waiting for a
condition to be true makes sense. An example of waiting as a best strategy is opportunistic science. The
signatures of phenomena of interest that cannot be predicted (e.g., dust devils, gamma ray bursts) can
be modeled by the control system. When the conditions of the signature are detected, the control
system then carries out the activities satisfying the goals associated with the phenomena.

5.2.2 Goal-Based Execution in Action
X-goal timelines are compiled from user-specified goal nets. While both products represent user intent
over a timeline, x-goals are specified at a level of detail where each state variable controlled is
represented at the level that it can be enforced by the control system. This automated translation from
goal nets to x-goal nets is made possible by the integrated system models we have described. This
partitioning between the higher level, user-focused specification of operational intent and the
execution-ready x-goal network allows operators to focus on the domain and system in operational
terms. The integrated system model enables this abstraction for the user, while providing traceability
from the high-level specification to implementation detail to an executable product.

Execution of x-goal networks proceeds by the successive firing of time points when the appropriate
temporal and state constraints are met. Temporal constraints are specifications of the timing criteria for
a time point to fire. These criteria are specified so that the time point fires when the specified window is
open and firing the time point does not cause other temporal constraints to be violated.

 131
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 5.5. Time point firing on temporal constraint satisfaction

Time points act as the “gate” between successive x-goals on a timeline. When the constraints on a
timeline are satisfied, the executor proceeds to the subsequent x-goal. Time points with the same end
criteria (defined by the Tmax on a goal) are joined to evaluate as a single time point. In this case, the time
point acts as a logical AND where each evaluation must evaluate to “true” to progress. The evaluation is
“true” if and only if Tnow is greater than Tmin and less than Tmax for each state variable at the time point.

In addition to temporal constraints, state constraints must be met for a time point to fire. Engineers
specify the necessary conditions for each possible pair (preceding and subsequent) of x-goals on the
intent timeline as part of the Define Scheduling Rules (section 4.1.3.3) state analysis practice. The state
constraints are evaluated as ReadyToTransition conditions, providing rules to the achiever on
transitioning from one x-goal to the next. The ReadyToTransition conditions are written in terms of the
state variable for which the transition condition applies. As time advances, “active” (x-goals being
executed at Tnow) x-goals on the timeline are issued to the appropriate controllers and estimators to be
achieved.

Human-Rated Automation and Robotics

132
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 5.6. Specification and evaluation of ReadyToTransition conditions

In figure 5.6, we illustrate an example of a ReadyToTransition specification and evaluation. The Camera
Temperature state variable (top timeline) has two successive x-goals linked by a ReadyToTransition
condition applied to a time point. This condition is specified by engineers as part of the goal
specification in the scheduling practice. Note that the ReadyToTransition condition can be more
restrictive than the subsequent goal.

The Gimbal Pointing ReadyToTransition condition is an example of a compound evaluation. In this
example, the engineer uses the estimated state variable as well as the rate of change of the state
variable to specify the ReadyToTransition condition.

 133
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 5.7. Evaluation of merged time points

Execution proceeds when all current time points evaluate to “true”. To evaluate to “true”, the time
point temporal constraint and state constraint (specified as ReadyToTransition condition) must be
satisfied.

Assuming the temporal constraints were satisfied, the ReadyToTransition criteria are evaluated for the
joined time points. The joined time points act as an AND condition, where all ReadyToTransition
conditions must be satisfied to continue. Upon transition, the subsequent x-goals are sent to their
respective controllers to be achieved. The execution horizon (delineating the achieved intent) moves to
the right as all applicable time points at the edge are evaluate to “true”.

Returning to our camera system example, let us consider x-goals on state variables Camera
Temperature, Heater Switch & Health and External Temperature. Control or knowledge of each member
of this group of state variables is required to satisfy constraints on camera temperature in support of
imaging. Our system uses a resistance heater as part of an active thermal controller. The External
Temperature state variable is not actively controlled per se, but is modeled since it factors into the
Camera Temperature (relationship described in state effects model). Being an uncontrolled state
variable, External Temperature is controlled not through actuation, but through waiting for it to be
satisfied by the environment.

Human-Rated Automation and Robotics

134
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 5.8. External temperature goal example

Figure 5.8 illustrates a supporting goal of the imaging activity for the External Temperature to be above
10°C at some point in the next 12 hours. While we cannot control when or if this goal can be achieved,
we can model the environment to plan when we expect it to happen. The engineer further considers the
goal specifications from figure 5.7 and decides that the heater is unnecessary when the External
Temperature is above 10°C. To enforce this condition, the engineer adds a goal for the heater to be “off”
when the External Temperature is above 10°C (bottom goal).

Upon further examination of the x-goal specification in figure 5.7, we can see a problem. The time point
evaluation at Tnow (under the yellow arrow in the bottom figure) has no state constraints to evaluate.
The subsequent x-goals for Camera Temperature and Heater Switch & Health are unconstrained (i.e., no
desired state specified). As a result, this time point will always fire; a situation the operator may not
want.

There are two tactics for dealing with this situation. One tactic is to include a temporal constraint on x-
goals preceeding the unconstrained x-goals. As a result, we give the preceeding goal a minimum
duration over when it must hold before considering a transition to the unconstrained state. This tactic is
illustrated in the top portion of figure 5.9.

The second tactic is to include an x-goal on a related state variable. The transition condition of this
subsequent x-goal acts as a final check for readiness to proceed. This added x-goal allows the engineer
to further elaborate what is necessary before transitioning out of the preceeding x-goal. This tactic is
illustrated in the bottom portion of figure 5.9. In this example, state variable Camera Mode is added
with a goal for the Camera Mode to be “camera ready”. Since there is no temporal constraint on the
Camera Temperature goal of “Between 10 and 20 degrees C”, the succeeding transition will fire as soon
as this state variable is achieved. However, the engineer wants to ensure that some modeled condition
of the camera is achieved (modeled as Camera Mode) before transitioning out of the Camera
Temperature goal. To accomplish this, the engineer specifies the necessary ReadyToTransition condition
for Camera Mode state, ensuring that the system will not transiton before this condition it met.

 135
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 5.9. Tactics for specifying transition constraints for unconstrained states

5.2.3 Monitoring Goal-Based Execution
Monitoring execution is accomplished by comparing estimated state (represented as state variables)
with intended state (as specified in goals). Monitoring execution provides operators with insight into the
actual operation of the system, allowing continuous verification of proper system behavior. The goal-
based architecture also provides deployments of the system with the capability to self-monitor
execution. This ability to self-monitor is a distinguishing feature of goal-based control. Self-monitoring
enables deployments to exercise timely, robust control, making the goal-based systems more capable
and reliable compared to procedure-driven systems.

As discussed in the state analysis deployments practice (section 4.1.3.10) and other sections, the
architect has wide latitude in how they can elect to allocate the control system functions between
physical deployments. A common pattern of deployment for situations where the system under control
is operated at a remove from the planning elements is to co-locate the execution function with the
system under control (figure 5.10). This pattern allows the control system to command locally (in
accordance with user-specified goals), as well as to perform estimation using the locally-available data
from sensors.

Human-Rated Automation and Robotics

136
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 5.10. Distribution of monitoring over deployments

The comparison of actual versus intended state happens in the orange circles. To achieve tighter (i.e.,
less lag between estimation and response) closed- loop control, monitoring is done in both deployments
in the deployment pattern of figure 5.10.

While both deployments use the same models for the system under control, the state variables that
represent the knowledge of the system under control must be transported between deployments. This
is done by using the proxy and basis state variables first introduced in section 4.1.3.10 on deployments.
While the Flight deployment monitors the locally-estimated basis state variables, the Ground
deployment must use proxy state variables. The proxy state variables are created by obtaining the basis
state variable information through the specified data transport mechanism (described in section 4.1.3.5
on state value histories). The data transport mechanism specifies how the control system collects the
value histories stored in the basis state variables, and transports these histories to the appropriate proxy
state variables in the other deployments. This specification defines details such as what information
needs to be transported, as well as the required regularity of proxy updates. The same systems
engineer-specified data transport mechanisms govern how measurement and command histories are
moved between deployments as well. This allows monitoring to proceed in parallel between
deployments, providing an extra check on how monitoring is being performed by the respective
deployments.

Operators in the Ground deployment monitor execution by comparing the proxy state timelines to their
original intended state constraints specified in the uplinked x-goal network.

 137
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 5.11. Monitoring execution from the flight and ground deployments

In the example above, we monitor a set of x-goals for a single state variable, Camera Temperature. The
x-goal network in this case allows flexible timing of goal achievement for one of the goals (Camera
Temperature Between 10 and 20 degrees C). For this goal, an interval specifying a min and max time is
provided. This goal will transition when the subsequent ReadyToTransition condition is met. While we
would have modeled an expected duration for this goal to be achieved through projection as part of
planning, part of monitoring is to compare actual execution to our plans. To evaluate the behavior, the
ground needs to know the exact time of time point firing. This information is provided through data
transport, along with the state variable history at downlink time. From the state variable history, and the
transitions between goals, the ground can determine not only that the goals were met, but that
evaluations of transitions were properly executed resulting in the system state conforming to the
original plans.

5.3 Robust Execution and Fault Management
Truly safe and reliable control systems must not only provide for the monitoring and execution of
nominal situations. To realize the highest reliability, safety-critical systems must also be architected up
front to handle off-nominal situations due to endogenous (e.g., system faults, incorrect models) and
exogenous (e.g., unexpected environment) causes. In this section, we shall illustrate the advantages of
goal-based control in the specification, testing and operations of robust, reliable systems.

5.3.1 Goal-Based Control for Fault Management
Throughout the course of this document, we have made a case for the specification and operation of
systems using an expressive, integrated set of representations of structure and behavior. It should come
as no surprise to the reader that this concept carries over into considering off-nominal behavior as well.
As we shall see, explicit specification of behavior is even more important when dealing with the often
unforeseen situations of fault scenarios.

Human-Rated Automation and Robotics

138
 This document has been reviewed and determined not to contain
 export controlled technical data.

As with nominal scenarios, the strength of goal-based control systems stems from the closed-loop
nature of the execution. In goal-based control systems, engineers explicitly specify behaviors that must
hold in situations. By specifying desired behaviors, engineers can employ more appropriate, nuanced
responses to off-nominal situations. Focus on system behavior fosters a more integrated approach to
fault specification and management. This is especially important in applications where a number of
parties may make demands on the system with the potential for cross-interference. This is especially
true when one considers the somewhat arbitrary and counterproductive dichotomy between
sequencing and fault protection.

The readily-inspectable nature of the system models we have described facilitates review over the
system lifecycle. This is especially important not only to inform the operators and maintainers who will
“inherit” the system as to how the system works, but to document the decisions and assumptions
underlying the system. By making this knowledge clear and accessible in models, these operators and
maintainers are empowered to make needed changes as domain knowledge evolves with the system.
The problem of opacity of implementation is especially acute when considering the issue of fault
protection parameter “tuning”.

Fault protection tuning often involves the proper selection of the parameter values (e.g., persistence
check durations and counts, thresholds, priorities) sourced by the flight code governing system behavior
in the presence of faults. A major difficulty with fault protection tuning is that this structure forces
operators to consider the parameters without the underlying logic. It is difficult to put the parameters in
the system context, since there is little traceability from individual values to the full set of behaviors
they might impact. The situation gets worse when you consider that a typical system may have
hundreds or thousands of such parameters.

This complexity, without traceability to requirements or relationships between attributes, leads to a
system where adjustments are rarely made in a manner that can be considered principled or holistic.
Reviews, a major tool in assessing change as part of configuration management, are less effective since
parameter values without a context are a poor guide to behavioral intent or probable results.

[Section removed]

 139
This document has been reviewed and determined not to contain
export controlled technical data.

This page intentionally left blank.

Human-Rated Automation and Robotics

140
 This document has been reviewed and determined not to contain
 export controlled technical data.

This page intentionally left blank.

 141
This document has been reviewed and determined not to contain
export controlled technical data.

This page intentionally left blank.

Human-Rated Automation and Robotics

142
 This document has been reviewed and determined not to contain
 export controlled technical data.

[Section removed]

While it is true that models can be wrong just as much as commands, we hope we have demonstrated in
chapters 3 and 4 and illustrated through this example that models are more easily verified than raw
commanding or parameters alone. Owing to the explicit representation of intent in goal-based systems,
reviewers have immediate insight to the desired outcome. Models also transparently lay out how the
system is expected to work in the context of the domain. Being executable, models provide planning
time and run-time verification and validation against the explicit intent, and can take more appropriate
corrective measures when that intent cannot be satisfied.

Fault Protection versus Behavior Management

The “holistic” specification and management of system behavior is a distinguishing feature of goal-based
fault handling. By architecting fault handling as part of overall behavior specification, practitioners can
realize more integrated and elegant fault management. In particular, the arbitrary and limiting barrier
between sequencing and fault protection is breached, allowing both communities access to the same
models, tools and assumptions. The result is a more rational, globally-optimal “top-down” specification
of what the system should (or should not) do in nominal and off-nominal scenarios. You no longer have
the potential for work at cross-purposes caused by teams working from different assumptions or
conflicting demands on the same system.

Goal-based specification considers fault management as part of overall behavior specification and
management. Instead of the localized, reactive treatment of “symptoms” of traditional fault protection,
goal-based systems provide mechanisms for control based on knowledge of the overall system. This
framework allows engineers and operators the ability to specify a spectrum of responses, tailored to the
nature and severity of the problem. As opposed to the often dangerously simplistic localized responses
of traditional fault protection, users can specify how plans can be selectively de-scoped due to conflicts.
This implementation is potentially more robust, due to the inherently closed-loop nature of goal-based
execution and the resulting traceability between implemented software and system fault models.

 143
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 5.13. Reactive fault protection versus goal-based fault management

Figure 5.13 further summarizes the philosophical and structural differences between the two
approaches to fault handling in execution. The key is the consideration of sets of linked “symptoms”
versus achieving desired behavior. While the traditional approach focuses on limited, often irrevocable
escalating responses, the goal-based approach starts with the description of desired outcomes as well as
invariant behavior specifications. Goal-based fault handling then makes the necessary changes to satisfy
intent escalating from localized changes to system level responses, while using the integrated system
model at all levels for diagnosis and execution. This layered response is more fully detailed in section
5.3.3 of this chapter.

5.3.2 Elements of Goal-Based Fault Management
The first challenge for fault management is diagnosing that something is wrong. Specifying and
implementing this capability is one of the more difficult, time-consuming and expensive aspects of
software and systems engineering. Traditionally, this has been done by focusing on what could go wrong
with the system under control. Off-nominal scenarios were identified through failure mode and effects
analysis (FMEA) or fault tree analyses, often after the architecture or design was complete. By thinking
about off-nominal events and mitigations after important the architectural decisions are made,
practitioners miss the opportunity for a more robust design. By considering off-nominal behavior as part
of the original specification, more considered, balanced risk mitigations can be employed.

The models used to specify the system capture both the nominal and off-nominal behaviors from the
beginning. As we have seen in the state knowledge, estimation and command models, modelers
explicitly state not only what they would like or expect to happen, but what could happen. As a result,
the control system has the proper guidance to act in the face of known or unknown fault modes.

Human-Rated Automation and Robotics

144
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fault diagnosis is accomplished though hypothesis testing. Hypothesis tests use the available evidence
(system states, commands) to prove or disprove suppositions about the system modeled as state
variables. The state effects, measurement and command models are used to design the estimator
algorithms for fault management as described in the Define State Determination practice (section
4.1.3.9). This explicit state modeling enables the use of model-based estimation/diagnosis software to
fuse the disparate system for diagnosis. Let’s illustrate this process with an example.

Fig. 5.14. Sensor health hypothesis test example

As part of fault management specification, the modeler determines that knowledge of the temperature
sensor health is important enough to the control system to warrant explicit modeling. To this end, the
modeler creates a state variable Temperature Sensor Health with three states, “healthy”, “saturated-
low” and “failed-no-signal”. This state variable affects Temperature Measurement, along with other
state variables and is represented in the state effects model. The algorithm for Temperature
Measurement is represented on the left. Together, the state effects and measurement models provide
the full information required to prove a hypothesis on Temperature Sensor Health.

The hypothesis to prove is “Temperature Sensor Health is Healthy”. The hypothesis is stated in the
positive, as it is easier to conclusively prove a hypothesis is true, than to prove it is false. We begin by
computing the Temperature Measurement (m) based on the estimated state variable values. The
estimated Measurement is then compared to the truth data for camera temperature and compared to
the actual measurement. The hypothesis on the health of the sensor is proven or disproven by
comparison of the estimate versus the actual.

Onboard execution monitoring uses the hypothesis testing capability we have just examined along with
specification for how to change the system to satisfy behavioral constraints. This self-monitoring is
enabled by the integrated models developed as part of state analysis. Recall that monitoring of goal
network execution (section 5.2.2) is the comparison of estimated state with intended state along the
timeline.

The executive element monitors goal execution in real-time, and responds in the event of goal failure.
Failures can happen due to endogenous (e.g., fault, unexpected configuration, bad model) or exogenous
(e.g., unexpected environment) causes. In any case, the control system uses the system state knowledge

 145
This document has been reviewed and determined not to contain
export controlled technical data.

to diagnose problems and effect responses in accordance with the original goals as well as maintenance
goals.

Checking the success or failure of a goal means constant evaluation as to whether the specified
constraint is being satisfied. The IsStillSatisfied condition captures the result of this on-going run-time
comparison.

Fig. 5.15. IsStillSatisfied condition evaluation of goals

For goals expressed on a continuous condition of a state variable (figure 5.15 left), this check is trivial.
Any measurement outside the specified range for the state variable over the time span results in a goal
failure. Goals expressed as percentages (figure 5.15 right) require more information to evaluate. In this
case, looking at the latest measurement does not provide enough information to make the evaluation.
For this evaluation, the modeler can employ inferential checks based on the duration of state conditions
such as the specification on the right. This specification saves the system from waiting the entire hour to
evaluate for goal success/failure.

5.3.3 Off-Nominal Execution of Sequences
The exceptions we have described manifest themselves in execution in two ways, temporal constraint
violations and goal failures. The category of the exception and the priority and scope of the affected
goals factors into the response. Goal-based fault responses are described in section 5.3.4.

Temporal constraint violations occur when a temporal constraint at a time point cannot be satisfied. The
temporal constraints are determined from the goal specifications in the goal net. One way for a
temporal constraint to be broken is for a goal to take too long to be accomplished. In this case, the
execution gets to a time point, evaluates the temporal constraint (checking if it is time to evaluate the
next x-goal) and the ReadyToTransition condition on the state variable. While the time constraint says
“go”, the ReadyToTransition fails. As a result, the executive fires the time point, and the subsequent x-
goal may fail.

Human-Rated Automation and Robotics

146
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 5.16. Temporal constraint violation example

Figure 5.16 is an example of a case where an x-goal temporal constraint is violated. In the top figure, the
joined time point has conditions from two x-goals to evaluate. At the end to the time interval, both state
variable ReadyToTransition conditions are evaluated. In the case of the top x-goal, this check fails. The
subsequent x-goal (Between 10 and 20 degrees C) is then evaluated to determine if it can still be
satisfied. If not, it will fail, leaving the failure to be resolved by fault management (as described in the
next section 5.3.4).

The other type of execution exception is a goal failure. As described previously, state variables are
continuously evaluated to determine if they are behaving in accordance with the constraints of their
goal specifications. The result of this evaluation is represented by IsStillSatisfied.

Upon failure of a goal, the exception is resolved in accordance with the behavior specification pertaining
to that goal.

 147
This document has been reviewed and determined not to contain
export controlled technical data.

Fig. 5.17. Goal failure example

5.3.4 Reacting to Off-Nominal Execution
As illustrated in figure 5.13, goal-based fault management is realized as a defense-in-depth. The general
principle is to do the least required to ensure that the desired behavior is achieved. This entails doing as
much of the original plan as possible, using integrated responses starting at the lowest possible level. In
the case the goal-based fault management, “low level” is not a reference to physical system elements
(i.e., “boxes”) but to goals. As we have stated previously in this document, decomposition of functions
to physical “boxes” or subsystems is often misleading, as functions are often not uniquely assignable to
physical elements. Decomposition of behavior, with explicit mapping of behaviors to the controllers that
achieve them, provides the cleanest allocation. This decomposition based on behavior drives how fault
responses are broken down.

Systems engineers define the appropriate reactions for the different types of execution failure through
state analysis. Response design depends on the type of exception as well as the priority of the goals
affected.

5.3.4.1 Local Responses by Robust Achievers
The first line of defense is to avert goal failure in the first place. Many failures can be avoided by
designing achievers with the robustness and flexibility to react immediately to off-nominal states. By
careful specification of the goal’s IsStillSafiable condition, engineers can specify how a controller can
attempt recovery to potentially recoverable faults. Let’s illustrate this concept with the following
example.

Human-Rated Automation and Robotics

148
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. 5.18. Robust controller example

In this example, a modeler wishes to specify a controller for an Inertial Measurement Unit (IMU). To
make the control system more robust, we decide to build into the controller the capability to attempt
recovery from a designated set of IMU faults deemed potentially recoverable. By dealing with these
faults at the controller level, we can potentially avoid alterations to our plans due to goal failures. More
serious, pervasive faults not in this set will be remedied by higher level responses.

The modeler begins specifying the controller as in the Define State Controller practice (section 4.1.3.6)
by looking at the state effects model (top of figure 5.18). From this model, we identify the applicable
state variables to consider in the controller specification, IMU Power/Op Mode, IMU Health, and Power
Switch Position.

In this example, the modeler chose to describe the IMU behavior as a composite state machine using
the identified state variables. The idea is to exhaustively list the significant configurations of the IMU
along with the attendant transitions, conditions and effects. This description guides the controller
specification as we shall show. To make the controller robust, the modeler identifies a number of
relatively minor IMU faults that can be recovered in short order. An example might be startup
transients, where the IMU can self-remedy by a quick reboot.

 149
This document has been reviewed and determined not to contain
export controlled technical data.

The composite state machine describing the IMU behavior uses the states from state variables IMU
Power/Op Mode and IMU health (bottom diagram in figure 5.18). The result is a composite state
machine with two regions for the respective sets of states. Uncertainty is explicitly represented, since
the controller has access to estimated states (as we covered in Define State Determination, section
4.1.3.9). In this example, we represent this uncertainty as state “unknown”. We add transition
descriptions (triggers, guards and effects) to the state machine using information from all three
identified state variables. The transition descriptions include the command model and measurement
models from the identified state variables. The transitions describe what the controller can do to the
IMU to get it into specified states (command models), and how it determines the state the IMU is in
(measurement models).

Using the composite state specification of the IMU controller, the modeler now defines the goals the
controller will achieve as well as the mapping between the goals, the estimated states and the
appropriate commands to effect the desired transitions. We represent this as a matrix in figure 5.19.

Fig. 5.19. Robust controller example specification

As with all controllers, the controller specification gives the appropriate commanding for any mix of
estimated state (from the composite state description) and desired goal (from goal model). For our
robust controller, we had included a state in the IMU health state variable to represent conditions
where the IMU could employ self-remedies such as resetting or turning off (state = “probably
recoverable”). The set of commands for this state are in the green row.

Another local option can be described as “do nothing”. While this measure may seem off-hand or
cavalier to some, pilots would recognize this option by the old flying rule-of-thumb “sometimes doing
nothing is best”. Systems accomplishing critical sequences (e.g., Mars Entry, Descent and Landing) often

Human-Rated Automation and Robotics

150
 This document has been reviewed and determined not to contain
 export controlled technical data.

do not have time to apply more complicated, time-consuming responses to faults. In these cases, it may
be appropriate to leave the failed goal in the network and continue “best effort” to achieve the goal.
This is best accomplished through careful, robust controller specification and explicit definition of how
the controller might “re-try” goals.

5.3.4.2 Non-Local Responses to Faults
When faults cannot be handled locally by a single controller, we must consider higher-level
interventions involving possible changes to plans due to goal failures. As described above, we try to
change the original intent as little as possible, while ensuring safety invariants are honored. The fault
handling method used is an engineering judgment call, depending on the circumstances of the fault and
the priority and relationships of the goals affected.

Fig. 5.20. Non-local goal-based controller responses to faults

We remind the reader that the architecture of the response, as with all behavior, focuses on the goals.
The trees in the response category descriptions of figure 5.20 are trees of goals, not system “boxes”. By
crafting responses to sets of goal failures, we have the necessary framework to make the right diagnoses
(using system models of affected states) and make the appropriate interventions (command models)
based on them.

The left diagram of figure 5.20 represents how goal-based fault management responses provide layered,
tailored protection commensurate with the scope of the fault and appropriate intervention. This
diagram also gives the sense for how the interventions are focused in different functions of the control
system. As described in the previous section, the most local response is in the controller itself. As we will
describe, the non-local responses begin to involve the Elaboration, Scheduling and Planning functions of
the control system as well.

Partial goal shedding is an appropriate response in situations where the failed goals (and supporting
sub-goals) can be simply extracted from the network. By removing the failed non-critical goals, the

 151
This document has been reviewed and determined not to contain
export controlled technical data.

original intent is still satisfied to some degree by the other sub-goals at that level. The determination to
shed is made in accordance with the specification in the parent goal. An example of this is the
sequencing of “bonus science” observations for the Mars rovers. Since many activity durations cannot
be known exactly at planning time, planners include “optional” observations for the rover to carry out if
time is available. The system evaluates the parent goals at run-time to determine if the observation sub-
goals can be accomplished, and sheds them in accordance with the specification when they cannot be
satisfied.

Re-elaboration and re-scheduling is the most common and versatile method of dealing with goal failure,
providing a means to leverage system physical or functional redundancy. Re-elaboration and re-
scheduling is more appropriate in cases where there is a strong desire to ensure the offending goals
happen sometime. This provides a flexible, assured means for non-critical but non-expendable failed
goals to be re-introduced to plans. In this method, alternate tactics (ways of achieving the goal, see
section 4.1.3.3 on scheduling rules) are specified, describing how failed goals can be re-integrated and
tried again at other times in accordance to the behavior specification.

As with traditional fault management, safing is appropriate in cases where safety is at risk, no obvious
local response is identified or when there the failure has potential implications on the success/failure of
future activities. Safing can result from the violation of a safety invariant such as a flight rule or other
safety constraint serious enough to warrant stopping the original activities in order to ensure the system
does no harm to others or itself. Goal-based safing results in running a basic set of behaviors (safe goal-
net) specified to ensure the system will be safe for an indefinite period, waiting for controller
intervention to diagnose and fix the problem.

The globally-considered goal-based specification of safe behavior offers important advantages over
more traditional localized, procedural implementations. Since the procedural method does not have
cognizance of the system state, there is an elevated risk of misconfiguration due to the system not
having a model of the overall effect of the commands run up to that point. Such a system may have run
a number of localized responses to deal with localized faults before escalating to the system level
response. With no explicit tracking of system state, these local responses may interact in ways that
defeat the intent of the engineers. In contrast, goal-based safing works by using a declaration of intent
for each of the states necessary to ensure the system’s indefinite safety in safe mode. This
implementation provides a measure of safety against misconfiguration due to the system being in an
unexpected state, as the goal-based achievers check the state of the system at run-time and command
accordingly.

Human-Rated Automation and Robotics

152
 This document has been reviewed and determined not to contain
 export controlled technical data.

This page intentionally left blank.

 153
This document has been reviewed and determined not to contain
export controlled technical data.

Appendix A: Glossary
This glossary is a collection of terms important to the framework introduced in this document. Further
elaboration is provided in cases where these terms have been appropriated from more commonly-held
definitions.

Achiever: Element in control system responsible for satisfying control or knowledge goals. The
achievers for these tasks are controllers and estimators respectively.

Principle References (Controller): Define State Controller (section 4.1.3.6), State Control (section 4.3.2.2)
Principle References (Estimator): Define State Determination (section 4.1.3.9), State Estimation (section
4.3.2.1)

Actuator: Elements of control system charged with effecting change to system under control in
response to commands issued by controller.

Principle References: Define Actuators (section 4.1.3.7), State Control (section 4.3.2.2)

Allocation: The portion of a delegated goal that specifies the bounds of allowable control by the
delegate achiever.

Principle References: Define State Controller (section 4.1.3.6), Deliberative and Reactive Closed-Loop
Control (section 4.3.2.10)

Basis State Variable: A state variable estimated locally in the deployment with the system under
control. Complement to Basis State Variable.

Principle References: Consider Deployments (section 4.1.3.10), Monitoring Goal-Based Execution
(section 5.2.3)

Behavior: The manner in which the state variables of the system under control change. These rules
governing state variable changes are modeled as part of state analysis.

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4)

Behavior Model: Expectations regarding the behavior of the system under control that are the basis
for the control system design.

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4)

Bonus Goal: Low priority goals which can be shed from plans if failed (e.g. lack of time, resources) or
conflicting with higher priority goals.

Principle References: Non-Local Responses to Faults (section 5.3.4.2)

Closed-Loop: Control actions to influence the system under control determined by comparison of
the state and behavior of the system under control with the user goals.

Principle References: What is Control? (section 3.1.1), Reactive Closed-Loop Control (4.3.2.3)

Human-Rated Automation and Robotics

154
 This document has been reviewed and determined not to contain
 export controlled technical data.

Command: Directive to an actuator to change the condition of one or more states in the system
under control.

Principle References: Define Actuators (section 4.1.3.7), Define State Controller (section 4.1.3.6), State
Control (section 4.3.2.2)

Command Model: Expectations regarding the change of state in the system under control that will
result from given commands in the present state. This describes the instantaneous effects of a
command on software or physical states.

Principle References: State Control Models (section 3.3.2.4), Define State Controller (section 4.1.3.6),
State Control (section 4.3.2.2)

Control Goal: Specification of constraints on state variables of the system under control to achieve
desired system behavior.

Principle References: The Role of Goals (section 3.2), Goal Models (section 3.3.2.1)

Control System: A system implemented to control another system (system under control) enforcing
desired behavior to accomplish user objectives.

Principle References: What is Control? (section 3.1.1), Reactive Closed-Loop Control (section 4.3.2.3)

Controller: Element of the control system that achieves control goals by controlling one or more
state variables (see Achiever).

Principle References: Define State Controller (section 4.1.3.6), State Control (section 4.3.2.2)

Data Command: Directive issued from a knowledge goal achiever to change the condition or
transport one or more data value histories.

Principle References: Define State Value Histories (section 4.1.3.5)

Data Controller: Controller charged with the control of one or more data state variables to achieve
knowledge goals for data management.

Principle References: Define State Value Histories (section 4.1.3.5), Define State Determination (section
4.1.3.9)

Data State Variable: Metadata describing attributes of Data State Variable histories used for
control of data states in data management.

Principle References: Define State Value Histories (section 4.1.3.5)

Deployment: A physically distinct locale to which a set of control system functions are allocated.

Principle References: Consider Deployments (section 4.1.3.10), Monitoring Goal-Based Execution
(section 5.2.3)

 155
This document has been reviewed and determined not to contain
export controlled technical data.

Delegate Achiever: Achievers allocated goals from delegator achievers to accomplish reactive
control (see Allocation, Delegating Achiever).

Principle References: Define State Controller (section 4.1.3.6), Deliberative and Reactive Closed-Loop
Control (section 4.3.2.9)

Delegating Achiever: Achievers allocating goals to delegate achievers to accomplish reactive
control (see Allocation, Delegate Achiever).

Principle References: Define State Controller (section 4.1.3.6), Deliberative and Reactive Closed-Loop
Control (section 4.3.2.9)

Derived State Variable: A state variable representing attributes of the system determined by
computation using other state variables instead of measurement (e.g., Power Margin).

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4)

Discrete Value History: Record of state variable values at particular times in the past. Due to finite
sampling, continuous phenomena histories are also represented in this manner.

Principle References: Define State Value Histories (section 4.1.3.5), Define State Variables (section
4.1.3.4)

Elaboration: Refinement of a goal into a network of supporting sub-goals on related state variables.

Principle References: Goal Elaboration and Planning (section 4.1.3.2), Goal Elaboration (section 4.3.2.5)

Estimated State: The most likely value of a state variable as deduced by the Estimator using the
available evidence (i.e., state knowledge model, measurement and command histories).

Principle References: Define State Determination (section 4.1.3.9), State Estimation (section 4.3.2.1)

Estimator: Control system element responsible for calculating the most likely values of state variables
using the available evidence (i.e., state knowledge model, measurement and command histories).
Estimators are achievers of knowledge goals (see Achievers, Knowledge Goals)

Principle References: Define State Determination (section 4.1.3.9), State Estimation (section 4.3.2.1)

Executable Goal (X-Goal): An implementable (i.e. achievable by a controller) statement of user
intent for a state variable. X-goals are ordered in x-goal nets.

Principle References: Define Scheduling Rules (section 4.1.3.3), Goal-Based Execution in Action (section
5.2.2)

Failure Handling: Mechanisms for coping with the impact of failed or conflicting goals in plans.

Principle References: Robust Execution and Fault Management (section 5.3)

Goal: A control objective, expressed as a verifiable constraint, consisting of state value range and time
interval, on a state variable of the system under control.

Human-Rated Automation and Robotics

156
 This document has been reviewed and determined not to contain
 export controlled technical data.

Principle References: The Role of Goals (section 3.2), Goal Models (section 3.3.2.1)

Goal Failure: State constraint violation detected during execution.

Principle References: Robust Execution and Fault Management (section 5.3)

Goal Network: An exhaustive description of intended system behavior specified as a set of
interconnected goals and time points.

Principle References: Goal-Based Sequencing (section 5.1), Goal-Based Execution (section 5.2)

Hardware Adapter: Hardware element in the system under control providing a measurement and
command interface between the control system and the system under control. Contains one or more
command and measurement value histories.

Principle References: Consider Deployments (section 4.1.3.10), Reactive Closed-Loop Control (section
4.3.2.3)

Intervallic Value History: Continuous (i.e., a value for any time, not just sampled times) value
expression for state variables. Specified by use of State Functions.

Principle References: Define State Value Histories (section 4.1.3.5)

Knowledge Goal: A goal on the quality of state knowledge for a particular state variable. Knowledge
goals are satisfied by Estimators.

Principle References: Goal Elaboration and Planning (section 4.1.3.2), Define State Determination
(section 4.1.3.9), State Estimation (section 4.3.2.1)

Measurement: Evidence on the value of a state variable of the system under control obtained via
hardware interfaces. Measurements provide time-tagged evidence about one or more physical states.

Principle References: Define Sensors (section 4.1.3.8), Define State Determination (section 4.1.3.9), State
Estimation (section 4.3.2.1)

Measurement Model: Specification of expectations regarding the interpretation of measurement
values from the system under control based on related states. This description includes a model of how
system physical states affect sensor measurements.

Principle References: Define Sensors (section 4.1.3.8), Define State Determination (section 4.1.3.9), State
Estimation (section 4.3.2.1)

Physical State: Description of conditions (“truth data”) in the system under control in terms of state
variables. This may be a hardware, environment or even a software state.

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4)

Projected State: The control system’s prediction for a state variables value based on the latest
estimated state, operational intent (goals), achiever behavior and other model specifications.
Represented as a series of values over the timeline.

 157
This document has been reviewed and determined not to contain
export controlled technical data.

Principle References: State Knowledge Models (section 3.3.2.2), Goal Elaboration and Planning (section
4.1.3.2), Define State Variables (section 4.1.3.4)

Proxy State Variable: A state variable estimated outside the deployment local to the system under
control. Complement to Basis State Variable.

Principle References: Consider Deployments (section 4.1.3.10), Monitoring Goal-Based Execution
(section 5.2.3)

Scheduling: The merging of elaborated goals into a deconflicted (i.e., temporal constraints and
resource conflicts resolved) goal network. Scheduled plans are validated through projection of states of
the plan.

Principle References: Define Scheduling Rules (section 4.1.3.3), Goal-Based Sequencing (section 5.1)

Sensor: Elements of the control system which take measurements on the system under control,
providing evidence for state determination.

Principle References: State Estimation Models (section 3.3.2.3), Define Sensors (section 4.1.3.8), Reactive
Closed-Loop Control (section 4.3.2.3)

State: Dynamic aspects of the system under control relevant to accomplishing system objectives.

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4)

State Analysis: Model-Based systems methodology leveraging a model and state based control
architecture to specify, develop and operate systems. State analysis features a set of concepts and
processes for capturing system and software requirements in the form of explicit models, thereby
reducing the gap between systems engineering specifications and software engineering
implementation.

Principle References: State Analysis Framework for Goal-Based Control (section 3.3.2), From State
Analysis to Design Elements (section 4.1), [Estefan2007]

State Control: The influencing system state to achieve mission objectives in accordance with
constraints on state variables (specified as goals).

Principle References: State Control Models (section 3.3.2.4), Define State Controller (section 4.1.3.6),
State Control (section 4.3.2.2)

State Effects Model: A description of the dynamics (behavior) of state variables, including how
other states variables and commands affect it.

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4)

State Function: A description of how a state variable state changes over time. This description
results in a continuous expression of state variable values for intervallic value histories.

Principle References: Define State Value Histories (section 4.1.3.5)

Human-Rated Automation and Robotics

158
 This document has been reviewed and determined not to contain
 export controlled technical data.

State Knowledge: A representation of a control system’s estimate of the history of the state of the
system under control, including the associated uncertainty of that knowledge.

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4)

State Variable: The container of persistent state knowledge for a dynamic attribute of the system
under control. State variables are the link between state determination and state control.

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4),
Define State Variable Histories (section 4.1.3.5)

System Under Control: The entity controlled to achieve mission objectives, distinct from the
control system with an explicit set of interfaces between.

Principle References: What is Control? (section 3.1.1)

Tactic: An alternate arrangement of sub-goals for elaborating a goal. Tactics produce distinct goal
networks in response to conditionals evaluated by the elaborated goal.

Principle References: Goal Elaboration and Planning (section 4.1.3.2), Goal Elaboration (section 4.3.2.5)

Time Line: Expression of a state variable’s estimated, intended, projected or reachable state over
time.

Principle References: Define Scheduling Rules (section 4.1.3.3), Goal-Based Execution in Action (section
5.2.2)

X-Goal: See Executable Goal.

 159
This document has been reviewed and determined not to contain
export controlled technical data.

Appendix B: Airlock Demo

Overview and Motivation
Human-Robotic systems often include people working with automation to accomplish goals that neither
the people nor robots could accomplish entirely on their own. This airlock demo was intended to
illustrate such a relatively simple case of safely egressing one or more astronauts from inside a
pressurized spacecraft to the vacuum outside by coordinating between astronauts and automated
subsystems. The job of “controlling” the process and enforcing the safety of the process is delegated to
a process controller in this case. Our airlock was modeled after international space station (ISS) airlocks,
where safety precautions are monitored through careful coordination between astronauts following
printed procedures. While this is not a particularly complicated procedure, it provides a good example of
a case where human participants can be modeled as integral parts of the control system, playing specific
roles in the control process, while important safety constraints can be automatically enforced.

State Analysis
An airlock works on the same principle as locks in a canal. Airlocks are used to allow astronauts to move
between a pressurized spacecraft and the vacuum of space (or possibly the atmosphere of some other
planet) while maintaining the pressurized environment within the spacecraft. Using a chamber with two
doors between the two environments, an astronaut can enter from one side while the chamber shares
the same environmental pressure as the spacecraft (and the outer door is closed), close the inner door,
and then change the pressure within the chamber to match outside environment’s. At that point the
outer door can be opened allowing access to the outer environment. The process is reversed to reenter.

Fig. B1. Airlock state effects

Human-Rated Automation and Robotics

160
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. B1 depicts the states and state effects identified for our example airlock system. The primary goal of
the system is to enable astronauts to egress and ingress the spacecraft habitat, so we have a state
variable representing the astronaut location. In this case a simple enumeration of general locations is
sufficiently precise: the astronaut can be in the habitat, in the airlock, or outside.

To transition the astronaut between chambers, the system must coordinate the opening and closing of
hatches and the transitioning of pressure within the chamber. So, pressure within the airlock is a key
state here. Most of the elements of the airlock are there to allow the system to control pressure. So, the
hatches and relief valves are used to contain pressure and release it. A depressurization pump is used to
evacuate pressure from the chamber while recovering the precious resource, and a separate
subassembly, the Pressure Control Assembly (PCA) is used to repressurize the chamber using gas from
supply tanks. In our imaginary system we presume that the PCA and the pump are subsystems that can
be automatically controlled. However, the astronaut must manually control the hatches and relief valves
and the position of the astronaut because no electronic actuators are provided.

In order to model this as a system under control, we have to include the astronaut as both part of the
system under control as well as the supervisor of the system. Our analysis tries to keep these roles
distinct because the nature of the interactions will be different depending on the role. As a supervisor,
the astronaut can direct the system to begin the process of egress, may be asked to confirm readiness to
proceed, and may choose to cancel the plan at any time. As the control system steps through the
process, it will direct the astronaut to actuate valves and hatches at appropriate points as though issuing
commands to an actuator. These directions to the astronaut would appear no different than reading
procedure steps off a page, but to the control system they’re little different than issuing commands to
hardware. As with any other hardware device, the control system has to have a model of the device that
incorporates its known behaviors, which in this case include being distracted and not noticing the
request, or confirming a step the hadn’t actually completed.

An important safety constraint in this system has to do with the human physiology and the nature of
dissolved gasses in the blood. When people are exposed to rapidly lowered air pressure, nitrogen in the
blood stream can come out of solution forming bubbles that can be extremely dangerous. To avoid this
situation, divers and astronauts alike are careful to purge the nitrogen from their systems before
exposing themselves to decompression by breathing pure oxygen for a period long enough to replace all
of the nitrogen with oxygen. Our simplified airlock system doesn’t model all of the steps involved, but it
does model the fact that the prebreathing step takes place at a pressure lower than ordinary
atmospheric pressure but high enough to avoid complications.

Note from the state effects diagram that although we can measure pressure in the airlock directly, we
cannot directly control it. We can only indirectly control the pressure by controlling the state of things
that affect pressure. Specifically, pressure can be lowered by having both doors closed and turning the
pump on, or opening the equalization valve to the outside and venting gas. Our control system models
those as two tactics for accomplishing the same goal. Pressure can be raised by having both doors
closed, the outer equalization valve closed, and then either commanding the PCA to repressurize the
chamber using supply gas, or opening the equalization valve to the habitat. Again, the control system
can model these as two tactics for accomplishing the same goal.

The entire egress activity is encoded as a single macro elaboration that expresses the process of moving
the astronaut from the habitat to the airlock, closing the inner hatch and equalization valve, lowering
pressure to the prebreath level, waiting until the astronaut’s blood nitrogen level has diminished to a
safe level (according to a model based on time). At that point the system will confirm that the astronaut

 161
This document has been reviewed and determined not to contain
export controlled technical data.

is ready to proceed and then control the pump to depressurize the airlock down to a pressure at which
the pump is no longer effective. Then, the pump is stopped and the astronaut is asked to open the
equalization valve to the outside to vent the remaining pressure. Once the pressure in the airlock is
close to vacuum, the astronaut is requested to open the hatch and proceed outside.

Implementation Details
To stand in for the actual hardware this demo uses a simple functional simulator that models the
behavior of pressure in response to valve and hatch positions and the commanded mode of the pump
and PCA, including some failure states such as a non-responsive pump. Because this system relies on the
astronaut to directly manipulate some of the hatches and valves the system also provides a graphical
user interface to the simulator. A single hardware adapter provides the control system with the
command and measurement interfaces to this hardware.

A dialog manager similarly acts as a hardware adapter to the user in cases where estimators need to
query the user for measurement evidence about the state of a valve or hatch, or issue a command to
the user to change the states of those devices. Current state knowledge is delivered from the control
system to the GUI through a state telemetry connector, and a third directive connector is used to
support the user’s supervisory interactions with the control system.

Fig. B2. Airlock demo system components

Human-Rated Automation and Robotics

162
 This document has been reviewed and determined not to contain
 export controlled technical data.

Fig. B3. Airlock control components

How It Works
When the astronaut proposes the goal to egress a directive is issued to the control system (depicted in
Fig. B3) where the elaboration manager instantiates the top-level goal and then elaborates and
schedules it as a goal network. The scheduling process verifies that all of the goals (constraints)
expressed in the activity plan are achievable by checking that projected system states always remain
within the expressed constraints. Once the plan is verified it can begin executing in the Executive. The
Executive determines when time point events occur as a function of time and of readiness of incoming
and outgoing goals to start or finish. In this system the pressure goals are defined so that a pressure
transition goal is not finished (and so its ending time point cannot fire) until the pressure state has
reached the target value. The system can detect cases where the pressure goal indicates intent to
change the pressure, but pressure is not changing, suggesting a possible failure. For example, during the
first step of depressurization the astronaut is directed to close the inner hatch and equalization valve
before the pump is enabled to begin removing gas from the chamber. A lack of pressure decrease at this
point could indicate a failure of the pump, or, a failure to properly close the hatch or equalization valve.
The system can detect this situation and re-issue commands to the astronaut to actuate the hatch and
valve to achieve the intended goals as it would for a simple actuator.

 163
This document has been reviewed and determined not to contain
export controlled technical data.

Appendix C: Lunar Rover (SEV) Demo

Overview and Motivation
The Multi-Mission Space Exploration Vehicle (MMSEV, or just SEV) is a pressurized robotic vehicle
designed to carry two astronauts to various destinations in space. Mated with a driving chassis, its
original application was to allow astronauts to explore the surface of the Moon. The SEV uses electrical
energy stored in batteries to power its driving motors, life support systems, avionics, and other
subsystems. Energy can be replenished from solar panels, but at a rate significantly lower than the rate
at which energy is consumed while driving. So, it is important to not only keep track of energy
consumption during operations, but to carefully plan out exploration activities to ensure that intended
destinations can be reached without endangering the life support functions.

Our demonstration system models the SEV’s battery state of charge as it Is affected by loads related to
driving and life support, and is intended to provide advisory information about the viability of the
current activity plan to drivers and mission controllers. Specifically, the demonstration system creates a
goal network reflecting the sequence of driving destinations (as position goals), and including additional
constraints on expected power loads. The system also adds constraints reflecting safety constraints or
flight rules on the allowable depth of discharge of the battery. The system can then verify the viability of
the plan by projecting model states forward in time in light of the given constraints and checking that
the system state variables remain within the constraints (including the safety constraints) at every point
in the plan. Furthermore, during execution of the plan the system can continuously re-project these
states in light of current state knowledge, and thus continuously re-verify the plan’s achievability and
conformance with safety rules.

This system was intended only to advise astronauts about the energy situation, allowing the astronauts
and ground controllers to decide how to respond. So, if the system detects a goal violation its response
is merely to present the details of the situation and suggest some possible recovery actions. A future
version of this system could easily be adapted to automatically re-elaborate the activity plan, interacting
with drivers to choose alternate tactics, and then automatically transitioning to execute the repaired
plan.

State Analysis
Fig. C1 depicts the state variables and state effects modeled in this system. The battery state of charge
state variable reflects the amount of recoverable energy stored in the battery (in kW-hours). The state
of charge cannot be measured directly, but we can measure the rate at which energy flows into or out
of the battery as the product of bus current and voltage. In this case we used a simple model to
integrate power over time to determine energy. In order to project bus loads in the future our system
groups the power producers and consumers into five categories. The only producer is the solar panel,
which is normally stowed while driving, and can be deployed to produce more energy while parked.
Driving-related loads are modeled in two separate state variables, the mobility load models the power
consumed by the driving motors, and the suspension load reflects the power consumed by the active
suspension. The suspension motors draw variable current that averages out to a nearly constant load
when the suspension is active. Although the suspension is normally powered when driving, it was
modeled separately to allow for an alternate power-saving tactic to drive without it. Similarly, all other
power consumers including avionics, life support, and lights, were grouped together as the “hotel”
loads. The hotel loads were divided into two groups that included the “essential” loads that would never
be turned off, and “optional” loads that could be powered off to save energy in an emergency. Although

Human-Rated Automation and Robotics

164
 This document has been reviewed and determined not to contain
 export controlled technical data.

some of these loads were periodic (i.e., pumps cycling on and off) or intermittent, as a group they could
be modeled as a constant average load over time.

As depicted in the diagram, the loads all affect the battery state of charge. The mobility load is primarily
a function of speed and the slope and roughness of the terrain, although adding the terrain model was
left as a future addition. For planning purposes our model assumes a constant terrain texture that
permits driving at a particular constant average speed. Distances between destination waypoints can be
computed as straight-line distances plus a fudge factor to allow for driving around obstacles. Our model
uses this to determine the time it will likely take to drive from one waypoint to the next.

Fig. C1. Energy state effects

For simplicity this system elaborates most of the goals from a single elaborator that takes as a
parameter a list of destination waypoints along with the time to be spent at each destination. A more
detailed plan might have modeled the specific activities to be completed during that time, such as
performing science observations, collecting samples, eating meals, or just waiting for the batteries to
recharge (and having more details in the plan would make it easier to know what objectives might be
foregone were the plan to change). The plan elaborator added goals reflecting the intent to drive to
each waypoint and then linger at the waypoint for the defined wait period. In parallel with those goals it
also added constraints reflecting the intent to have suspension on while driving, and off while parked,
and to have solar panels stowed while driving and deployed while parked. The hotel loads were both
elaborated to be expected during the entire activity.

 165
This document has been reviewed and determined not to contain
export controlled technical data.

Implementation Details
The demonstration system was implemented using the same frameworks as the airlock system,
including GUI and communicator frameworks. In order to optimize responsiveness to current state
knowledge and interaction with drivers the system was designed to be deployed onboard the vehicle, in
this case in a laptop computer carried as part of the avionics complement. In this configuration the
application would continue to advise astronauts of plan safety even if telemetry links to the ground
dropped out sporadically. Ground controllers could access the demo application using a virtual desktop
interface to the onboard laptop (not flight-like, but cheap and easy to do in a demo) that would not
interrupt operation of the advisory system if external connectivity dropped out.

Onboard telemetry is distributed using a message bus. To allow the control system to receive
measurements of bus current and voltage, and rover location a hardware adapter was developed to
select these messages from the message bus (in this case the system under control included the
onboard navigation system that could integrate various navigation sensors to produce a single high-
quality position and orientation measurement).

Fig. C2. SEV demo system components

How It Works
This system has two user interfaces. One is a simple adaptation of the same user interface used in the
airlock demo. This interface provides the controls to propose a new plan, and another more specialized

Human-Rated Automation and Robotics

166
 This document has been reviewed and determined not to contain
 export controlled technical data.

interface customized to display the essential energy situation details to the drivers. Specifically, this
display (figure C3) shows a plot of the energy projections as a function of the planned driving activities
(and elaborated expectations and constraints). Because the models are reflecting both temporal and
state uncertainties, the plot shows a best case and worst-case projection along with the safety
constraint on battery depletion. This way, users can immediately see where the projections cross the
safety constraint (usually in the future) and adjust the plan before any actual violations have occurred.

Fig. C3. Energy situation display

In addition to continually displaying the energy projection plot this user interface could also display alert
messages when constraint violations were detected, and suggest replanning options (as implemented
these are just suggestions which would have to be manually re-elaborated into a new plan, but a future
version could do this automatically).

This system was field tested during the Desert Rats 2010 field exercises at the Blackpoint lava flow in
Arizona. During those tests astronauts drove the SEVs in simulated exploration plans that exercised
many planning and coordination procedures between scientists, ground planners, and astronauts. In
particular, they exercised a safety protocol where the two rovers were operated in a coordinated
manner so that, should one become disabled, the astronauts could always be rescued by the other
rover. A future version of this demo could model the operation of both rovers and automatically
compute the distance between them and energy needed to execute a rescue. However, the current
version only models the “self” rover, so requires the astronauts to estimate the distance to the other
rover. From that, the system can compute a rough projection of the energy needed to execute a rescue.

 167
This document has been reviewed and determined not to contain
export controlled technical data.

Appendix D: References

Cited Works
[Berard1999] Berard, B. et al. Systems and Software Verification. Berlin: Springer 1999.
[Davis1993] Davis, Alan M. Software Requirements: Objects, Functions and States.

Englewood Cliffs, NJ: Prentice-Hall 1993.
[Estefan2007] Estefan, Jeff A. “Survey of Model-Based Systems Engineering (MBSE)

Methodologies.” INCOSE 2007.
[Feather2002] Feather, Martin S., “Infusing and selecting V&V activities,” Foundations 2002:

Laural, MD.
[MGS2007] “Mars Global Surveyor (MGS) Spacecraft Loss of Contact,” JPL internal

whitepaper, April 13,2007.
[PerryHolt2008] Holt, Jon, and Perry, Simon, SysML for Systems Engineering. London: IET 2008.
[Rechtin2002] Rechtin, Eberhart, and Maier, Mark W. The Art of Systems Architecting (2nd

Edition). New York: CRC Press 2002.
[VanLamsweerde2009] Van Lamsweerde, Axel, Requirements Engineering: From System Goals to UML

Models to Software Specifications. Chichester, UK: Wiley 2009.
[Wagner2008] Wagner, David, et al., “An Architectural Pattern for Goal-Based Control,” Proc.

of the 2008 IEEE Aerospace Conference, March 2008.

Referenced Works
State Analysis References

The state analysis methodology described in this document has been around for several years now, and
has been used on a number of demonstration and real-world applications. While it was originally
envisioned for spacecraft control problems, state analysis has demonstrated broad applicability. To
facilitate outreach, JPL has made available a comprehensive repository of material on State Analysis and
the supporting mission data systems (MDS) framework online at

http://mds.jpl.nasa.gov/public/index.shtml

What follows are some of the key references that proved helpful in writing this document.

• NASA. NASA Software Safety Guidebook, NASA-GB-8719.13.31, March 2004.
• Rasmussen, Robert, et al. (2006). “Generating Requirements for Complex Space Systems Using State

Analysis,” Acta Astronautica. Vol. 58, No. 12, June 2006, pp. 648-661.
• [VanLamsweerde2009] Van Lamsweerde, Axel, Requirements Engineering: From System Goals to

UML Models to Software Specifications. Chichester, UK: Wiley 2009.
• Freed, Michael, et al. (2005). “Trusted Autonomy for Spaceflight Systems,” 1st Space Exploration

Conference: Continuing the Voyage of Discovery, Orlando, FL.
• Dvorak, Daniel, et al. (2007). “Goal-Based Operations: An Overview,” Proc. of the

Infotech@Aerospace Conf. and Exhibit, Dayton, OH.
• Bernard, Douglas, et al. (1999). “Spacecraft Autonomy Flight Experience: The DS1 Remote Agent

Experiment,” Proc. of the AIAA Space Technology Conference & Exposition, Albuquerque, NM.

http://mds.jpl.nasa.gov/public/index.shtml�

Human-Rated Automation and Robotics

168
 This document has been reviewed and determined not to contain
 export controlled technical data.

Appendix E: Author Biographies

Grailing Jones, Jr. is a Senior Technical Staff member in the Planning and Execution
Systems Group, at the Jet Propulsion Laboratory. He has evaluated, developed and
operated mission planning and execution systems for a variety of NASA and DOD
projects. He earned a B.S. in Astronautics from the United States Air Force Academy, a
Masters in Aerospace Engineering from the University of Colorado at Boulder and a
Masters in Systems Architecting and Engineering at the University of Southern
California.

David Wagner is a software system engineer and architect in the Flight Software
Applications and Data Management group at JPL and was a principal developer of the
Mission Data System in 2000-2006. Since then he has continued to apply MDS
technology in demonstration projects including an Energy Management advisory
system for NASA’s manned Space Exploration Vehicle (SEV). He has a MS in Aerospace
Engineering from the University of Southern California, and a BS in Aerospace
Engineering from the University of Cincinnati.

Daniel Dvorak, Ph.D., is a principal engineer in the Systems and Software Division at
JPL, with interests in model-based systems engineering and control software
architecture. He has worked on several technology development tasks related to goal-
based operations and control architecture, and was PI for the R&TD task on
Human/Robotic Lunar Surface Operations. Dan also has flight project experience in
Deep Space 1 and Mars Science Laboratory. Prior to 1996, he worked at AT&T Bell
Laboratories.

Andrew Mishkin has held systems engineering positions on both autonomous vehicle
technology efforts and flight projects at the NASA Jet Propulsion Laboratory, and is
currently the supervisor of the Planning and Execution System Engineering group. He
was the principal architect of the operations process for the Spirit and Opportunity
rovers, and has been a Mars Exploration Rover Mission Manager and command
sequencing team chief. Other roles have included development of command and
control concepts for the Constellation Program, and development of systems
engineering processes for operations design for Constellation’s Mission Operations
Project Office. Mr. Mishkin is the author of the book Sojourner: An Insider’s View of
the Mars Pathfinder Mission. He received B.S. and M.S. degrees in systems engineering
from the University of California at Los Angeles.

	1 Forward
	1.1 Human-Rated, Software-Intensive Systems
	1.2 Purposes of this Handbook
	1.3 Overview
	1.4 Guide to Using this Handbook

	2 Introduction and Motivation
	2.1 What is Goal-Based Control?
	2.1.1 The Goal-Based Control Perspective
	2.1.2 Common Misapprehensions about Goal-Based Control
	Myth 1: Goal-based Control Systems are Non-deterministic
	Myth 2: Goal-based Systems afford Limited Insight into Run-time Behavior
	Myth 3: Application of Automation is “All or Nothing”

	2.2 Motivations for Goal-Based Control
	2.2.1 Product Reasons
	2.2.2 Process Reasons

	2.3 General Applicability of Goal-Based Control
	2.3.1 “Axes” of Application Types
	2.3.1.1 Degree of Control
	2.3.1.2 Distribution over Deployments

	2.3.2 Examples of Applications

	3 Control, Goals and Specification
	3.1 The Idea of Explicit Control
	3.1.1 What is Control?
	3.1.2 Canonical Functions of a Goal-Based Control System
	Elaboration, Projection and Scheduling
	Execution

	3.2 The Role of Goals
	3.2.1 Goals in System Specification
	3.2.2 Classification of Goals
	3.2.2.1 “Type” Dimension
	Behavioral Goals
	Achieve Goals
	Maintain/Avoid Goals
	Soft Goals

	3.2.2.2 “Category” Dimension

	3.2.3 Goals over the System Lifecycle
	Phase A: Mission and System Definition
	Phase B: Preliminary Design
	Phase C/D: Design, Develop, Test and Launch
	Phase E: Operations

	3.3 The Role of Models
	3.3.1 Model-Based Systems Engineering
	The Need for Model-Based Systems Engineering

	3.3.2 State Analysis Framework for Goal-Based Control
	Objectives and Goals
	State Knowledge
	State Estimation and State Control
	3.3.2.1 Goal Models
	Writing Goals
	Bad Example #1: Commands are not Goals
	Bad Example #2: Activities are not Goals

	Behavioral Goal Types
	Achieve Goals
	Maintain Goals
	Soft Goals

	3.3.2.2 State Knowledge Models
	State Variables: The system dynamic attributes of interest

	3.3.2.3 State Estimation Models
	3.3.2.4 State Control Models
	Simple Controller Example

	4 Specification, Verification and Validation with State Analysis
	4.1 From State Analysis to Design Elements
	4.1.1 Overview of State Analysis
	4.1.2 Introducing the System Example
	4.1.3 Realizing the Design Elements
	4.1.3.1 Requirements/Goal Elicitation
	Example of Goal Elaboration and Planning Practice

	4.1.3.2 Goal Elaboration and Planning
	Defining Elaborations
	Basic Rules for Elaboration

	Defining Projections

	4.1.3.3 Define Scheduling Rules
	4.1.3.4 Define State Variables
	4.1.3.5 Define State Value Histories
	Data State Variables
	Common Examples of Data Attributes
	Managing Data through Data Goals and Commands

	4.1.3.6 Define State Controller
	Reactive versus Deliberative Control
	Controller Definition Example

	4.1.3.7 Define Actuators
	Practice Example

	4.1.3.8 Define Sensors
	Example of Practice

	4.1.3.9 Define State Determination (Estimators)
	Example of Practice

	4.1.3.10 Consider Deployments
	Deployments Practice Example

	4.2 Development Path
	4.2.1 System Requirements Specification
	4.2.1.1 Step 1: Build a Preliminary Goal Model
	Vignette

	4.2.1.2 Step 2: Derive a Preliminary Concept Model
	Vignette

	4.2.2 Technical Specification
	4.2.2.1 Step 3: Elaborate the Goal Model with Supporting Goals
	Vignette

	4.2.2.2 Step 4: Derive the Updated Concept Model
	Vignette

	4.2.2.3 Step 5: Analyze Responsibilities and Elaborate Controller Models
	Vignette

	4.2.2.4 Step 6: Make Choices among Alternative Options
	Heuristics for Selection

	4.2.2.5 Step 7: Build and Analyze the Behavior Model
	Vignette

	4.3 General Principles for Specification using State Analysis
	4.3.1 Guiding Design Principles for Architecture
	Separation of control system from system under control
	Separation of estimation from control and the expression of state knowledge
	Expression of intent through declarative goals rather than imperative command actions

	4.3.2 Design Patterns (adapted from [Wagner2008])
	4.3.2.1 State Estimation
	Purpose
	Motivation
	Structure
	Applicability
	Results

	4.3.2.2 State Control
	Purpose
	Motivation
	Structure
	Applicability
	Results

	4.3.2.3 Reactive Closed-Loop Control
	Purpose
	Motivation
	Structure
	Applicability
	Results

	4.3.2.4 Goal Network
	Purpose
	Motivation
	Structure
	Applicability
	Results

	4.3.2.5 Goal Elaboration
	Purpose
	Motivation
	Structure
	Applicability
	Results

	4.3.2.6 Goal Planning and Scheduling
	Purpose
	Motivation
	Structure
	Applicability
	Results

	4.3.2.7 Executive Control (Timeline Execution)
	Purpose
	Motivation
	Structure
	Results

	4.3.2.8 Goal Monitoring and Fault Response
	Purpose
	Motivation
	Structure
	Results

	4.3.2.9 Deliberative Closed-Loop Control
	Purpose
	Motivation
	Applicability
	Structure
	Results

	4.3.2.10 Deliberative and Reactive Closed-Loop Control
	Purpose
	Motivation
	Applicability
	Structure
	Results

	4.3.3 General Specification Questions
	4.3.3.1 State Knowledge
	4.3.3.2 State Constraints
	4.3.3.3 State-Based Model
	4.3.3.4 Goal Achievers
	4.3.3.5 Measurements and Commands
	4.3.3.6 Deployments

	4.4 Verification and Validation of Goal-Based Systems
	4.4.1 Benefits of Models in Verification and Validation
	4.4.2 Architecture Benefits for Verification and Validation
	4.4.2.1 State Analysis Framework Architectural Benefits for V&V
	4.4.2.2 Component Framework Architectural Benefits for V&V
	Layered Implementation

	4.4.3 Well-Rounded, Comprehensive Verification and Validation

	5 Operations, Execution and Fault Management
	5.1 Goal-Based Sequencing
	5.1.1 Coordinating Control through Goal Elaborations
	5.1.2 Planning and Scheduling
	5.1.3 Validation of Goal-Based Plans

	5.2 Goal-Based Execution
	5.2.1 Accomplishing Intent through Goal-Based Sequencing
	5.2.2 Goal-Based Execution in Action
	5.2.3 Monitoring Goal-Based Execution

	5.3 Robust Execution and Fault Management
	5.3.1 Goal-Based Control for Fault Management
	Fault Protection versus Behavior Management

	5.3.2 Elements of Goal-Based Fault Management
	5.3.3 Off-Nominal Execution of Sequences
	5.3.4 Reacting to Off-Nominal Execution
	5.3.4.1 Local Responses by Robust Achievers
	5.3.4.2 Non-Local Responses to Faults

	Appendix A: Glossary
	Appendix B: Airlock Demo
	Overview and Motivation
	State Analysis
	Implementation Details
	How It Works

	Appendix C: Lunar Rover (SEV) Demo
	Overview and Motivation
	State Analysis
	Implementation Details
	How It Works

	Appendix D: References
	Cited Works
	Referenced Works
	State Analysis References

	Appendix E: Author Biographies

