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1 Forward 
1.1 Human-Rated, Software-Intensive Systems 
Future human space missions—whether exploring the Moon, working at a Lagrange point, or visiting a 
near-Earth object—will be increasingly ambitious. The challenges of these missions, particularly 
roundtrip communications time delays, interplanetary transit times of months, and human presence in 
unstructured, natural planetary surface environments, will require the evolution of new mission 
scenarios and operations approaches generally less dependent on rapid response by earthbound 
operations teams. Functions that Mission Control can no longer sensibly perform must be addressed by 
systems or personnel local to crew activities. Robotics and automation will provide an essential means 
to reduce risk for crews to acceptable levels, augment human capability, and enable the transfer of 
traditional mission control tasks from the ground to crews. 

For automated and robotic systems to be truly human-rated, they must be trusted by operators and 
crews, and be worthy of such trust. In this handbook, we address the design of human-rated control 
systems for automation and robotics, which is arguably the characteristic of automation and robotics 
that is distinct and unique relative to other human-rated space systems. (We specifically do not address 
aspects of human rating that are common to all physical systems, e.g., choice of materials, levels of fault 
tolerance for electronics and mechanisms, or inclusion of redundant physical elements.) 

We wrote this handbook to describe a specific framework and approach for specifying, developing and 
operating human-rated software-intensive systems. Current and future operations concepts feature 
more frequent and complex interactions between humans and automated systems to achieve mission 
objectives. These supporting systems will be key enablers and “force multipliers” for astronaut partners 
as well as ground-based operators, extending human presence in space in concert with other elements 
of the exploration system. The ability to deliver more robust, reliable, and high-quality software systems 
is key to realizing this vision. 

The approach and framework introduced in this document is a response to the challenge of developing 
flexible, safe and capable systems. A cardinal feature of our approach is the cogent, disciplined focus on 
architecture, which provides a cornerstone for process, design and product assessment over the system 
lifecycle. The formalisms of the framework provide architects with the right set of concepts to answer 
the right questions, pointing to the right solutions. The framework’s concepts define an ontology suited 
to describing dynamic systems in terms of their natural language of goals and control. The architecture 
specification defined using this framework provides an expressive and powerful complement to 
traditional requirements documentation. Architectures expressed in terms of this framework guide 
detailed design and live on as the record of decisions and rationale, enabling ongoing system analysis to 
accommodate inevitable changes. 

We also describe how our approach and framework leverages the best aspects of model-based systems 
engineering to enhance product quality, reduce risks and transfer knowledge over the life of the system. 
The conceptual framework we introduce enhances stakeholder knowledge capture by providing an 
open, expressive platform for gathering input and documenting the domain knowledge. Being models, 
the specifications are easier to implement, and the resulting designs and products are easier to verify 
and validate. Lastly, the specifications are directly traceable to the original expression of user need, 
providing an operator-centric system view for increased operability. 
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1.2 Purposes of this Handbook 
This handbook is a guide for readers interested in the specification, development, test and operation of 
software-intensive systems for mission-critical applications. The ultimate objective is to enable the 
development of cost-effective human-rated automation and robotics for human spaceflight. In support 
of this objective, we introduce the reader to the background and theory of goal-based control in 
particular, and make the case for applying this view to the architecting, development and operation of 
systems. By advancing these ideas, we seek to increase awareness of these conceptualizations and 
techniques, as well as to network with other practitioners involved with similar issues. We also cover the 
conceptual framework of state analysis, and use examples to introduce the practices involved in 
developing the models. This introduction to the “mechanics” gives the reader a practical context to 
understand the previously developed theory. We end this document with a description of operations, 
pointing out how this framework differs from “traditional” approaches, where illustrative. 

This handbook complements existing primary documentation on state analysis, which goes into depth 
on particular aspects of the concepts and methodology. In contrast, this document provides a more 
integrated picture of how these concepts are related to generalized development and operations 
processes, and how to apply them over the system lifecycle. We also provide examples of systems 
developed under the conceptual framework to illustrate how to apply these ideas to real systems. 

By reading this document, readers will come away with the motivation and knowledge to apply these 
ideas to their own problems. While making the reader an expert is out of the scope of any one 
document, the reader will gain an appreciation for how these ideas can apply to their own projects, and 
have the insights and references to follow up on issues in their particular areas of focus. 

1.3 Overview 
This document provide readers with an introduction to the theory and practice of specifying, designing 
and operating robust, reliable, human-rated automation using the state analysis conceptual framework. 
The first portion of the document makes the case for a control-focused view of automation, rooted in 
the formalism of classic control and generalized through the agency of goals. The reader is then 
introduced to the state analysis model framework, along with a description of the benefits of models in 
architecting, developing and operating systems. 

The remainder of the document covers the practical aspects of architecting, developing, testing, fielding 
and operating systems realized through this conceptual framework. 

• Chapter 2: Introduction to the goal-based systems view for human-rated automation. The chapter 
begins with definitions and then moves on to describe benefits of the goal-based view. The chapter 
ends with a qualitative description of the span of applications, as well as brief descriptions of some 
of the systems that have been fielded using these concepts. 

• Chapter 3: Further description of the notion of explicit control, developing it from the formalisms 
of classic control theory. We introduce the notion of goals as a means for specifying desired system 
behavior, and explain how goals fit into the overall specification of system requirements. The 
chapter ends with a look at the key models used in state analysis. 

• Chapter 4: This chapter focuses on the practical details of specifying, developing and testing goal-
based systems. It begins by describing the practices employed in specifying goal-based systems, 
along with examples of the resulting products. These practices are woven into an example of a 
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lightweight systems engineering process that illustrates how to employ the practices in 
development. We include a section on verification and validation, describing the mechanics and 
advantages afforded by model-based development for system integration and testing. 

• Chapter 5: This chapter describes how goal-based systems are operated, making reference to 
“traditional” sequencing while contrasting it with goal-based behavior specification. The chapter 
covers the concepts and mechanics of both nominal and off-nominal execution, with added 
emphasis on the advantages of cognizant control for critical, human-rated applications. 

• Appendices: In addition to a list of cited works and glossary of terms with definitions unique to 
state analysis, we include overviews of two demonstration systems realized through application of 
the concepts and techniques described here. 

1.4 Guide to Using this Handbook 
The following guide is a set of recommendations on the content and depth of a first reading, based on 
the reader’s particular interests. While an overall appreciation of the concepts, arguments, and practical 
details can best be achieved through a complete reading, this document was written so that a reader 
could focus on their critical interests initially, and refer back to other sections as needed. 

The following categories will help readers identify their project role and the recommended readings for 
that role in Table 1: 

• Technologists: People in this category are looking to leverage new tools to tackle existing or 
emerging problems. 

• Architects: People charged with specification of the abstract structural and behavioral 
characteristics of the system-to-be so that it is responsive to requirements. Their architecture 
specification informs subsequent design and development. 

• Developers: Developers are charged with detailed design and creation of the system in accordance 
with the guidance codified in the Architect’s specification. 

• Operators: Personnel who use or interact with the system to achieve mission objectives. 

• Testers: Testers provide objective evidence of system compliance with requirements (verification) 
and the system’s suitability for its intended purpose (validation). Testers may or may not be distinct 
from Developers (depending on the project). 

• Managers: Managers are charged with ensuring the delivery of a product with the agreed 
capabilities while managing technical, budget and schedule risks.
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Table 1. Chapter priorities and key lessons, categorized by stakeholder group. 

  



 

 5 
This document has been reviewed and determined not to contain  
export controlled technical data. 

2 Introduction and Motivation 

2.1 What is Goal-Based Control? 
In this section we introduce the concept of goal-based control by way of building from a short 
description of control in the context of systems. From this description, we also begin to relate some of 
the important advantages of goal-based control in development, verification and operations. 

As a complement to this introduction to Goal-Based control, we address some common 
misapprehensions regarding systems using goal-based automation. 

2.1.1 The Goal-Based Control Perspective 
In the Goal-based Control perspective, the foremost question for the architect when carrying out the 
specification is “what means are necessary to get the system under control to exhibit the desired 
behaviors to satisfy mission needs?” Development is done by iteratively asking this question, refining 
the answers and associated assumptions, and capturing these insights in a system specification 
represented as a set of complementary models. 

Two very important concepts in the goal-based control perspective are the concepts of Behavior and 
Control. Behavior is the expression of time-varying qualities of interest. The room temperature is a 
behavior of interest to a heating/cooling system designer. It varies with time in accordance with 
understood and modeled principles, and would be featured in any specification of what the control 
system is supposed to do. Control is the business of manipulating the system to achieve desired 
behavior. Through control, we define and enforce limits on behavior to achieve user objectives (i.e. not 
to bake or freeze in this example). 

Through the goal-based control perspective, we focus special attention on the process of translating 
user needs into a set of required system behaviors to be achieved by a control system. Fundamental to 
this perspective is the assumption that a significant fraction of the mission needs will be satisfied by 
system behaviors; the system will have to do things to satisfy the customer. Bridges and unmanned 
aerial vehicles are alike in that they both have requirements, however, the nature of the behavioral 
requirements (e.g. response time, imaging, etc.) that are critical to the UAV differ in important ways 
from the classic static requirements of the bridge (e.g. load capacity, clearance above highest waterline). 
Specifying and addressing these behavioral requirements is our focus in this perspective. 

Successful system engineering starts with a rigorous understanding of mission and user needs. These are 
customarily traced to a set of requirements for a system that satisfies the identified needs. The goal-
based perspective also follows this approach. However, as alluded to in the bridge versus UAV example, 
we must differentiate between the static and dynamic (behavioral) requirements. 

The Behavioral requirements are expressed as goals. A goal is a prescriptive statement of intent that the 
system must satisfy through the cooperation of its agents. Goals are requirements; they express a 
quality the system must have as a condition for stakeholder acceptance. It is helpful to remember that 
All Goals are Requirements, but not all Requirements are Goals. The necessary difference between 
Behavior and Static requirements is the nature of the specification. For example, “system wet mass shall 
not exceed 7500kg” is a static requirement. The agents responsible for ensuring that requirement is met 
are outside the control system scope. An example of a goal would be “The antenna boresight shall point 
within +/- 1mrad of commanded target within 1min of commanding”. This requirement is a specification 
on desired behavior which must be satisfied by a control system. 



Human-Rated Automation and Robotics 

6  
 This document has been reviewed and determined not to contain  
 export controlled technical data. 

As with requirements, goals are determined through careful analysis of the mission and user needs. 
Goals and requirements share many techniques for elicitation and analysis. 

Goals are a more natural, appropriate way of expressing desired qualities for behaviorally-dominant 
systems and act as a powerful complement to static requirements. Goals capture the complete set of 
information required to specify a needed behavior, namely what must be controlled, a constraint on it, 
and an interval over which it must be satisfied. These ideas will be expanded at length over the course of 
this document. 

While we focus primarily on the role of goals in system specification in this document, the reader is 
encouraged to remember that both kinds of requirements are needed to capture the full range of 
stakeholder expectations to be satisfied by any system. 

Goals provide an explicit specification of user intent; a proposition of desired behavior which must be 
satisfied. An important advantage of goal-based systems is the capacity for true closed-loop, cognizant 
control. Goal-based systems check as-run execution versus plans (intent as arrangement of goals). This 
provides a running check of execution and allows users to specify appropriate measures for handling 
situations where system and/or the environmental conditions are not as expected. Measures can be 
defined to handle such situations by changing plans in accordance with desired behavioral 
requirements. 

Goals also provide a more transparent mapping from customer needs to system specification. Each goal 
is explicitly traced to the elements of the system (sensors, actuators, estimators and controllers) 
responsible for achieving it. This provides a ready mechanism for analyzing the effects of proposed 
changes (changes in user need trace to goals and their supporting elements) and packaging the system 
for verification. This architecture of components traceable to goals also facilitates isolation and 
debugging in development. 

In addition to goals leading to proper packaging of a system for verification, the specification of desired 
behavior we describe is readily verifiable. Goals are testable propositions readymade for verification. 
This structured, unambiguous expression of intent also enables the use of powerful analytic methods for 
verifying systems designs by use of formal model-checking methods. Formal methods provide powerful 
guarantees of design correctness, resulting in early and effective mitigation of risk. 

2.1.2 Common Misapprehensions about Goal-Based Control 

Myth 1: Goal-based Control Systems are Non-deterministic 

A key distinction of goal-based control systems is that instead of specifying behavior in a procedural 
manner (commonly as timed lists of commands), goal-based control systems are operated by specifying 
intent over time. The mistaken understanding about non-determinism springs from a different 
understanding of what it means to control a system. 

In a procedural system, control is tied to the idea of effecting change (by issuing commands) at 
particular times to satisfy user objectives. In goal-based control systems goals are used to express the 
behavioral requirements we want achieved. By proper specification of the goal, and how the goal is 
achieved and verified by the system, we get a guarantee that the system behavior will conform to our 
desires. Such guarantees are not afforded by procedural systems. 

The key to this guarantee is the cognizant control afforded by a goal-based specification. We explicitly 
state the property that should hold (e.g. the switch should be closed from t1 to t2); the system controls 
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based on the knowledge of what the current state is and compares to the desired state expressed in the 
goal. The goal-based system commands to rectify the difference between actual and intended state. In a 
procedural system, you do not have this explicit statement of desired state. Without the notion of 
desired state to enforce, procedural systems work in open-loop commands. While an operator of a 
procedural system knows when commands will be issued, they do not have the closed-loop guarantee of 
satisfaction of intent. This scheme is vulnerable to situations where the system or environment are not 
as expected (e.g. events such as switch failures). As a result, procedures can run, resulting in commands 
inappropriate for the current state. 

In contrast, the goal-based system, by closed-loop control, is always checking at execution what the 
state of the system is versus what the operator wants. Through models of the system under control, the 
control system can determine in the current context which commands are appropriate to achieve the 
user-specified goals. For all times, users know what they will get with a given system state. As a result, 
goal-based systems can be even more deterministic than procedural systems. 

Myth 2: Goal-based Systems afford Limited Insight into Run-time Behavior 

The roots of this misapprehension also spring from the key differences between procedural systems and 
goal-based systems. In actuality, goal-based control systems can offer as much or more visibility into 
why commands were issued at run-time. Goal-based control systems command to satisfy user-specified 
intent over time while procedural systems issue commands as specified in time-ordered lists. Both types 
of systems can return a diagnostic merged list of commands and times of issue in as-run logs. The 
difference is that in the goal-based case, commands issued can be associated back to the goals that 
spawned them through the command issue times in the log, goals active and state information kept by 
the system. As a result, nothing happens in the system without traceability to the conditions true at the 
time, and just as importantly the intent of the commanding. Procedural systems do not afford this 
insight into why commands were issued at certain times. While it may be easy in systems running few 
procedures in parallel, this lack of traceability between commands and procedures (and intent) can be a 
serious impediment to analysis of execution. 

Goal-based systems also carry out run-time and forward-looking checks of the effects of commanding to 
ensure the system can and will properly carry out user intent. Procedural systems do not check the 
effects of commands. This is an important drawback in systems where many procedures can run 
concurrently yes may not have been written with consideration to the multitude of other procedures 
which may run in parallel. The results may be execution of procedures with commands that may be 
inappropriately interleaved. 

Myth 3: Application of Automation is “All or Nothing” 

What we are advocating in this document is an architectural approach for specifying, developing and 
operating behaviorally-dominant systems. The goal-based approach we describe centers on the insight 
that behaviorally-dominant systems are best described using goals, and that the systems that satisfy 
them are collections of agents to achieve goals. The characteristics of the agents accomplishing the roles 
of the system are up to the architect. The agents can be software components, outside systems, or 
human actors. As we shall show in later sections, the canonical functions of the control system can be 
allocated any number of ways to any set of agents and actors that make the most sense architecturally. 

Operators also enjoy a great measure of latitude in specifying run-time behavior. While a full-up goal-
based system is “sequenced” using goals, users can also specify intent as lower-level goals with a degree 
of specifics approaching individual commands. While operating in this mode allows the familiarity of 
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“traditional” sequencing, the underlying goal-based system still affords the benefits of model checking 
providing run-time and forward looking verification of plans. 

2.2 Motivations for Goal-Based Control 
The benefits of goal-based control fall under two main areas, product and process. 

2.2.1 Product Reasons 
The product reasons focus on the intrinsic quality advantages of systems realized using goal-based 
methods. Over the course of this document, we will make the case that systems specified through goal-
based architectures enjoy significant advantages over more traditional procedurally-based systems. 

A key advantage of goal-based systems is the true closed-loop nature of operation they enable. Closed-
loop control is recognized as the most appropriate mode of operations in dynamic, often poorly-
understood environments. Closed-loop systems use information on actual conditions and system 
performance along with an internal model of the system and environment in order to achieve and 
maintain desired constraints on the dynamic features of interest. 

Closed-loop operations are more robust against unexpected conditions, both in the environment and 
the system itself (faults, flawed specifications). A closed-loop system constantly updates its knowledge 
of the system context by polling for and integrating measurements of interest, ensuring appropriate 
action in response to events. 

Closed-loop systems employ explicit models to represent not only the current state of the environment 
and system under control, but also the impact of commands issued or planned. As a result, the system 
runs a constant check of commanding to ensure that its actions are in concordance (or at least do not 
conflict) with operator-stated objectives. This checking is done both at run-time and out to the edge of 
the planning horizon through the agency of state projection. As a result, operators are assured both at 
planning time and run-time that the commanding will have the desired outcome. 

Closed-loop systems implemented by goal-based architectures compare favorably with procedural 
systems for a number of reasons in theory and practice. While it is not a primary purpose of this paper 
to debate the relative merits of goal-based versus procedural systems, it does serve illustratively to 
contrast these types of systems. 

In Goal-based systems, operator intent is always explicit. While a procedure might have a command to 
“close a switch”, the intent of the switch closing is not necessarily evident. While one might address it 
with documentation, coordinating multiple concurrent procedures (often authored by separate teams) 
can be problematic. Goal-based systems, as we shall describe, feature mechanisms for assessing and 
deconflicting intent at planning and run-time. The intent of a goal is immediately inspectable, which 
facilitates the review, maintenance and coordination of sequencing by operators. 

Procedural systems lack the closed-loop guarantees of goal-based systems. Commanding is done 
without cognizance of effects, often using timing as the sole criteria for issuing commands. While a 
properly written sequence will work when the system is in the nominal configuration, this 
implementation is not robust to off-nominal situations where the system or environment may not 
conform to the operator’s expectations. Goal-based systems command to close the gap between explicit 
user intent and actual conditions. A key byproduct is a constant check of the suitability of commands at 
run-time. 
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2.2.2 Process Reasons 
The process reasons focus on how model-based systems specification with goal-based architectures 
enhances the overall systems engineering processes. These benefits increase product quality, reduce 
costs and cycle time while reducing project risks. 

Modeling is a key activity in engineering. Models are the prime means for capturing and conveying 
understanding of the domain of interest. The inherent expressiveness of natural language proves a 
double-edged sword in system specification. Natural language statements can have a number of 
interpretations, resulting in ambiguity of specification. Models have proven to a powerful way to 
express these complex concepts with a minimum of ambiguity. 

Models are increasingly supplanting text-based documentation as the main products of systems 
engineering practices. While models in the form of blueprints, equations and other representations have 
been in use since antiquity, newer, structured and subtle modeling methodologies have come into use 
to specify and analyze our increasingly complex and sophisticated systems. 

Correctly carried out, the structure of the models allows the team to progressively ask and answer the 
questions that capture stakeholder needs, specify and analyze a system that meets said needs and 
fosters the communication of these insights to personnel at all points in the system life cycle. Text 
documentation is often seen as orthogonal to the goal of fielding a system to meet user needs, as it is 

 

Fig. 2.1. Document-based vs. model-based engineering 
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often not updated to capture changes. The result is a “document for documentations sake” which is 
done, then forgotten as it becomes quickly irrelevant. In contrast, models-centric engineering uses 
models as the venue where changes are proposed, impacted and effected. As a result, model-based 
specifications can more relevant and value-added to the team.  

While models have been coming into increased and formalized use in technical projects, a key problem 
has been the parallel development of models by teams. This is particularly acute on larger projects 
where a number of distributed teams may need to model the same domain. Due to limitations in their 
tools, modeling methodology or organizational factors, it often happens that multiple models may come 
into existence covering the same domain issues. As a result, the clarity afforded by modeling is negated 
due to model conflicts when teams have differing understandings of specific aspects of a system. 

In response, we advocate not only for an elevated role for models in systems engineering, but a 
centralization of those models as well. In this document, we cover a modeling methodology and 
architecture to realize this centralized, model-based vision with a goal-based control view. 

The goal-based view emphasizes the description of desired behavior and the progressive specification of 
a system to achieve it. By taking the right view of systems, we are set up to ask the right questions. The 
beginning of this story is how the goal-based view facilitates requirements gathering and analysis. 

It is a common observation in practice that requirements have the power to make or break projects. 
Investing in better requirements elicitation and analysis has proven to be a potent measure for reducing 
project risk. Having the right requirements (correct, well-stated, valid) saves development time and 
costs associated with working toward the wrong problems. 

By focusing on understanding how desired behaviors achieve user needs, we have the right starting 
point to describe what should happen, as well as a stable point from where we can describe the 
necessary qualities of the control system that will achieve the specified behavior. 

 
Fig. 2.2. Relative cost to repair defects at different lifecycle phases (data derived from [Davis1993]) 
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Goals are the specification of requirements on behavior. These specifications capture what must be 
controlled, as well as the necessary constraints. The goal model serves as the starting point to specify 
the system to satisfy the goals through the practices of state analysis. By modeling in this fashion, we 
can ensure our understanding is complete (we consider everything we need and no more), consistent 
(everyone uses the same models) and correct (the understanding is verified and validated). The model 
of needs captured in goals and system specification are explicitly connected, ensuring design decisions 
can be traced back to original rationale, and facilitating assessments of the impact of proposed changes. 

Goals also provide a more natural representation of desired behavior for operators and testers. The goal 
specification focuses on intent, representing desired behavior it a way that can only be interpreted as 
success or failure. This provides the clear-cut pass/fail criteria necessary for personnel involved in 
verification. 

Goal specification also simplifies operations. System engineering knowledge, captured as models, 
provides a library of specifications that can be used by operators to build more complex activities. As a 
result, users are largely relieved of the need of detailed knowledge of the implementation details of the 
system when specifying activities. For example, a scientist planning an observation using a goal-based 
system can focus on what they need to happen, obtaining an image by a certain time, without having to 
worry about data management, telecommunications, attitude control and other system concerns. These 
other system concerns are captured in the integrated models, and provide the necessary elaboration of 
the activity with the proper constraints for the activity for planning. 

2.3 General Applicability of Goal-Based Control 
As mentioned earlier in our introduction, the goal-based view is particularly appropriate to behaviorally- 
dominant systems. These are systems where the balance of the critical requirements can be described 
as behaviors; expressions of dynamic properties. To ensure compliance with user desires, we specify 
control systems to achieve desired behaviors on the dynamic qualities of interest. 

While the balance of this document will cover how to specify goal-based systems, in this section we 
propose classifications of goal-based systems, and present brief descriptions of goal-based systems 
which have been developed. 

2.3.1 “Axes” of Application Types 
The goal-based systems we present can be categorized by their position on two continua, Degree of 
Control and Distribution over Deployments. 

2.3.1.1 Degree of Control 
Degree of Control is a qualitative representation of the amount of control authority given to the control 
system. The element issuing commands as part of the execution function of the control system 
(effecting change to achieve goals) does not necessarily have to be a part of the control system. An 
example is an “advisory” system, employing models of the environment and system under control to 
estimate system state and recommend commanding to achieve operator intent. The execution can then 
be carried out by another system or a human operator (advisee), imbuing the human actor with 
“authority to proceed” powers. This is an example of a “low” Degree of Control. 

Systems with “high” degrees of control allocate the majority of execution responsibility to elements 
within the control system. This is more appropriate for applications with higher autonomy 
requirements. 
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Fig. 2.3. Classification and examples of goal-based systems 

2.3.1.2 Distribution over Deployments 
While Degree of Control concerns the degree to which the execution function is in the scope of the 
control system, Distribution over Deployments focuses on the degree of distribution of all control 
system functions over the elements inside the control system scope. As we will cover in later sections 
(particularly section 4.1.3.10 on Deployments), the architect has wide latitude as to the allocation of 
control system functions over the elements of the system. The reader is introduced to the complete list 
of control system functions in section 3.1.2. 

Systems with low distribution over deployments concentrate the bulk of the control system functions in 
few or even a single element. This would be appropriate in situations where little coordination with 
other elements is appropriate, desired or possible. 
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High distribution makes sense when the control system needs extensive outside information and/or 
guidance to achieve its objectives. High distribution also makes sense in cases where a centralized 
authority coordinates the actions of a number of agents to achieve goals not possible by any lone agent. 

2.3.2 Examples of Applications 

 

In Situ Advisory System: Lunar Habitat Airlock 

The Lunar Habitat Airlock demonstration was conducted jointly between Johnson 
Spaceflight Center and the Jet Propulsion Laboratory with the aim of validating 
the use of a goal-based system to aid crewmembers conducting airlock ingress 
and egress. Airlock operational procedures, along with system constraints and 
physiological information were used to create a domain model for use by the 
system to aid an astronaut running the procedures. This demonstration is 
illustrated further in the appendix. 

 

Self-Contained Autonomous System:  
Mars Science Lander Entry Descent and Landing (EDL) 

This effort was a demonstration of the suitability of a goal-based framework for 
specifying and implementing the control system for the Mars Science Lander EDL. 
EDL is a short, critical phase, requiring a robust autonomous implementation. The 
team specified the set of goals (desired behaviors), supporting models and the 
control system required to ensure vehicle safety in both nominal and off-nominal 
situations over the event timeline. 

 

Remote Advisory System:  
Multi-Mission SEV Energy Management Advisory System 

This is a demonstration of a goal-based system to aid astronauts managing energy 
production and consumption for a deployed pair of SEVs. The system verifies plan 
feasibility against projections of resources and advises human operators when 
plans violate flight rules. 

 

Distributed Autonomous System: Deep Space 1 Spacecraft Remote Agent 

A joint effort between NASA Ames and the Jet Propulsion Lab, the Remote Agent 
Experiment exercised sole control of the Deep Space 1 spacecraft in accordance 
with operator-supplied goals using domain models developed for the control 
system. The Remote Agent was hailed as a major advance toward less costly, 
more capable and independent robotic systems and was selected as a co-
recipient of the 1999 NASA Software of the Year Award. 

 

Distributed Autonomous Systems: Antenna Array Demonstration 

The antenna array demonstration highlighted the utility of a goal-based system in 
coordinating and controlling an array of small antennas. An example of 
centralized planning and scheduling with distributed execution, the system used 
operator and engineer specified goals to guide antenna configuration in nominal 
and off-nominal situations. 
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3 Control, Goals and Specification 

3.1 The Idea of Explicit Control 
In this section we expand on the definition of control using the ideas of classic control theory. This 
definition is then used to make the case for conceptually partitioning the control system from the 
system under control. We also introduce the functions and relationships of a goal-based control system. 

3.1.1 What is Control? 
As stated previously, control is the exertion of purposeful influence to achieve objectives. Control of 
behaviorally-dominant systems involves determining the behavioral aspects pertinent to meeting user 
needs and specifying the necessary constrains to satisfy those needs. Behaviors describe the dynamic 
properties of interest. 

Classic control theory first illustrated the concept of a control system distinct from a system under 
control. This insight forms the cornerstone for the goal-based control perspective. 

 
Fig. 3.1. Overview of classic control concepts 

In classic control (and goal-based control), designers and operators use models of desired behavioral 
properties (in terms of the system under control) and specify a control system (set of actuators, sensors, 
estimators and their characteristics) necessary to enforce the desired constraints. 

However, there is a key difference which will be developed at length in this document; the idea of 
specification of intent as goals. Classic control focused on developing an overall (control system in 
tandem with system under control) system with the right mathematical transfer function (mapping 
inputs to desired output) to satisfy user intent, while goal-based control uses a more general of control 
system characteristics to achieve a desired set of constraints on the system under control. 
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Classic control theory introduced the concept of a controller and a system under control. This explicit 
partitioning between controller and controlled is key to the proper allocation of functionality. Problems 
associated with self-reference are avoided by making this distinction clear. 

In systems architecture, care must be exercised in the decomposition of functions between components 
of the control system. Classic functional decomposition of systems often runs into problems as system 
functions are often not uniquely assignable. This hierarchical approach also falls short in systems where 
the assumptions of strict encapsulation and weak coupling are violated (common in complex systems). 
The goal-based control method of proceeding from goals to achievers fosters a more natural allocation 
of functions to elements than possible through classic hierarchical functional decomposition. 

By focusing on what must be controlled, and how that control is exercised, architects are in the position 
to make the best allocation decisions, with the right interface specifications to realize systems with the 
desired properties. The heuristic “The greatest leverage in architecting is at the interfaces” 
[Rechtin2002] bears testimony to the importance of proper partitioning in architecture. 

 
Fig. 3.2. Control systems vs. system under control 

The partitioning between the control system and system under control follows from the concepts of 
classic control we described. The first step in specification is to model the desired behavior as sets of 
goals derived from and developed in concert with requirements. Goals are specified as constraints on 
dynamic properties of interest as determined from analysis of user needs and the problem domain. 

Models of the problem domain capture the dynamic attributes pertinent in realizing the user goals. As 
done in classic control, engineers must specify the particulars of interest in the system to be controlled 
and the planned operating environments. These models are used to identify and characterize the 
dynamic attributes of interest and begin mapping these descriptions to user goals. 
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From the integrated model, engineers progressively specify the control system (actuators, estimators 
and sensors) required to achieve the necessary constraints on the dynamic quantities of interest in the 
system under control subject to the modeled environment. 

The result is a control system which exercises cognizant control of the system under control through a 
model of both the system under control and environment. The control system acts by issuing 
commanding to make system state conform to user intent specified though goals. The control system 
makes estimates of current and future states based on the evidence provided by sensors and command 
history using models. 

3.1.2 Canonical Functions of a Goal-Based Control System 
The control system does its job though the agency of a set of functions. 

 
Fig. 3.3. Functions of the control system 

The job of the control system is to enforce constraints on estimated states in the system under control 
to accomplish mission objectives. Knowledge of the system under control and environment is 
represented in models of state variables, complete with models of command effects and user intent. 

While the blue and green rectangles contain the functions, the central circle represents the central role 
of State Variables in the control system. State variables represent the expression of the dynamic 
attributes of the system necessary for control. The state variables are the repository of state knowledge, 
allowing the control system to exercise cognizant control over the system under control. 

Elaboration, Projection and Scheduling 

These functions describe how expressions of user intent (specified as goals) relate to the system under 
control through the application of engineer-specified models. 

Elaboration chiefly concerns how high level expressions of user intent are progressively decomposed 
into finer specifications of behavior for sets of controllers to achieve. Scheduling covers the rules for 
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ordering the elaborated goals. Projection focuses on how effects of actions undertaken or planned will 
affect the state variables of the system under control in the future. 

Execution 

Execution is the purposeful manipulation of state variables to effect needed change. Execution takes 
user-specified goals and acts to bring system state into agreement with this specified intent. Execution 
has two important aspects, Control and Estimation. 

Control is the most obvious aspect of execution. Control is the issuing of commands to effect needed 
changes in the system under control. Note that in goal-oriented systems, users do not specify 
commands to guide the system under control. Users specify intent, which is compared to the estimated 
state to determine the difference to be corrected. This comparison is directly analogous to the summing 
junction of classical control (figure 3.1). The models of the systems specify how differences between 
estimated and intended state are resolved through commanding. This comparison is represented by the 
central circle in figure 3.3. 

Estimation is the aspect of execution which achieves the desired quality of state knowledge. As we shall 
describe more fully in subsequent sections, goals also have an important quality aspect concerning the 
degree of uncertainty or latency in state variables. By the very nature of the domain, control systems 
can not have true knowledge of system state; the best any control system can do is to estimate state. 
Estimators work to achieve the desired quality of state knowledge as part of execution. The resulting 
state knowledge is compared to intent though the comparison mechanism described in the control 
aspect of execution. 

3.2 The Role of Goals 
Goals are a central concept in goal-based control. Through the agency of goals, engineers can specify 
desired system behavioral properties in design and users can specify particular behaviors to achieve 
mission objectives. In this section, we present a detailed description of goals and their role in the system 
lifecycle. 

3.2.1 Goals in System Specification 
Goals are constraints on properties of interest necessary to satisfy system objectives. In particular, the 
properties considered are dynamic properties; time varying aspects of the domain. Goals specify desired 
behaviors through explicit constraints on the relevant properties. 

The relevant properties are determined through analysis of user requirements for the system and/or 
other goals. The relationship between goals and requirements can be summed up in the statement all 
goals are requirements, but not all requirements are goals. 

Goals specifications are comprised of 3 parts, State Variables, State Constraints and Time Intervals. 

We can best define and illustrate these terms by way of an example. 
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Fig. 3.4. Camera heater example 

Figure 3.4 depicts a simple circuit for powering a resistance heater for thermal control of a camera. This 
circuit and the camera comprise the system under control. The designer must specify the right set of 
actuator, sensor and controller characteristics to achieve the goals we will specify for the overall system. 
A domain-appropriate example goal is… 

 

State variables represent the dynamic attributes of the domain which must be controlled or accounted 
for by the control system. State variables are quantitative (numeric) or qualitative (represented by 
enumerated values) expressions of properties the control system must either directly control, or affect 
properties that must be controlled. To identify these, users ask “what must I control to satisfy my 
purposes?” 

In this example, the goal may be determined by looking at the camera specification (e.g., temperature 
requirements for camera hardware) and other related requirements. In order to ensure operations are 
in conformance the camera hardware requirements, we identify Camera Temperature as an attribute of 
interest; a state variable we need to control. 

State constraints are the bounds applied to the state variable identified in the goal. In our example, the 
state variable is a numeric quantity (temperature), so a continuous interval is a natural expression of our 
desired bound. State variables can also be qualitative enumerations such as “Good”, “Fair”, “Poor”. In 
such a case, the constraint would then be phrased as equalities on literal strings. 

Individual state variables do not exist in isolation. Through further inspection of the schematic in figure 
3.4, we can see that the state variable in our goal depends on a number of other dynamic properties in 
the domain. The aim of modeling is to identify and understand the properties of interest for exercising 
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effective control. Part of this is explicitly representing the relationships that affect the state variables of 
our goal. These relationships are captured in state effects models. 

 
Fig. 3.5. State effects model of camera temperature 

State effects diagrams can be read as “State Variable X is a function of input state variables A, B, C…” In 
the above example, Camera Temperature is determined to depend on Heater Heat Flow, Camera Op 
Mode, Camera Thermal Mass, Ambient Temperature and Thermal Resistance. These quantities are also 
state variables requiring their own modeling and possibly control. As part of the modeling, the architect 
makes determinations as to which state variables will be in the scope of the controller, requiring their 
own goals to satisfy the original goal. This practice will be described in detail in the section on state 
analysis (section 4.1.3.4 in particular). 

The time interval of the goal defines the interval of time the proposition stated in the goal must hold for. 
While temporal expressions in goals ultimately must be translated into numbers, early specification can 
use “shorthand” (e.g., “during imaging) as we’ve applied above. Through progressive specification, 
terms such as “imaging” are elaborated into descriptions of the domain resulting in unambiguous 
specifications of the desired outcomes in terms of the models. 

3.2.2 Classification of Goals 
Goals can be broken down into two classes based on the inherent nature of their specification (“type” 
dimension). In addition to this “type” dimension, goals can be also by broken into categories based on 
their subjects (“category” dimension). The resulting class for any goal is a function of these two 
dimensions. 

3.2.2.1 “Type” Dimension 
The “type” dimension specifies whether a goal concerns intended system behaviors or acts as a gauge of 
preferences among alternatives. 
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Fig. 3.6. The “Type” dimension of goals 

Behavioral Goals 

Behavioral goals are declarative prescriptions of intended system behaviors. These statements delineate 
a maximal set of admissible system behaviors for the system. These specifications must be evaluable to 
true or false to be valid. 

Achieve Goals 

Achieve goals are prescriptions of intended behavior where a target condition must be achieved by a 
specific (bounded) time. To satisfy the goal, the condition specified must be achievable by the time 
specified and hold for the time interval desired. An example is 

• The battery rate of charge must be greater than zero from 10:00 to 11:00. 

Maintain/Avoid Goals 

Maintain/Avoid goals describe conditions which must always (or never) be true in order to be satisfied. 
A common term for Maintain/Avoid goals is invariants. Examples include 

• The battery state of charge must always remain over 30% (Maintain Goal) 

• The power bus shall never allow prime and backup CPUs to simultaneously draw current (Avoid 
Goal) 

Soft Goals 

Soft goals describe the “sense of preference” among alternatives behaviors. Soft goals differ from 
behavioral goals in that they do not evaluate into true or false; their satisfaction is a matter of degree. 
Soft goals are commonly qualified with “maximize” or “minimize”. Examples include 

• Minimize antenna switch actuations 

• Maximize antenna gain 

3.2.2.2 “Category” Dimension 
The “category” dimension of goals represents the subject of the state variable specified in the goal. 
These categories are the same as the categories used for requirements. 
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Fig. 3.7. The “Category” dimension of goals 

The majority of goals we consider come from the Functional branch. Again, goals are specifications on 
behavior, which are dynamic attributes of the domain and in the scope of the control system. For 
example, an interface definition may be addressed by a requirement which would be satisfied by a 
designer/implementer. The actions of the designer/implementer are, understandably, out of the scope 
of the control system, and would be captured as static requirements. 

Of the non-functional branch, quality-of-service concerns (e.g., level of service, etc.) lend themselves 
most readily to goals. 

3.2.3 Goals over the System Lifecycle 
Goals are specified and progressively refined over the system lifecycle as mission objectives and system 
requirements are discovered and modified due to document the evolving understanding of user needs. 

 
Fig. 3.8. NASA project lifecycle phases, key events and major reviews 

While we describe a high-level goal-based specification and development flow in section 4.2, a brief 
description of how goals factor into the activities of the lifecycle phases may prove illustrative. 

Phase A: Mission and System Definition 

In this phase, the project specifies high-level mission objectives to realize the approved mission concept. 
The mission objectives are analyzed in order to specify the requirements and goals necessary to achieve 
them. The system concept of operations (ConOps) is as a key source of scenarios, providing important 
context for the definition, analysis and refinement of goals and supporting models. The preliminary high-
level goal model describing the desired system-level behaviors is reviewed along with the attendant 
modeling of key relevant domain concepts. 
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Phase B: Preliminary Design 

In Phase B, the project converts the baselined set of system-level behaviors into specifications of the 
control system necessary to achieve them. The preliminary, high-level goals are elaborated as the 
concept of operations is further refined. The domain model is expanded to describe the attributes 
controlled or affecting the achievement of the expanded and revised set of goals. 

The integrated set of models informs architectural decisions regarding system scope, partitioning of 
functionality and definition of interfaces. The models also give architects a resource for representing 
and communicating system-level characteristics and performing analysis and trades to support decision 
making. 

Phase C/D: Design, Develop, Test and Launch 

During this phase, the system architectural specification becomes detailed design, and the design is 
instantiated as the system-to-deliver. In addition to guiding design, the system specification provides the 
criteria for system verification and validation. 

The goal model now covers all the identified system behavioral threads at a level of definition high 
enough to confirm that all necessary goals are identified. The team also ensures that all goals have the 
necessary control specified to achieve them. The relationship between goals is fully defined, resulting in 
a rigorous description of system behavior in nominal and off-nominal situations. This specification 
provides guidance for the detailed design; making the implementation-level decisions necessary to 
realize the system. 

The goal statements of desired behavior provide readily inspectable descriptions of proper system 
functioning for verification. The integrated goal and domain model provides traceability from the 
original system objectives through the specification to the design artifacts, aiding change management 
and facilitating test planning. 

Phase E: Operations 

In the operations phase, users employ the system in the mission environments to satisfy the mission 
objectives. The goal and system models used in system specification and development are now used by 
operations personnel to plan activities and specify desired system behavior to carry out activities. These 
same models are used by the control system to carry out cognizant control of the system under control. 

The integrated models serve as the main repository of system knowledge, providing an authoritative 
(always updated and relevant) and inspectable specification of the system and its domain. This proves 
invaluable over the remainder of the mission as needs and objectives shift and personnel turn over. 

3.3 The Role of Models 
While the goal-based view of systems shares the basic characteristic of general model-based 
engineering, models as the primary means of specification, the goal-based approaches we will detail 
enables a more pervasive use of models throughout the project over the entire lifecycle. This section 
begins with a quick overview of the benefits of model-based systems engineering. The section concludes 
with an introduction to the state analysis model framework for specifying, developing and operating 
goal-based systems. 
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3.3.1 Model-Based Systems Engineering 
Goal-based specification is a conceptual framework for developing and operating behavior-dominant 
systems. The concepts of this framework are expressed primarily in models, availing practitioners to the 
insights and tools of the rich and expanding field of model-based systems engineering. In model-based 
systems engineering, models largely supplant documents as the primary repository for system and 
domain knowledge. Through considered, disciplined application of systems engineering processes, 
projects develop the necessary models to specify, design, integrate, test and operate systems that meet 
user needs. 

While system engineering processes are key to ensuring the quality of results, we make no 
recommendations to the reader as to the “whats” or “hows” of these processes. We seek to introduce 
the reader to a particular view under model-based systems engineering, that of goal-based control, 
along with its associated concepts and modeling. It is left to the reader to tailor the overall process to 
best fit their needs. 

The Need for Model-Based Systems Engineering 

Model-based systems engineering (referred to as MBSE hereafter) evolved as a response to the growing 
needs of stakeholders and developers for higher quality documentation of increasingly complex 
systems. Developing and fielding increasingly capable, subtle and critical applications in an environment 
of compressed schedules and fluid objectives has illustrated the need for more relevant, flexible and 
powerful means of specification than text alone. 

MBSE is a means to cope with the realities of the often dynamic, uncertain nature of technical 
enterprises. This environment can be understood by considering what authors Holt & Perry consider 
“the vicious triangle of engineering evil”, Complexity, Lack of Understanding and Communication 
Issues[PerryHolt2008]. 

Growing complexity is a natural consequence of increasingly capable, interoperable and ubiquitous 
applications. A major goal for developers is to ensure systems are only as complex as necessary to 
satisfy the need. Models can provide a tool against the dangerous oversimplification that may result. By 
modeling, developers can provide a solid specification of the problem to solve, identify the relevant 
aspects of the domain, and integrate this knowledge into a comprehensive, integrated representation of 
the shared understanding. These models are invaluable for coping with the inevitable changes resulting 
from new insights and evolving needs. 

Lack of Understanding pertains to how models help practitioners answer the “known unknowns” while 
discovering the “unknown unknowns” in the lifecycle. Models enable practitioners to describe and 
capture the evolving understanding of the need, domain and systems in an expressive, unambiguous 
fashion. Models help us to certify “we know what we need to know”. This knowledge is instrumental in 
identifying, quantifying and reducing project risks. 

The rigorous expressive properties of models help us to avoid the communication issues possible when 
expressing complex information. An aim of modeling is to make assertions as clear as possible. As 
illustrated in our example on the cost of defects in requirements in section 2.2, the cost of ambiguity can 
be very high. 
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3.3.2 State Analysis Framework for Goal-Based Control 
State analysis is a set of concepts, models and practices for specifying goal-based control systems. The 
key concepts are rooted in classic control as described in section 3.1. In state analysis, models are used 
to describe the user intent, the system under control, and the functions of the control system which 
exercise cognizant control. 

 
Fig. 3.9. Mapping of control system functions to state analysis models 

Figure 3.9 above illustrates how the functions of the control system (first introduced in section 3.1.2) are 
represented as models in the state analysis framework. 

Objectives and Goals 

System objectives are high-level, implementation-independent expressions of what the system must do 
or be to satisfy stakeholders. These are specified via the systems engineering approach selected by the 
project. Since the state analysis framework does feature explicit models for expressing objectives, 
practitioners are encouraged to use whatever methods are most appropriate for their problem. 

However determined, objectives are an important link between the expression of user need, the domain 
description and resulting system specifications. This traceability between system behavior and original 
objectives is key to the eventual verification of the system. 

Goals (orange items) are specifications of desired behaviors derived from analysis of objectives. It is 
through goals that the analysis of the domain begins. Through goals, engineers progressively answer 
“what must be controlled, and what are the constraints?” in the domain to achieve stated objectives. 

As first covered in section 3.2, goals are expressed as constraints in terms of state variables. The white 
rectangle in the right figure is meant to convey that all the contained models (Knowledge Goals, Control 
Goals and State Knowledge) are represented in terms of state variables. These state variables represent 
the dynamic aspects of the domain relevant to accomplishing the stated goals. 

Goals are expressions of intent for the system under control. Goals are compared to estimated states 
(represented through state knowledge models) at run-time and in the future through projections based 
on the mechanics described in system models. 
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State Knowledge 

State Knowledge (green rectangle with blue border) is the control systems internal representation of the 
aggregate state of the system under control. The blue trim around the state knowledge model in the 
right figure alludes to the central role that state knowledge information plays in the elaboration, 
projection and scheduling functions of the control system. 

State Estimation and State Control 

The execution function is captured in the State Estimation and State Control models (red items). The 
execution function makes needed changes in the system under control by translating the measured 
differences in estimated state and intended state (specified in goals) into the appropriate commanding. 

State Estimation models describe the translation of evidence (measurements, commands) into updated 
state information in accordance with knowledge goals. Knowledge goals govern the quality of state 
variable knowledge and are specified in concert with control goals. 

3.3.2.1 Goal Models 
Goals are assertions of desired system behavior in terms of state variables. As specifications of 
necessary system qualities, they are subject to the same criteria as requirements (e.g., unambiguous, 
quantifiable, testable). In the case of behavior goals, these statements must evaluate to true or false in 
order to differentiate between control system success and failure. Assertion success or failure is 
evaluated with respect to the state variable history (to be described in section 4.1.3.5) for the applicable 
state variable of the goal. 

 
Fig. 3.10. Evaluation of goal over timeline 

Goals specify a constraint on a dynamic attribute of interest for a defined interval of time. 
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Fig. 3.11. Composition of a goal specification 

The state variable is a dynamic attribute which must be controlled to meet the need. State variables are 
identified through analysis of the domain though the practices we will cover in section 4.1. The state 
constraint is a specification of what must be true about that state variable of interest. The time interval 
gives a temporal span for which the constraint must be true for the goal to evaluate as successful. 

High-level goals are determined as part of requirements analysis. Like requirements, goals are found 
through analysis and decomposition of higher level goals into finer specifications until the resulting 
statements can be readily verified. 
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Fig. 3.12. Analysis/decomposition of goals from requirements 

In the example above, a high-level requirement (in blue) is broken into smaller requirements by analysis 
(interpretation) of the statement. The system attribute in the green box (camera pointing) is an example 
of a dynamic property, making it a candidate for representation as a goal. 

The power draw requirement serves as a counter-example to the pointing example above. While 
instantaneous power draw is a dynamic quality (changes over time), peak power draw can be 
considered “static”. The measures for achieving the goal (e.g., fuse rating, load sizing) are outside of the 
scope of the control system, so a static requirement is appropriate. 

Writing Goals 

By ensuring goals specify a state variable, constraint, and time interval and applying thought to how the 
goal success and failure relates to the objective, engineers can increase the validity and correctness of 
the specifications. However, it is instructive to consider some examples of specifications that fall short 
as goals… 

Bad Example #1: Commands are not Goals 

“Issue the Close Switch Command at time X” 

This statement does not capture the user intent as a goal does. Goals, specifications of intent, are key to 
the specification of a cognizant, closed-loop enforcement of desired state. Closed-loop enforcement 
provides a measure of protection against cases where the environment does not conform to 
expectation, such as a case where the switch is already closed, or a condition where the switch is known 
to have tripped previously. 
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A closed-loop implementation provides checking as to the appropriateness of commanding as it 
processes intent into action. In the case of a tripped switch, the closed-loop system would not attempt a 
switch closing (system knows tripped switches are invalid targets for close commands). Similarly, a 
closed-loop system would not issue a close switch command if the switch was already shut. 

Another benefit of a goal specification is its inspectability vis-à-vis a procedure (listing of commands). 
The user intent is immediately inspectable in the case of the goal. 

Bad Example #2: Activities are not Goals 

“Charge the Battery” 

What if you are charging the battery, but the load is more than the supply resulting in net discharging? 
Again, a specification of intent, coupled with a closed-loop controller provides a more robust control. 
The operator could state their intent as a goal such as “Battery State of Charge shall be >= 90% from t1 
to t2”. To accomplish this, we represent the mechanics of the power management of the system under 
control in models. These models described how goals are met in terms of the workings of the system. 
Using the integrated specification of system mechanics and user intent, the system finds a path that 
satisfies the stated goals. 

Behavioral Goal Types 

As first described in section 3.2.2, behavioral goals are functional goals that can evaluate to success or 
failure. This type of goal is the most common, and features in the bulk of the examples of this 
document. Behavioral goals can specify intent for both system state (control goals, described in section 
3.3.2.4) and system knowledge (knowledge goals, described in section 3.3.2.3). 

Achieve Goals 

Achieve goals are goals that must be true over a defined interval to succeed. Whether the specified 
state constraint is satisfied or not outside of the indicated interval does not matter. 

Achieve goals (especially goals based on physical properties, which do not change instantaneously) often 
must be preceded with transition goals to support a maintenance sub-goals. 

 

Fig. 3.13. Transition and maintenance sub-goals of an achieve goal 
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In the preceding example, the original goal (left figure) specifies a desired temperature over a defined 
interval. The physics (captured in the domain model) dictate that a warm-up period is necessary in order 
to achieve the original goal. The user would need to define a transition goal based on the expected 
starting temperature, the modeled heating rate and the time remaining before the maintenance portion 
must be true. 

Maintain Goals 

Maintain goals are specifications of invariant properties; conditions which must always (or never) be 
true. Classic examples would be safety properties (e.g.,” train never in motion with passenger door 
open”). 

Soft Goals 

Soft goals are functional goals that do not evaluate to true false. These goals specify a “measure of 
suitability” in evaluating alternate plans. Satisfaction of soft goals is “a matter of degree”. Soft goals 
commonly use “Maximize” or “Minimize” in their specification (e.g., “minimize total slew distance”). 

3.3.2.2 State Knowledge Models 
The state knowledge models address how state variables are represented in the control system. State 
knowledge captures what the control system knows and can know about the system under control. This 
modeling enables the control system to exercise cognizant control. 

As first conceptualized in classic control, the control system does not have direct knowledge of the 
system under control. Due to the nature of the applications, sensors must be used to collect evidence on 
the true state of the system under control (also known as the physical state). This true state is 
continuously defined. Control systems must get by with the system under control’s estimated state. The 
estimated state is calculated by fusing the available evidence, Sensor input, command history and 
models of the system. The estimated state is represented in state knowledge models. 

While the examples of classic control typically focus on state knowledge of continuous, physical 
attributes of systems of interest (e.g., position, velocity), goal-based control covers an expanded set of 
system properties, making it more widely applicable. As described in the sections relating goals to 
requirements, goals cover any dynamic property designers need consider in specification. As a result, 
any description of a behavior can be described as a goal and all goals require state knowledge models. 

State Variables: The system dynamic attributes of interest 

State variables represent the dynamic attributes of the domain we must control or affect the exercise of 
control. While all goals involve a state variable, not all state variables can be controlled. For instance, 
while we may not be able to control the ambient lighting in the environment, we still need to be aware 
of it in order to get the right exposure for an image. In this case, while we may specify a goal on the light 
level as part of an imaging activity, the “control” to achieve the goal might be to wait until the (modeled) 
light is intense enough to image. 

Some examples of dynamic attributes covered by state variables… 

• Resources Environment: Power, Energy, Data Storage, Bandwidth Light Levels, Ephemeris, Ambient 
Temperature 

• Dynamics Device Status: Vehicle Position, Attitude, Gimbal Angles Configuration, operating modes 
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• Data Product Collections Data Management/Transport Policies: Science data, Measurement Sets 
Compression/deletion, transport priority 

• Externally Controlled Factors Parameters: Link schedule, Link configuration Scale factors, biases, 
alignments, noise levels 

State variables are discovered through analysis of goals and requirements. As described earlier in this 
chapter, state variables represent what must be controlled in the goal specification. Upon finding the 
state variable, the next question is “what affects it?” This question is answered through the application 
of state effects models. 

 
Fig. 3.14. State effects modeling 

State effects models describe the causal relationships between state variables. As illustrated in figure 
3.14 above, there is a graphical (left) and algorithmic (right) view of the model. The graphic view serves 
as an easily inspectable, concise representation of the causal relationships. The state variables (labeled 
circles) are related to each other through arrows. The causal relationships flows from the arrow source 
to the arrow sink. Circles being pointed to represent state variables which are a function of the circles 
pointing at it. 

Modelers can use the graphic view as part of capturing the domain; ensuring that all relevant concepts 
are named and related. 

Once the appropriate relationships are captured graphically, the modeler completes the picture by 
defining an algorithmic representation of the relationships. While the graphic view is a descriptive 
representation of the relationships, the algorithmic model is a predictive model describing how the 
affected states are determined by the affecting states. The algorithmic relationships can be described 
using whatever the modeler deems appropriate to capture the logical or physical relationship. The 
model in the example above uses pseudocode and an equation. 

The state effects model serves multiple purposes. In addition to being a shared understanding of system 
composition and behavior, it also forms the basis for system simulations as well as the governing physics 
and logic representations the control system uses in estimation and projection. The state effects model 
also helps guide modelers in elaborating goals. If we specify a goal on a state variable which is affected 
by another state variable, the affecting state variable may require a constraint on it as well. This new 
goal would be a sub-goal in the elaboration of our original goal. 
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As we shall also see in the coming sections, the state effects model also guides modelers in designing 
estimators and controllers by highlighting relevant state variable relationships. 

State variables values are determined by fusing the evidence provided by sensors, current state and 
command logs. This process is accomplished through estimation and will be described in this next 
section. 

3.3.2.3 State Estimation Models 
State estimation is the process of interpreting the domain information available to generate state 
knowledge. As covered section 3.1.2 on the control system functions, estimation is part of the execution 
function of the control system. Estimators are the achievers of state knowledge, updating state 
knowledge in accordance with knowledge goals. 

 
Fig. 3.15. Overview of state estimation 

The interpretation of the evidence (sensor measurements, commands and state estimates) into state 
knowledge is accomplished via measurement models. Modelers have a wide variety of options for 
modeling measurements and are encouraged to select what is appropriate given the evidence available 
(as determined through the state effects model). Examples range from simple direct interpretation and 
inference methods to Kalman filters or Bayesian analysis. 

Through measurement modeling, modelers represent not only the nominal causal links between the 
evidence but consider the off-nominal situations (sensor faults, lost data) that can distort 
measurements. This capability makes the control more robust against local faults and systemic failures. 

Estimators are the achievers of knowledge goals. Knowledge goals specify a desired quality on state 
knowledge (e.g., precision, certainty) for the estimator to serve. Referring once again to the goal 
example in section 3.3.2.1, we have 

Original Goal: 
• Camera temperature mean value is in the range 10-20° C and standard deviation ≤ 3° C from t1 to t2 

The knowledge goal implicit in this statement refers to the certainty of the Camera Temperature 
estimate. 
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Implied Knowledge Goal (from inspection of original goal above): 
• Camera temperature estimate standard deviation ≤ 3° C from t1 to t2 

The control goal (mean value in range) is achieved by the state controller, while the knowledge goal is 
achieved by the estimator. This knowledge goal is elaborated as a sub-goal to the original control goal. 

3.3.2.4 State Control Models 
State controllers achieve control goals as part of the execution function of the control system described 
in section 3.1.2. Controllers issue commands to close the difference between the user intent (described 
in control goals) and the current estimated state. The necessary commanding is determined through 
referencing the command model. The controllers issue commands to hardware actuators to alter the 
physical state of the system under control. 

 
Fig. 3.16. Overview of state control 

Controllers can be software agents or people, depending on the particulars of the problem. In the case 
of human actors as controllers, the control system is acting as an advisory agent with authority-to-
proceed remaining with the human actor. 

As with estimators, there is a wide variety of options for controllers. Examples include modal (state 
machine) or continuous (Proportional-Integrative-Derivative: PID). Algorithm complexity and selection 
will depend on the application requirements and the data available. 

Controllers should also be designed to handle off-nominal situations. As with estimators, this ability to 
define and handle faults at design time in models helps make the system more robust. Let’s explore this 
point with an example. 

Simple Controller Example 

As defined in the overview, the controller is a mapping of how estimated state and intent result in 
appropriate commands. In this example, we have a switch, with two possible goals for it, to be open or 
closed. There are four possible estimated states for the switch, opened, closed, tripped or unknown. The 
proper command to issue is a function of the goal and estimated state and can be represented in this 
case using a matrix. 
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Fig. 3.17. Example controller specification: switch position 

As recommended earlier, we explicitly represent possible faults (switch trip, or switch position update 
not received) as well as how the system should handle them (default to opening the circuit). 

The ‘no-command’ options provide another example of the benefit of cognizant control. If the system is 
already in the proper configuration, the system will not issue unneeded commands. This is especially 
important in systems with requirements for parallel execution of activities. The ability of the system to 
forgo unnecessary commanding reduces the chance of interference between processes configuring the 
system. 

It is also important to note that the controller does not perform any estimation. Estimation is performed 
solely in the estimator. This partitioning aids in specification (knowledge goals to estimators only and 
control goals to controllers) as well as the inspection and debugging of controllers. 
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4 Specification, Verification and Validation with State Analysis 
In this chapter, we illustrate how practitioners employ the concepts developed thus far into system 
specifications ready for detailed design. It is a recurring observation in systems engineering practice that 
the best systems are consciously and rigorously architected; crafted with a coherent strategy for 
realizing a responsive and balanced solution to the user need. Through worked examples, we will detail 
how the practices of state analysis are used to capture and analyze user needs and specify a solution to 
meet them through a framework that promotes a strong architectural view of the emerging system. In 
section 4.2, we present an example of a development process for specification using the introduced 
state analysis practices. In section 4.3 we present a set of over-arching guidelines and patterns that have 
proven useful in practice. Lastly, in section 4.4 we illustrate how the models of state analysis enhance 
verification and validation efforts. 

4.1 From State Analysis to Design Elements 
This section describes the practices of State Analysis, their relationships and resulting products. 

4.1.1 Overview of State Analysis 
State Analysis is a set of practices for the progressive identification, specification and analysis of domain 
and system concepts for the purpose of developing systems. As its name implies, State Analysis focuses 
first on modeling the system under control, and then the design of mechanisms to control it. Through 
State Analysis, practitioners describe the system under control and specify the goal-based system that 
achieves the user needs in defined operational environments. As a model-based systems engineering 
framework and methodology, the domain and system knowledge are primarily captured as an 
integrated set of models. These models provide a means to provide tailored views to accommodate the 
differing needs of respective stakeholders. 

State Analysis also facilitates a truly architecture-centric approach to specification and development. By 
application of the goal-based perspective of State Analysis, practitioners have a natural set of concepts 
for expressing the user need, domain knowledge and system specification. The modeling captures the 
structure and behavior of the emerging solution at a number of levels of abstraction, allowing designers 
to alternately “dive” and “surface” as part of iteration. 

Development of the specification is the progressive introduction and refinement of domain elements 
involved in the solution that will meet the user need. This process, carried out through applying the 
practices of state analysis, can be described as an interactive net of questions that we must answer in 
increasing detail over the development portion of the lifecycle. 

Commensurate with the iterative nature of development, all the practices of state analysis are done in 
parallel. Through simultaneous execution of the state analysis practices, the development team 
“bootstraps” toward a balanced, responsive specification from which detailed design development can 
implement with a minimum of project risk. 
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Fig. 4.1. Overview of state analysis practices 

While the practices of State Analysis (pictured in figure 4.1) are employed simultaneously over 
development, the level of effort for each will depend on the state of development the project is in. This 
will be covered in the development example in section 4.2. 

4.1.2 Introducing the System Example 
As a subject to help illustrate the practices of state analysis, we introduce a simple, yet non-trivial 
behaviorally-dominant system. This system is simple enough to describe in a meaningful way in short 
order, but careful consideration of the system can (and should) uncover a level of complexity for which 
the practices and concepts we will describe are well-suited. 
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The system is a remotely operated, gimbal-mounted imaging system. The imaging portion of the system 
will be located in a location for which real-time operation is impractical. While this situation is obviously 
the case for unmanned deep space systems, it is often the case for terrestrial systems operating in 
environments with intermittent or unreliable communications (e.g., poor networks, jamming). 

 
Fig. 4.2. Imaging system example 

The primary components of the imaging system are a CCD camera, an active heating system for the 
camera, a scan platform to provide proper pointing and a data management system for retrieving, 
processing and storing science and engineering data. 

In the sections below, we will describe how state analysis is applied to specify a control system to satisfy 
user needs using the physical system just introduced. The examples will cover how user needs are 
expressed as goals to be achieved by controllers. We also describe how the state analysis practices are 
used to specify the set of controllers of the control system and the set of models comprising this 
specification. 

4.1.3 Realizing the Design Elements 
State analysis is the set of interrelated practices for producing a system solution responsive to user 
needs. This specification of structure, behavior and interfaces serves as the basis for subsequent 
detailed design. The specification also serves as the link between the subsequent design and the original 
specification of user need, providing an invaluable resource for V&V as well as configuration 
management over the lifecycle. 

In addition to being a vehicle for communication in development, the specifications also serve as the 
prime repository of system understanding for operations as well. This provides operators and 
maintainers with easily-understood, authoritative and relevant information on the system and domain 
as well as a ready means for updating this knowledge base and disseminating changes as the project 
moves along in its lifecycle. 

The design elements we refer to are the system elements, attributes and relationships that must be 
described as part of specification. These descriptions are primarily captured as elements of the models 
introduced in section 3.3.2. The mapping of design elements to the state analysis models is presented as 
a meta-model here. 
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Fig. 4.3. Mapping of design elements to state analysis models 

While the models of state analysis were summarized in section 3.3.2, we shall cover the design elements 
comprising these models in our descriptions of the state analysis practices below. 
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4.1.3.1 Requirements/Goal Elicitation 
An often asked (and understandable) question asked by people being introduced to state analysis is 
“where do I start?” As with other systems engineering techniques, the answer is “start with defining the 
need”. Requirements/Goal Elicitation is where the modelers first consider the translation of user needs 
and objectives into the desired qualities the eventual system solution must have. This practice covers 
the same ground as the requirements elicitation practice commonly described in system engineering 
literature, the difference being how state analysis treats the specification of behavioral requirements. 

 
Fig. 4.4. Requirements/Goal Elicitation practice detail 

In the Requirements/Goals Elicitation practice we identify goals through analysis of the overall system 
requirements. Goals are best understood as the subset of requirements concerning the specification of 
desired behavior. The product of this practice is a catalog of goals from which to elaborate further into a 
complete specification of system behavior. This listing, along with the description of the relationships 
between goals comprises the goal model. 

 
Fig. 4.5. Primary model focus for Requirements/Goal Elicitation Practice 
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Define System Goals is the primary activity of the Requirements/Goals Elicitation practice. In this 
activity, user needs and domain descriptions are analyzed in order to specify the behavioral 
requirements of a system to meet the original needs. As the name indicates, the primary product of the 
activity is the specification of goals captured in a goal model. 

The goal specifications of Define System Goals are output to the Goal Elaboration and Planning practice 
(covered in section 4.1.3.2). While the focus of Define System Goals is to identify and describe goals, the 
Goal Elaboration and Planning practice covers elaboration (defining sub-goals) and projection (define 
effects of goal accomplishment). 

The goal specifications are also important to the Define Scheduling Rules (section 4.1.3.3) practice. The 
scheduling rules capture how the goals identified in Define System Goals can be ordered with relation to 
each other. 

Goal definitions are also a key way of discovering the dynamic attributes of interest. As we have stated 
previously, goals are specifications of necessary constraints on properties important to meeting system 
objectives. The dynamic attribute identified in the goal is a state variable. The specification of state 
variables is the focus of the Define State Variables practice (section 4.1.3.4). 

Example of Goal Elaboration and Planning Practice 

The initial requirements for the imaging system are determined through analysis of high-level mission 
descriptions such as a ConOps, user surveys and interviews. Requirements are further refined and 
broken down until the requirements are detailed enough to describe qualities that can be satisfied by 
individual elements of a system specification and can be verified. In our example, we start with a 
pointing requirement for the camera and follow the decomposition of the requirement through analysis 
into other requirements and goals. 

 
Fig. 4.6. Specification of goals from requirements 
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Figure 4.6 starts with a static requirement on imaging performance. Through analysis, the engineer 
determines that behavior will be part of the means to satisfy the performance requirement. To 
accomplish this, a goal describing the desired pointing performance is derived. This is represented as a 
control goal on the off-boresight angle of the camera. The goals is further refined into sub-goals as part 
of this early elaboration, providing more insight into the attributes affecting our original goal. At the 
bottom, we see a case where a requirement (Update Requirement) is derived from a goal. This case 
reflects a design decision to model the target’s position using a time-dependent polynomial. To ensure 
the required accuracy is achieved, a static requirement on the update frequency is defined. This is 
modeled as a static goal, reflecting the initial decision to update the file though the agency of elements 
outside the control system (i.e., operations processes). 

The goals identified also serve to identify the state variables we must control, as well as the state 
variables that affect them. We begin capturing this information in a state effects diagram. 

 
Fig. 4.7. State effects diagram of goals in figure 4.6 

In this diagram, we capture the causal relationships between the state variables specified in the goal 
model of figure 4.6. The state variables are then grouped to identify items in the domain such as ‘Clock’ 
or ‘Gimbals’. 

4.1.3.2 Goal Elaboration and Planning 
While Requirements/Goal Elicitation is done to identify goals, the further decomposition of goals into 
sub-goals is done through the practice Goal Elaboration and Planning. Elaborations are blocks of goals 
that can be assembled into practicable plans, accounting for the necessary causal relationships between 
state variables. 

Elaboration is carried out to identify and specify sub-goals on related state variables that are necessary 
to achieve the original goal or simply make the original goal more likely to succeed. 
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Fig. 4.8. Primary model focus for Goal Elaboration and Planning Practice 

 
Fig. 4.9. Goal Elaboration and Planning practice detail 

The Goal Elaboration and Planning practice is closely related to the Requirements/Goal Elicitation 
practice described in section 4.1.3.1. They differ in that the Requirements/Goals Elicitation practice uses 
the original high-level requirements as its starting point, while the Goal Elaboration and Planning 
practice uses the resulting goal and state effects information to start. The Requirements/Goals 
Elicitation practice must provide a set of goal definitions before elaboration and planning details can be 
added. The two main activities of this practice are Define Elaborations and Define Projections. 
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Defining Elaborations 

The Define Elaborations activity takes the high-level goal model from the Requirements/Goals elicitation 
practice and further refines these goals into sets of sub-goals. The activity results in a goal specification 
at a level of detail sufficient to assure modelers that the necessary set of propositions to accomplish the 
original high-level goal is known. 

This work is guided by the state effects model. Starting at the state variable constrained by the original 
high-level goal, the modeler identifies the affecting state variables and specifies goals on them as 
applicable. 

Basic Rules for Elaboration 

Rule #1. A goal on a state may elaborate to control sub-goals on directly affecting states 

Goal elaborations are defined locally for each goal, resulting in a linked set of sub-goals. The sub-goals 
can be thought of as propositions that must be true in order for the goal they elaborate to succeed. Goal 
elaboration is a nested process, as goals are progressively elaborated into sub-goals until the lowest-
level goals (the leaf goals) are atomic enough for one controller to achieve them. 

Figure 4.10 is an example elaboration, where a main goal (Camera Power is On) is elaborated into a set 
of sub-goals. The original goal is made up of a state constraint and a temporal constraint (1 to 2 hours). 
This goal is elaborated into both a knowledge goal (Camera Power is Known) and a control goal (Camera 
Power Switch is Closed). Notice the goals do not specify commanding. Proper commanding is 
determined via comparison of measured state and intent at run-time and specified in the command 
model. This is covered in detail in section 4.1.3.6. 

 
Fig. 4.10. Elaboration of main goal into supporting sub-goals 

Figure 4.10 also introduces the reader to the notation of goal net specification. This notation provides 
for the description of ordering rules for goals as determined by temporal and causal constraints 
between goals. Goal-net specification will be discussed at length in subsequent sections. 
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Rule #2. A control goal on a state may elaborate to a knowledge sub-goal on the same state, and vice 
versa. 

This was demonstrated in figure 4.10, as the knowledge goal ‘Camera Power is Known’ was defined to 
support the original control goal. This rule also states the knowledge goals can elaborate into control 
goals. As covered earlier, knowledge goals are specifications of intent for the estimator that achieves the 
knowledge goal. The knowledge goal is elaborated into control goals for the estimator to achieve to 
satisfy the original knowledge goal. 

Rule #3. A knowledge goal on a state may elaborate to knowledge sub goals on its directly affecting 
and affected states. 

Rule #4. An “achieve”-type goal on a state may elaborate to a “transition”-type goal on the same 
state, with an ending time point. 

Knowledge sub-goals are specified in order to make control and other knowledge goals more likely to 
succeed. As rule 3 states, the supporting knowledge goals are not restricted to the original state 
variable, but can be specified on affecting state variables. When considering knowledge sub-goals to 
support goals, modelers should ask “what does the control system need to know to do this (the original 
goal) and how well does it need to know it?” In figure 4.11, the original knowledge goal is specified on 
the Gimbal Motor Angle. However, the modeler considers knowledge of the affecting Motor Mode and 
Health state variable important to accomplishing the original knowledge goal, so they specify a 
supporting knowledge goal on it. 

 
Fig. 4.11. Example of elaboration rules 3 and 4 

Rule 4 concerns how an achieve-type goal (a condition must be true in the future) may require a 
preceding transition goal in order to succeed. In this example the modeler specifies a transition 
knowledge sub-goal (Gimbal Motor Steering Angle is transitioning to Known with σ ≤ 0.5°) that makes it 
more likely that the achieve-type main goal will be successful. Transition type goals are especially useful 
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when the achieve goals involve continuous phenomena that cannot be expected to become 
instantaneously true at the beginning of an interval specified in an achieve goal. 

Rule #5. A goal’s elaboration may include temporal constraints to reserve time in the schedule for 
actions required by the goal. 

Temporal constraints are the part of the goal specification pertaining to the time a condition must hold 
in order for the goal to succeed. Another way of thinking about this constraint is that a temporal 
constraint is an expected duration for the achievement of a condition. The implication of such a 
constraint is that if achievement takes any longer, there must be something wrong and the goal should 
fail. Such temporal constraints account for transition activities that the modeler believes will take a 
finite time to achieve (e.g., physical transitions, performance of calculations, movement of data, etc.). 

In our example, the knowledge goal (Gimbal Angle is transitioning to known with σ ≤ 0.5°) is composed 
of a control goal and a knowledge goal, both of which are judged to take a finite amount of time to 
accomplish. Through engineering analysis, it is judged that this set of supporting activities will take at 
most 1 minute to accomplish. This required time is captured as the temporal constraint of the original 
requirement (0 to 1 min). 

 
Fig. 4.12. Example of elaboration rule 5 

Rule #6. Consider alternate elaborations 

Specification of multiple sets of elaborations (known as elaboration tactics) provides a measure of 
flexibility and robustness to planning and execution. By specifying alternate elaborations, modelers 
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provide the system with an expanded range of execution options and conditions for selecting 
appropriately among them. This results in a system with an appropriately rich (elaborations for all 
contingencies) yet bounded set of behaviors for accomplishing goals. 

Tactics are selected at run time according to user specifications. This capability gives the controller the 
ability to select a situation-appropriate set of sub-goals at run time or planning time. This capability 
makes plans and execution more robust, as the system uses the specified tactics to achieve goals while 
considering the current system state. 

One means for specifying the selection of tactics is to condition on state information. The selection of a 
tactic would then be conditioned on the evaluation of a state variable at run time. Stepping away from 
our camera example, imagine a monopropellant thruster system with parallel valves feeding a 
combustion chamber. Being redundant valves, only one must be opened in order for propellant to reach 
the combustion chamber. The main behavior, propellant is flowing, can be modeled as a set of alternate 
tactics. 

 
Fig. 4.13. Specification of alternate tactics 

While both tactics are elaborations of the same goal and share the same knowledge goal (Thruster Inlet 
Flow is known with High Certainty), the bottom control goals are reversed. As part of the specification of 
the tactics, the modeler must specify criteria to select between them. An example of conditioning on a 
state variable might be to select Valve A (left tactic) by default unless Valve A Health is “Failed”, in which 
case Valve B is selected (right tactic). 

Another means for selecting between tactics involves employing “soft” goals to evaluate the resulting 
plans. A “soft” goal (described in section 3.2.2.1) is a goal that does not evaluate to succeed or fail, but is 
accomplished as a matter of degree. Considering the thruster example, the modeler could specify a goal 
to maximize the certainty of valve actuation. This goal would select the tactic based on the valve with 
the highest open position certainty (as determined from supporting knowledge goals on valve position). 

Defining Projections 

This activity responds to the question “what will the effects of achieving this goal be?” The resulting 
specifications enable the control system to project future state resulting from current actions and future 
plans. Projections are based on the latest estimated state of the system and environment. 
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Projection uses integrated set of models, state knowledge, commands, measurement and goals that 
comprise the state analysis model framework. This integration provides a consistent specification for all 
control system functions and supporting development and operational tasks enabling and supporting 
the system. 

Projection of system performance is key to the system’s ability to exercise cognizant control as well as 
providing developers and operators with insight into system planned and actual behavior. As we have 
described, models enable developers to specify and communicate an understanding of how the system 
works in a problem domain, enabling early validation of assumptions before committing resources to 
detailed design and development. Projection of system performance provides qualitative and 
quantitative information for trade studies, guiding architecture efforts through the evaluation of 
alternate configurations at design and run time. Projection through models enables designers to do 
early analyses of system design suitability in models of the intended environment. This is especially 
important in applications where testing in the actual intended environment would be impractical (e.g., 
Mars Entry, Descent and Landing). 

Projection aids verification and validation by providing evidence on the correctness and suitability of the 
emerging design. By running the design through operational scenarios, designers get an early look at 
how the system achieves goals given the modeled set of resources and environmental constraints the 
system will face. The projection capability also comes into play at run time in operations. Through the 
cognizant control enabled by projection, the system constantly checks intent against both current state 
(run-time verification) and projected state (planning-time verification). Operational constraints such as 
flight rules and system constraints such as resources are captured in models and enforced in operation 
by use of projection. 

Projection is performed to forecast the value of state variables that matter to the accomplishment of 
goals. Projection allows designers to specify how the system can get from an estimated state at one 
time to a set of reachable states in the future. 

Returning to our example, imagine we’re operating our imaging system, which in this case is located on 
the planet Mars. At the end of our last Sol’s (day on Mars) downlink, we saw that our camera heater 
switch was estimated as “Stuck Open”. From the Switch Position state variable model, we see that a 
“Stuck Open” fault is permanent. As a result, it makes no sense to schedule plans that specify the switch 
should be closed in the future. Unfortunately, the current plan onboard reflects our intent that the 
switch be closed as part of imaging for a number of occasions in the future. 

Through projection, we identify this future conflict, using the current estimated state and comparing to 
future intent. What to do about the conflict is built into the specification of the activity that called for 
the switch to be closed. The engineer might specify that imaging should not occur unless the camera 
heating was done (switch closed), in which case the onboard plan would drop the future imaging goals. 
The engineer could also use more subtle tactic for handling this issue, allowing imaging if the estimated 
temperature is above a specified threshold. 
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Fig. 4.14. Anticipating and correcting planning issues through projection 

4.1.3.3 Define Scheduling Rules 
Scheduling rules are the specification of the temporal logic that must be followed in achieving goals. This 
specification is captured through goal nets as introduced in section 4.1.3.2. The Define Scheduling Rules 
practice adds transition rules to the elaboration and planning specifications of the Goal Elaboration and 
Planning practice. We also consider how specifications of intent covered in goal nets are translated to 
goals executable by the system known as executable goals, or x-goals. 

 
Fig. 4.15. Define Scheduling Rules practice detail 

Goal nets provide an ordered and continuous specification of intended system behavior. The 
specification of intent (constraints on state variables) rather than time ordered actions (e.g., commands) 
is a distinguishing feature of goal-based control. By specification of intent, the system can use models to 
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achieve stated user intent as part of a closed-loop mechanism. Specifically, goal networks express 
continuous intent over time where this continuity is only implied in procedural command systems. 

By focusing on intent, goal nets provide designers and operators with a powerful and intuitive means for 
specifying behavior. Goal net flexibility can be tailored to the degree appropriate for the application or 
sequence. At the most constrained, goal nets resemble traditional sequences, with static or highly 
constrained orderings and few alternate elaborations. The operators also have the capability to write 
more flexible specifications of behavior in which only essential ordering specified. In both cases, the 
system provides the safeguards of closed-loop control and exception handling through the agency of 
cognizant control. 

Define Scheduling Rules involves specifying how the elaborated goals can be ordered on timelines in goal 
nets. In addition to integrating the goals needed to carry out specific actions (usually provided as 
achieve goals), goal nets also include specifications of behavior that must hold in all operations such as 
flight rules (specified as maintain goals). 

Models of the system under control guide the specification logic used in scheduling. Derived from goal 
descriptions, scheduling rules specify the necessary goal inclusions, relative ordering, compatibility and 
timing of goals. Models are also used to predict goal compatibility with future states through projection. 
This allows checks on future goal achievability and allows early changes to avoid problems if conflicts are 
predicted. 

In our example, a goal network (Figure 4.16) is begun by specifying intent from a main goal (Camera 
Power On from t1 to t1 + 1 hour). By using the elaborations defined for the goal, we expand our goal 
into a network of supporting goals. 

 
Fig. 4.16. Expansion of a goal into goal network 
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The goal network includes the necessary state constraints on the applicable state variables (as modeled 
in the state effects model), and includes their ordering and durations. The goal net above is an 
exhaustive description of the possible ways the main goal can be achieved. Note that the system does 
not specify explicit epochs as a procedural specification would. Instead, the goal net specifies the 
allowable range of executions along with criteria for success, which are checked continuously. 

Goal-nets are used to specify intent for planning, but execution requires more specific guidance to 
execute on. The timeline information that is executed (in the execution function by estimators and 
controllers) is provided as timelines of x-goals. While goal-nets capture intent, x-goal timelines 
represent the system configuration that realizes the intent. X-goals are directly compiled from goal nets 
through the use of the integrated system models. 

 
Fig. 4.17. From goal nets to x-goal timelines 

The use of x-goals allows the planner to consider and operate the system at a higher level of abstraction, 
with the assurance that the abstract goals of the goal net are consistent and complete and the necessary 
level of implementation detail is provided for execution. 

X-goals also capture merged intent. While goals may be specified individually in a goal net, the x-goal 
specification passes a merged goal on for execution as applicable. However, the goals specified in the 
original goal net are still checked individually. This preserves the capability to alter intent or handle goal 
failures at the original level of intent. 
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Fig. 4.18. Merging of goals into x-goals 

X-goals are the product of merging all concurrent constraints over a time interval. In the example above, 
we see a case where the overlapping portion of two goals is merged into single goal, with individual 
goals for the non-overlapping portions. 

The dashed oval highlights a problem in the x-goal timeline. Without a transition between “Camera 
Temperature between 10°C and 20°C” and the more restrictive subsequent goal, we are likely to have a 
failure. As we have seen in situations with continuous physical phenomena, transition goals are often 
necessary. Figure 4.19 illustrates a fix to the above problem. 

 
Fig. 4.19. Fix to merged timeline by adding a transition goal 

4.1.3.4 Define State Variables 
State variable definition is a central practice in state analysis. Through state variable definition, we 
progressively refine the state knowledge model of the system and domain by discovering, defining and 
relating the state variables relevant to achieving the goals. 
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Fig. 4.20. Define State Variables practice detail 

The centrality of this practice can be understood by the role of its primary product, the state knowledge 
model. State knowledge represents everything the system can know about the system under control 
and the environment. Control is exercised through comparing this knowledge against user-specified 
intent (goals specified in terms of state knowledge in the form of state variables). The attributes 
represented in the state knowledge model, state variables, are also primary inputs to the other models, 
command and measurement. 

The Define State Variables activity begins with the high-level goal descriptions from the 
Requirements/Goal Elicitation practice described in section 4.1.3.1. The primary question here is “what 
state variables are in this goal?” From these, the modeler can specify just what must be controlled by 
the system. From these state variables, the modeler analyses the domain to determine the state 
variables that affect those identified, and the effects they have on yet other state variables. This activity 
is done iteratively until the modeler is confident that all state variables featured in or affecting goals are 
accounted for in the state knowledge model. 

The primary tool for this activity is the state effects model, as introduced in previous sections. In our 
example, we first consider a control goal, which must be achieved by a control system. 

Goal: Camera Temperature is 20°C +/- 5°C from t1 to t2 

Analysis of this statement yields a state variable, Camera Temperature, which we must control. Further 
analysis of the system under control and the domain is necessary to determine the set of affecting and 
affected state variables. 
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The state effects model is a graphic representation of the relationships between state variables. The 
diagram can be read as “Camera Temperature is a function of Heat Flow, Op Mode, Thermal Mass, 
Ambient Temperature and Thermal Resistance”. These affecting dynamic quantities are determined 
through analysis of domain representations such as the circuit schematic on the left of figure 4.21. The 
modeler would continue to iterate on the state effects model until the individual state variables are fine 
enough for a single controller (for controlled states) or a single model (uncontrolled states). 

 
Fig. 4.21. State effects model from domain analysis 

The state effects model is a graphic representation of the relationships between state variables. 

When the state effects model is populated, the modeler can consider the quantitative effects of state 
variables on each other. These quantitative models enable the projection capability described in section 
4.1.3.1. These relationships can be expressed through equations, truth tables or other representations. 
To illustrate this example, we reintroduce a related figure from section 3.3 (see figure 4.22). 

In this example, the modeler identifies the affecting states for their state variable of interest, Heater 
Heat Flow. Through an analysis of the domain, the modeler identifies a set of affecting state variables, 
Switch Position, Heater Health & Resistance and Battery Voltage. The qualitative aspect of the 
relationships (i.e., state variable A affects state variable B) is captured in a state effects diagram. 

To model the physics of the effects, the modeler writes an algorithm for determining the heater flow 
state variable from the affecting state variables. 
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Fig. 4.22. State effects modeling example 
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4.1.3.5 Define State Value Histories 
State value histories, as the name indicates, represent the internal data structures used by state 
variables to store and express their values over time. These value histories can contain state estimates, 
commands, measurements and other data products. State value histories are an element of the state 
knowledge model (see figure 4.3). 

 
Fig. 4.23. Define State Value Histories practice detail 

Value histories reside with the system under control. This data is stored in the memory of the system 
under control and in the hardware adapters. 

This data must be retrieved both to satisfy the mission objectives (i.e., science data), as well as to run 
the enabling control system (engineering measurements and other truth data). The management and 
interpretation of this data is accomplished using models of the system under control. 

The control system manages this history through achieving goals on this data (specified as goals on data 
state variables) in the same way it controls other state variables. The intent (goals) is compared to the 
estimated state as represented in data state variables, and commands are issued by the control system 
to reconcile the difference in accordance with models of the data in the system under control. 

Delivering data to the end user is an important part of achieving mission objectives. Some examples of 
goals that implement how data management is accomplished are data latency requirements, data 
priorities and data storage resource limits. As covered elsewhere, these are necessary constraints on 
dynamic attributes for which goals are a natural expression. 

Data State Variables 

Data state variables represent the state of one or more value histories. They can be thought of as 
“metadata” (data about data) on value histories. It is through data state variables that the control 
system manages the data state histories in the system under control. Data management is accomplished 
through goals specified on data state variables. 

Data state variables are described by Data Attributes specified by the systems engineer. Data attributes 
are specifications on what is important about individual entries as well as histories of entries in terms of 
managing that data. 
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The value history entry data is metadata applied to individual entries to support data management. This 
data provides the control system with a means to discriminate between entries for the purpose of 
management. 

The value history data is metadata on the entire set of entries of a particular value history. This data 
represents information about the entire set history entries in terms of the individual value entry data 
points. For instance, ‘time range’ is an example of a value history data point. To determine it, you would 
look at a value history data entry field, ‘creation time’ for each value history data point to find the oldest 
and newest data points. 

Common Examples of Data Attributes 

Value History Entry Attributes Value History Attributes 
• Transport Priority • Number of Entries (in volatile/non volatile store, etc.) 
• Transport Status • Time Range (in volatile/non volatile store, etc.) 
• Content (e.g., unique ids, quality tags)  
• Compression Status  

In this example, we consider a temperature measurement value history. To manage this data, the 
systems engineer must specify a temperature measurement data state variable. The engineer decides 
that to manage this data, the number of entries and time range are important. The engineer then 
specifies the data state variable as having these attributes. 

To realize the data state variable, the engineer must specify value history entry data fields to apply to 
the individual measurements. ‘Number of entries’ is determined from the number of unique ids. The 
data state variable attribute ‘time range’ is specified to be the oldest and newest measurement. To this 
end, a value history entry field of ‘creation time’ is specified. Figure 4.24 describes the application of this 
data state variable definition. 

Data state variables are described by state effects models in much the same manner as other state 
variables. The state effects models serve as a guide for discovering data states and effects needed for 

managing data content and data 
transport. 

Data state variables are defined 
for each of the state variables we 
specified part of modeling the 
system under control. The 
specification of these data state 
variables represents how we plan 
to manage the state variable 
data. 

As we see in figure 4.25, a data 
state variable is defined for all 
elements of the state effects 
model, including commands and 
measurements. Notice that data 
state variables can represent 
multiple elements (i.e., 

 
Fig. 4.24. Data state variable definition example 
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commands, state variables, 
measurements) in state effects 
models. When measurement and 
command data are strongly 
associated with a single state 
variable, as with the camera 
mode state variable, it makes 
sense to manage this data as one 
data state variable. To 
understand the camera mode, we 
would need the camera mode 
measurements and commands as 
well as the state variable data. To 
manage this data, we would 
apply the same goals (e.g., 
latency constraints, compression 
rules), to all of this data, so a 
single data state variable for 
command, measurement and 
state data is the best choice. 

Data state variables can be used to represent how state variables affect the content of data. For 
example, image resolution (hence image size) can be affected by Camera Operating Mode. 

 Another way state variables can affect data is the quality of measurements. Here quality refers 
to the user-defined attributes (modeled as value history entry attributes) flagging facts about the data in 
accordance with rules. For example, the engineer may specify that a temperature measurement quality 
attribute bit should be set to ‘No Data’ if the temperature sensor is not healthy. 

Both cases where state variables affect data are represented in state effects models as shown in figure 
4.25. 

Managing Data through Data Goals and Commands 

Data commands are the interface to the data store in the system under control. Data commands, issued 
by data controllers, command the data management and transport software in the system under 
control, governing such actions as data retention, compression, and transport. 

As introduced earlier in this section, data management begins with a consideration of the state 
knowledge model of the system state variables. By inspection of the state effects model, we can 
determine appropriate groupings of state variables to manage with single data state variables. 

Data goals represent required constraints on data state variables. Data goals are achieved by data 
controllers, providing data management in support of system objectives. As described previously, the 
systems engineer considers data management requirements when specifying desired state behavior. 
The integrated state knowledge model of state knowledge facilitates this concurrent specification, 
providing a means for designers to realize more rounded, well-considered behavior specifications. 

Data goals are elaborated from the goals on state variables we have covered so far. As with other sub-
goals, the purpose of elaboration is to determine supporting goals that make the original goals possible 

 
Fig. 4.25. State effects diagram with data state variable annotations 
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or more likely to succeed. As described in the Goal Elaboration and Planning practice (section 4.1.3.2) 
sub-goals are determined by progressively asking “what propositions must be true in order for this goal 
to succeed?” 

As they govern the flow of data to the control system, data goals specify the accomplishment of the 
knowledge goals that support control goals. The elaboration of data control goals from knowledge goals 
is expressed as a last elaboration rule to the set introduced in section 4.1.3.2. 

Rule #7. A knowledge goal on a state may elaborate to control goals on: 
  (a) the state’s data state variable, or 
  (b) the data state variables for commands that affect the state, or 
  (c) the data state variables for measurements that are affected by the state 

Data state variables are defined on sets of data (state variables) for which it makes sense to manage the 
data the same way. As we see in Figure 4.26, the data for state variables Camera Temp and the 
temperature measurements of Temp Meas are managed through goals on a single data state variable, 
Temp Data. 

 
Fig. 4.26. Elaboration of knowledge goals into data goals 

In the above example, a knowledge goal on a state variable (Camera Temp) is elaborated into a set of 
supporting sub-goals via the elaboration rules presented. The elaboration begins with a transition rule 
for the state variable (the leftmost goal). At bottom, two data goals on the data state variable Temp 
Data are included, providing the data required to achieve the original goal. 

4.1.3.6 Define State Controller 
The Define State Controller practice concerns the specification of the state control model described in 
section 3.3. The state control model specifies how the control system rectifies the difference between 
the estimated state of the system under control (as estimated using the state estimation model) and the 
user-specified intent (specified in the goal model) through issuing commands to the system under 
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control. The state controllers of the control system issue commands to actuators in order to satisfy the 
behavioral constraints specified in the goal model 

 
Fig. 4.27. Define State Controllers practice detail 

The Define Control Goal activity begins with the state effects descriptions from the state knowledge 
model, coupled with the attendant goal model. From these models, the modeler identifies the states 
that must be controlled (i.e., the state variables with goals constraining them), and focuses on 
answering how the control system can best enforce the constraints specified in the goals. This activity 
differs from other elaboration in that the focus here is more on the implementation aspects of achieving 
the goals. Whereas the earlier elaborations focus on the specification of user expectations (outcomes), 
this specification gets into the details of how control is achieved (mechanics). 

Note that not all goals can be achieved by controllers in the scope of the control system. In these cases, 
the control system must model the uncontrollable state variables in order to either exercise indirect 
control of the state, or wait until the state variable constraint is satisfied. An example of this would be 
waiting until sunrise for the right ambient luminosity (our uncontrollable state variable) to take an 
image. 

The level of the specification detail for these control goals needs to be at the level that the modeler can 
consider implementation options for exercising control on the respective goals. Where this is not the 
case, the under-specified goals are processed by further elaboration. 

Applying the Define a Controller practice takes the implementation-grade goal specifications of the Goal 
Elaboration and Planning practice, and results in the selection and specification of controllers that 
achieves the specified goals. As in classic control, controllers interact with sets of actuators, estimators 
and sensors. The controller is designed through selecting the proper elements and element 
characteristics that will yield the right performance with the right system architectural qualities (e.g., 
robustness, security, reliability, responsiveness, scalability, etc.). These architectural concerns also factor 
into decisions about where control happens, and is an input to the Consider Deployments practice 
(section 4.1.3.10). 
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The engineer has the widest latitude to select the controller appropriate for the problem at hand. 
Algorithm complexity is driven by the application requirements. Algorithm choices include modal (e.g., 
state machines, truth tables) or continuous (e.g., PID) methods. In all cases, the controller algorithm 
determines the commands to issue based on the current estimated state and the goal. 

Human operators are also an option as controllers in goal-based systems. In “advisory” applications, the 
goal-based system provides state information on the system under control to a human actor who 
exercises control authority. 

Reactive versus Deliberative Control 

Part of controller definition is selecting between reactive and Deliberative control for each controller. 
Deliberative control works through pre-planned, system-wide coordination of control system elements 
to achieve goals, while Reactive controllers receive control goals from other achievers. Controller choice 
is driven by architectural considerations, such as a need for high-rate (real-time) control. 

Deliberative control is achieved through applying Elaboration, Projection and Scheduling functions to 
translate user intent into directives for the goal executive. The executed goals had been previously 
checked against future predicted system conditions and integrated with other goals through projection. 
This integrated timeline represents user intent out to the end of the planning horizon. 

Control through deliberation, while still closed-loop, is similar to “traditional” modes of control. 
Deliberation, as the name implies, works through coordination of activity planning against a set of 
resources over longer time frames. Deliberative controllers are best when there is a high amount of 
coordination (i.e., different activities requiring shared resources) involved between control system 
elements and a low level of responsiveness (i.e., necessary time between control and planning) 
required. 

 

Fig. 4.28. Delegation pattern for reactive control 
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A prime example of deliberative control would be planning rover position on Mars. The planning team, 
due to constraints such as round-trip light-time and availability of communication links must work at a 
remove from the on-board executor. Planners work from models of the necessary resources (e.g., 
mobility models, availability of solar power, communications schedules) to represent plans as sets of 
goals, which are forwarded to the on-board executor at an arbitrary time before actual execution. 

Reactive control is an alternative control method enabling tighter (real-time or near real-time) control. 
In a reactive controller, the achiever, instead of directly achieving the goal itself, sends the goals to 
subordinate delegate controllers. 

Reactive controllers are best suited for situations where it is impractical to expect to directly control the 
state variables in question with a significant delay in the control loop. Let’s again consider the previous 
rover example. The position and heading of the rover are state variables of interest in mobility planning. 
Given that these state variables can be planned on operational time scales (i.e., over a planning shift), 
these state variables are controlled through a deliberative controller. 

However, the wheel positions are another matter. The wheel positions are described by state variables 
that are controlled through sub-goals of the deliberatively-control position and heading goals. The 
actual wheel pointing will depend on real-time interactions with the soil and rocks, which can’t be 
known at planning time. Reactive control enables the operators to specify how the delegated controller 
for the wheel must behave to support the higher-level deliberative goals. These controllers work on the 
necessary time scale (real-time), in support of the deliberative goals from the delegating achievers they 
support. 

The delegation goals achieved by the delegate controllers are elaborated from the higher-level 
deliberative goals for the delegators. This specification ensures that these elaborated sub-goals are 
compatible with other sub-goals. 

Controller Definition Example 

For this example, we refer back to the imaging system introduced in this chapter. As described in the 
process detail, the first activity is to define control goals for the state variables of interest. The modeler 
starts by inspecting the goal model to determine the state variables that must be controlled to meet the 
high-level objectives. As mentioned part of the elaboration practice, sub-goals are defined to the level 
they can be controlled by individual controllers. 

From the definition of the sub-goals, we determine that Switch Position is the state variable to control. 
The modeler determines the values possible for this state variable by analysis of the nominal and off-
nominal conditions possible for this attribute. Considering the off-nominal cases at this point in design 
helps engineers “build in” robustness. The system will have an appropriate command response for all 
possible conditions. To this end, the engineer specifies “tripped” and “unknown” conditions in addition 
to the nominal “open” and “closed” states for the switch. These state variable conditions are then 
mapped to commanding for each of the goals as the command model for this state variable. Being an 
enumerated state, a matrix-style command mapping is considered appropriate for this state variable. 

Now that the controller algorithm is determined, the modeler can consider the estimator (section 
4.1.3.9) and actuator (section 4.1.3.7) to achieve the goals described in accordance with the specified 
control algorithm. 
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Fig. 4.29. Determining state variables and goals from goal models 

 
Fig. 4.30. Command model for switch position state variable 
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4.1.3.7 Define Actuators 
Actuators effect changes to the system under control in response to commands issued by the controller. 
The changes can be to physical attributes (e.g., gimbal position, switch position) or to software states 
(e.g., camera mode). 

All states variables for directly controllable states are assigned controllers in the control system. The 
assigned controllers are responsible for actively ensuring the constraints specified in their attendant 
goals are met during the entire duration when they are in effect. However, state variables we constrain 
with goals are not necessarily controllable by agents in our system scope. For example, we might have a 
requirement described as a goal for a certain light level for imaging to take place. The light level in this 
design is purely a function of the location of the sun in the sky, so while we might have a goal and 
controller for light level (satisfied by waiting until a time of day the sun is bright enough), that controller 
would not have an actuator. These considerations are addressed in the Define an Actuator activity. 

 
Fig. 4.31. Define Actuators practice detail 

State variables that can be actively constrained have actuators assigned to their controllers. The 
controller algorithm is used to determine the commanding the actuator must accept. The commands 
the actuator must accept are then modeled as part of the Model Commands activity. 

In modeling the commands, the modeler considers the effects the actuator-serviced commands have on 
the system under control. These effects are modeled using the state effects diagrams from the state 
knowledge model. In addition to the first-order effects of the commands (i.e., the state variables we 
want to affect), the modeler must also consider the second-order effects that go with the commands. 
The state effects model helps the engineer define and determine these effects, helping ensure that 
resulting system behavior is understood. 

Where the commands are issued is another architectural consideration, addressed in this practice by the 
question “should commands be transported?” The answer depends on partitioning considerations 
covered in the Consider Deployments practice (section 4.1.3.10). 
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Practice Example 

This example continues with the switch position command model we developed in section 4.1.3.6. From 
the command model, we determine the list of commands the actuator must service as well as the model 
of the actuator (i.e., the switch). The actuator model includes both the nominal and off-nominal 
conditions possible. 

 
Fig. 4.32. From command model to actuator models 

To understand the effect of the commands on the system under control, we analyze the state effects 
model. We see that switch commands directly affect switch position, but due to our analysis of off-
nominal states, we must consider switch actuator health as well. To complement the qualitative 
representation of state effects diagram, we specify how the respective switch commands drive the 
physical switch state (lower right of figure 4.32). In this diagram, switch states are represented by the 
white rectangles and transitions are described as combinations of received commands and estimated 
states of the actuator. Together, these representations specify the actuator that effects the changes 
required in the command model. 

It is important to note that the command effects model is defined in terms of true state. True states 
represent the actual physical conditions the switch can be in. The state “Unknown” from the 
commanding model at top is part of the estimated states (as defined in estimation modeling section 
4.1.3.9), which must explicitly represent uncertainty and potential failure states as well. 
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4.1.3.8 Define Sensors 
Sensors provide measurement evidence (physical readings, or other sampled data) from the system 
under control to estimators in the control system. The estimator (described in section 4.1.3.9) uses the 
sensor measurements to estimate the state of the system under control. 

 
Fig. 4.33. Define Sensors practice detail 

By modeling measurements, engineers make the system robust against incomplete and inaccurate 
readings caused by missing packets, data hits and faulty sensors. This practice is analogous to the classic 
control technique of “filtering” input considered as noisy to improve controller stability and 
performance. 

Sensors, along with actuators, are specified along with goal controllers. A sensor for a particular goal is 
defined in response to the question “can the state variable be measured?” In the affirmative case, a 
sensor is specified in the Define a Sensor activity. 

In cases where the state variable cannot be measured, the engineer must still model the state. This 
model information is integrated into the environment portion of the domain model for use by the 
control system. Recalling our example in section 4.1.3.7, consider the Sun’s position as a state variable. 
Again, our imaging system needs knowledge of the Sun’s position to determine whether we have the 
right light levels for imaging. As an alternative to adding a sensor to track the sun, the engineer could 
decide to model the position of the sun, saving on the weight, cost and complexity of an extra sensor. 
This solar position model (captured as a time-dependent Azimuth-Elevation function) feeds the Solar 
Position state variable and is used instead of a sensed state in the control system. 

Part of the sensor definition is representing the measurements produced. This specification is captured 
as the measurement model in the Model Measurements activity. The measurement models describe 
how one or more state variables affect the sensor’s measurements. To do this, the modeler analyses the 
state effects model to determine if all the relevant states for a measurement are included. 

The resulting measurement model is a predictive specification of what a sensor produces given a true 
state of the system. This specification will reflect the requirements for the hardware sensor making the 
measurements and any supporting software modeled as part of the system under control. 
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Example of Practice 

Sensors output measurements based on the evidence provided on state variables in accordance with 
user-specified measurement models. This measurement model captures the specification that the 
sensor must satisfy. In this example, we specify a sensor for temperature measurement. 

The modeler first begins with the state effects model to determine the state variables that factor into 
the measurement. In addition, the modeler determines secondary state variables that affect the 
measurement. As expected, Camera Temp is a primary state variable to consider in our measurement. In 
addition to this state variable, analysis of the sensor yields three related state variables, Temp Sensor 
Health, Sensor Scale Factor and Sensor Bias. These state variables capture attributes of the sensor that 
can affect the measurement we want to make. 

 
Fig. 4.34. Temperature sensor specification 

Once the complete list of state variables affecting a measurement is determined, an algorithm for fusing 
the state variables into a measurement is written. In this case, a simple pseudocode algorithm meets 
our needs. This model features an explicit means for handling a broken sensor through testing for sensor 
health (Temp Sensor Health). In the case the temp sensor is off-line, a flag value of “255” is returned, 
giving the control system an indication that the sensor measurement is suspect. 
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4.1.3.9 Define State Determination (Estimators) 
State estimators use sensor measurements and command histories to supply state knowledge on the 
system under control. State estimators act as the achievers of knowledge goals, in the same way that 
state controllers achieve control goals. As achievers of knowledge goals, state estimators are the only 
element of the control system allowed to update state information. 

 
Fig. 4.35. Define State Determination practice detail 

The state estimation practice begins with the state variable model. To be used by the control system, all 
state variables must be estimated. This includes states that are not directly controlled. As described in 
the Define State Variables practice (section 4.1.3.4), all state variables that are modeled are either 
subject to goals, or affect controlled state variables. From the state knowledge model, modelers begin 
with answering “how well must the state be known?” to start the Define Knowledge Goal activity. 

Defining knowledge goals actually starts as part of the Goal Elaboration and Planning practice (section 
4.1.3.2). However, the Define Knowledge Goals activity of this practice takes the high-level knowledge 
goal definitions and further refines them to the point that they can be achieved by individual estimators. 

Estimators are defined by considering two main questions in parallel. The answers to these questions, 
along with the attendant controller specification, feed the Define an Estimator activity of the Define 
State Determination practice. 

Estimator design can begin once knowledge goals are refined to the point that the modeler can ask 
“how will the knowledge goal be achieved?” The goal elaboration provides the modeler with the 
necessary context for understanding the control goals the knowledge goals serve. 

Similarly, the goal elaboration provides context for answering “how should state knowledge be 
updated?” The answer to this question is determined by considering the nature of the data (e.g., modal, 
continuous) and the requirements of the application (e.g., accuracy, latency). 

Estimation provides the control system with the most likely value of the state variable based on all of 
the evidence available. This process can also feature discrepancy checks, fault detection and diagnosis 
commensurate with the estimate quality required by the knowledge goals and the nature of the 
available evidence. This is especially important in systems where estimation is accomplished through the 
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fusion of data from a variety of sensor types. By explicit handling of discrepancies and other faults, 
engineers can imbue the control system with an added measure of robustness. 

As with sensors and controllers, the estimation algorithm selected is up to the engineer. The choice will 
depend on factors such as speed, accuracy and robustness, and options range from simple modal filters 
to Kalman filters. Another important concern when designing the estimator algorithm is to ensure that it 
is transparent. Inspectability is key to good modeling. This aids not only developers doing debugging, but 
also aids reviewers and personnel charged with operations and support later in the lifecycle. 

Example of Practice 

In this example, we continue developing the switch position state variable specification from the 
previous sections. The modeler wishes to specify an estimator to estimate the value of the switch 
position state variable. 

Estimation is the process of providing the most likely values for a state variable based on the 
information available. To this end, the modeler first analyses the attributes of the domain that can be 
expected to affect the quantity we want to estimate. These can be determined through inspecting the 
state effects diagram of the state knowledge model. 

 
Fig. 4.36. Determination of state variable states from state effects model 

Through the state effects diagram, we see that the state variable of interest, Switch Position, is directly 
affected by two state variables, Switch Commands, and Switch Actuator Health. The Switch Position 
state variable factors into one available measurement, Switch Position Measurement, which is in turn a 
factor of the state variable Switch Sensor Health. 

The modeler determines the states for the switch through analysis of the physical switch (employing 
schematics, Failure Modes and Effects Analysis and other means). This process was detailed in the 
Define State Variables practice (section 4.1.3.4). It is important to remember that these states are 
written from the standpoint of the control system, and the control system deals with estimated states. 
Therefore, uncertainty must always be modeled as part of the state variable definition. In our simple 
modal model, we define a state “Unknown” to represent uncertainty. For numeric states, statistical 
representations (e.g., descriptions of variance about an estimated mean) would be more appropriate. 

The job of the estimator is to determine which of these states are the most likely at particular times, 
based on the evidence available. As the analysis of the state effects diagram suggests, looking at the 
switch command effects and the switch position measurements looks to be a good place to start. 
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Fig. 4.37. Deriving estimator algorithm from available evidence 

In this example, the estimator algorithm is specified by combining the measurement, command and 
state variable models as illustrated in figure 4.37. The measurement and command models, reflecting 
physical effects, are expressed in terms of true state. Therefore, the command and measurement 
models do not include the state “Unknown”. 

In the estimator, all the possible permutations for commanding, measurement and affecting state 
variables are mapped to the estimated states. In the estimated states, we include states to model 
uncertainty (i.e., “Unknown”) to complement the true states of the physical switch model. In this 
example, the “Unknown” state provides a means of coping with inconsistent evidence that could result 
from a measurement (bad sensor) or transport (data point lost) failure. 
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4.1.3.10 Consider Deployments 
Deployments in state analysis describe the partitioning of the functions of the control system (as 
introduced in section 3.1.2) between physical elements of the overall system. A typical spacecraft 
system might have separate spacecraft and ground deployments (the ground system is part of the larger 
control system that includes the spacecraft). A spacecraft may be composed of subsystems including a 
launch vehicle, cruise stage, lander, and science instruments each with their own embedded control 
systems. Partitioning can consider hierarchical partitioning where elements are accessed as subsystems 
or peer partitioning. This practice primarily covers peer partitioning where each deployment contains 
part of the control system (some state variables and associated estimators, controllers, sensors and 
actuators) and the deployments have to communicate with each other via remote data transport links. 
In a hierarchical decomposition, part of the control system (e.g., a science instrument) might have its 
own embedded goal-oriented control system. In a hierarchical decomposition like this the subsystem 
might interact with the parent control system in terms of goals and state variables, or the system might 
model the instrument as part of the system under control (sensors and actuators) depending on the 
level of system engineering interaction and cooperation between teams (this is just a matter of where 
the system architect draws the line between control system and system under control). This partitioning 
is done in response to architectural considerations illustrated in this practice. 

 
Fig. 4.38. Consider Deployments practice detail 

In the Define Deployments activity, architects begin to plan where the control system functions can best 
be performed to realize a satisfactory balance of emergent concerns (e.g., reliability, safety, robustness, 
maintainability, scalability). Each deployment may be responsible for an arbitrary amount of each of the 
functions of the control system. It is up to the architect to select the physical architecture instantiating 
the functional architecture in the most suitable fashion. 

Allocating different parts of the system to different physical deployments can serve several distinct 
purposes. First, in spacecraft systems it addresses a basic requirement of carrying out science 
investigations in remote environments; that you have to get the instruments into the remote 
environment and operate them there. Spacecraft can be highly autonomous but they still need to return 
results to scientists on Earth to “close the loop” on their primary goals. This requires allocating some of 
the functionality to the remote platform, and some to computers and people who on Earth. Similarly, 
the flight system might need to have distinct stages or parts that can be discarded or operated 
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separately such as an orbiter and lander. Deployment decomposition also addresses organizational and 
development process considerations such as contracting requirements. Science instruments are often 
contracted out as separate subsystems. In all such situations state analysis is primarily concerned with 
the information (state estimates, goals, measurements, commands) that has to cross boundaries 
between deployments, and the qualities of that information exchange (latency, completeness, etc.). 

It is important to note here that the control system functions can be deployed differently for individual 
sets of goals. The choice is up to the architect. 

 
Fig. 4.39. Canonical functions of the goal-based control system (as introduced in section 3.1.2) 

An advantage of the state analysis approach is that the candidate architectures, due to the specification 
we’ve detailed in the preceding practices, can be simulated and run in order to analyze them in modeled 
operational contexts. These simulated configurations can be compared on their relative suitability, using 
the domain and system models developed in the course of state analysis. This ability to specify and 
compare executable architectures provides the architect with a powerful tool to assess candidate 
architectures early, further reducing project risks. 

The Consider Deployments practice begins by asking “are physical system segments significantly 
separated?” By “system” we must consider the control system in addition to the system under control. 
For example, a rover on Mars is an element in an overall “system”. This system includes elements with 
the responsibility for operating and sustaining to rover, as well as retrieving and processing data. The 
scope of the control system we specify through state analysis must be similarly broad. 

The proper degree of separation will depend on the particulars of the system. An architect can answer 
the question on distribution by thinking about where it is appropriate to accomplish the functions of the 
control system as described in section 3.1.2. Section 2.3 covers a number of examples of systems 
categorized partially by the degree of distribution of the control system functions. 

Another question to consider in defining deployments is “how much control latency is acceptable?” This 
can be thought of as the required speed of the control loop between stimulus, planning and response. 
The “faster” the state variables being controlled, the faster the required control. 

The location of the execution function is important to the speed with which commands can be issued to 
the system under control, and estimates of state variables can be obtained. For real-time applications, a 
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typical choice is to co-locate the execution function with the system under control. This is especially true 
of the distributed autonomous systems described in figure 2.3 of section 2.3. 

To exercise true cognizant control, the execution needs to be tightly coupled (little latency of command, 
feedback) with the system under control. While it is conceivable to have execution performed remotely 
from the system under control, sending commands over a medium and making measurements 
remotely, the latency involved largely negates the closed-loop advantages of goal-based control. 

Elaboration, projection and scheduling use the specifications from state analysis to define the set of 
behaviors that achieve user objectives, and analyze the results of this behavior against intent. These 
functions typically work on a slower schedule than execution since intent changes more slowly than the 
phenomena modeled by state variables and handled by execution. 

Elaboration, projection and scheduling also involve many of the most CPU-intensive tasks of the goal-
based control system. In applications where the computational power available to the remote asset is a 
premium (as is the case with many space applications), it makes sense to perform these functions off-
board (on the ground). It is also often the case that the performance of these functions requires a 
significant degree of non-automated analysis, or human interaction, weighing the balance in favor of 
keeping these functions on the ground. 

With the system functional partitioning specified in the Define Deployments activity, we are now ready 
to consider how to handle the flow of information between deployments. Addressing remote 
information is done through two tasks, Define H/W Adapter Proxies and Define State Variable Proxies. 

Hardware adapters provide an interface between the hardware of the system under control and the 
control system. They serve the control system by translating commands to hardware input and data 
from the hardware into output. The hardware adapters are physical sensors and command decoders. 

Proxy State variables refer to state variables that reside in deployments other than the one where they 
are originally estimated. An example of this would be a case where the estimator is co-located with a 
remote system under control. The state variables are then produced locally by the estimator, these 
being Basis State Variables. The control system determines the required commanding by comparing 
state variable value to the user-specified goals. In this remote case, control system needs local copies of 
the basis state variables. This is accomplished through the use of proxy state variables. The next 
following example should clarify this distinction. 

Deployments Practice Example 

In our example, we locate the system under control on the surface of another planet. 

The deployments example above is typical for a space system application. The Consider Deployments 
practice is accomplished by selecting the proper allocation of control system functionality between 
deployments. In our example, the architect has determined that two deployment classes are 
appropriate, Ground and Flight. 

As indicated in the instantiation of the functional partitioning, all elements of the control system use the 
same models for the system under control, allowing the functions to be executed anywhere in the 
system the architect chooses and ensuring control system element actions are consistent with each 
other as well as the original, integrated system specification. 
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Fig. 4.40. Example of partitioning of functions of control system into deployments 

Looking at the functional partitioning at the upper left of figure 4.40, we see the architect has allocated 
the Elaboration, Projection and Scheduling functions to the Ground deployment. The rules driving 
Elaboration and Scheduling are captured as models (goal elaboration and scheduling rules) as part of 
state analysis. A system could carry out the translation of intent into executable timelines through 
elaboration and scheduling anywhere in the system. In this example however, the architect decides that 
allocating elaboration and scheduling to the flight computer would be too computationally demanding 
or risky. By doing the elaboration, scheduling and projection on the ground, the operations team can 
turn intent specifications into executable timelines (which we will cover in section 5) through their 
accustomed planning and sequencing process, and validate the executable file (x-goal timeline) before 
uplink. The operations team uses the execution, planning and scheduling functions to turn their intent 
into executable times captured as goal-nets. 

At the bottom of figure 4.40, we have operations team members carrying out execution monitoring of 
the system. In this example, the architect decided that execution monitoring should be done by human 
operators in addition to onboard. 

The execution function onboard the remote site estimates and stores the original state variable values, 
the basis state variables. As part of remote execution, the architect must define a set of proxy state 
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variables for the ground deployment. The proxy state values are local copies of the basis state variables 
copied from downlinked telemetry from the remotely executing deployment. These proxy state 
variables serve the same purpose in the Ground element as the Flight element. As denoted in the circles 
of the functional portioning portion of the figure, the goals specifying user intent are compared with the 
state variable values to analyze execution and determine the appropriate commanding. 

4.2 Development Path 
The purpose of this section is to illustrate how the state analysis practices introduced in section 4.1 
relate by use of a generic development process. As stated in the beginning of this document, specific 
process prescriptions are not in the scope or intent of this work. However, the strawman development 
path introduced here serves to give the reader a sense of the ordering of effort involved in specifying 
systems using state analysis. 

The development path follows the classic systems engineering progression from high-level, user-focused 
concept and artifacts, to solution-specific implementation deliverables. A central theme of this work is 
the efficacy of models for eliciting, expressing and analyzing requirements. The models of state analysis 
provide the necessary context to describe the domain, and understand how that domain must be 
manipulated to achieve user needs. The models of state analysis also provide a rich set of concepts and 
relationships to specify an architectural solution to meet the stated need. This architecture demarcates 
the possible design space, encompassing the range of suitable designs and providing a means to gauge 
the relative merit of particular implementations. Models also aid by tracing implementation items back 
to specifications of needs and expectations. This integrated, navigable set of specifications enables 
developers to more readily discern how capabilities (goal sets) can be packaged for integration and 
testing. 

 
Fig. 4.41. Generalized development path 
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The development path outlined in figure 4.41 is a generalized set of steps for progressively realizing an 
architecture specification and instantiating a solution in design. As with other systems engineering 
processes, the flow is top-down, starting with user requirements definition and proceeding to the 
technical details of implementation. This flow is reflected in the division of the process into two general 
areas, Preliminary Specification and Technical Specification. 

The result is a progressive refinement of the solution, answering the big questions first in order to 
reduce risks. 

Each of the state analysis practices of section 4.1 are accomplished to varying degrees in all of these 
steps. This parallelism reflects the iterative nature of development, where questions answered by 
specification answer and raise other questions until convergence is achieved around the “go” for critical 
design. The steps of the process in figure 4.41 overlap as well. Dashed arrows indicate where 
intermediate products are fed back to previous steps to resolve earlier issues. 

4.2.1 System Requirements Specification 
The goal of System Requirements Specification is to capture user requirements and necessary domain 
knowledge from which the solution architecture will be defined. This aggregated specification, captured 
as an integrated set of models, enables the stakeholders to specify early what is desired (in terms of 
goals), and what is important to satisfying them (largely in terms of the state knowledge model). While 
the requirements and expectations are largely captured as models, the aggregated specification is 
complementary to the traditional text-based user requirements specification. 

As with the traditional text-based specification, the preliminary specification should not favor any 
particular implementation. By focusing on user wants and domain realities, the team deals with the 
“whats” before diving into the “hows” of technical specification. 

4.2.1.1 Step 1: Build a Preliminary Goal Model 
The focus of this step is on identifying the stable system-level requirements (goals) and elaborating 
them through sets of sub-goals. By “stable”, we mean goals that are valid for any implementation that 
might be selected. This ensures that developers keep the focus on what conditions must be true to 
satisfy the user, not on premature implementation specification. These goals typically represent high-
level system behavioral requirements. 

 
Fig. 4.42. Development path detail on step 1: build a preliminary goal model 
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The elaborations of this step are also key in identifying the aspects of the domain that must be 
controlled to achieve goals, as well as the domain aspects that affect what we need to control. These 
attributes are the “subjects” of the goals we identify and elaborate, and are represented as part of the 
state knowledge model. This is discussed further in Step 2: Derive Preliminary Concept Models (section 
4.2.1.2). 

Goals are identified by following the Requirements/Goals Elicitation practice (section 4.1.3.1) and 
elaborated via the Goal Elaboration and Planning practice (section 4.1.3.2) once the definition is mature 
enough (i.e., in terms of accepted concepts from the domain model developed in step 2). The 
elaboration into sub-goals continues until the system boundary is reached (i.e., all domain aspects 
controlled or affecting control are accounted for in models). 

Vignette 

We return to the remote imaging system introduced in section 4.1 to illustrate each step of the 
development path. In step one, the team works to identify top-level goals by analysis of existing system 
requirements, ConOps and other documentation describing user expectations for the system-to-be. The 
team starts development with the Requirements/Goals Elicitation practice (section 4.1.3.1), determining 
and describing the top-level goals that guide subsequent efforts. In this vignette, we are provided a 
Functional Flow Block Diagram from an existing ConOps for the remote imaging system. 

 
Fig. 4.43. Functional flow block diagram for the remote imager system 

The Functional Flow Block Diagram describes the basis system-level activities, making it a good starting 
place for identifying the goals representing desired behaviors. Starting with the top-level expression of 
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user objectives, we progressively refine terms until requirements are stated. Requirements on dynamic 
attributes of the system are then refined as goals. 

 
Fig. 4.44. Progressive refinement from objectives to goals 

Goals are derived from analysis of requirements, particularly requirements on dynamic attributes. In the 
example above, a goal, Image Exists, is derived from analysis of a functional requirement for Science 
Imaging. 

High-level goals are refined by carrying out preliminary elaboration (bottom of figure 4.44). Through 
elaboration, the modeler identifies the sets of necessary sub-goals to satisfy the original high-level goals. 
This activity is described in the Define Elaborations activity of the Goal Elaboration and Planning practice 
(section 4.1.3.2). 

The end result of this step is a preliminary set of goal and sub-goals definitions from which to anchor the 
domain analysis of step 2. This specification forms the beginning of the system goal model introduced in 
section 3.3.2.1. The “subjects” of the goals comprise the basic domain vocabulary that will be elaborated 
in subsequent steps. 
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Fig. 4.45. Examples of preliminary goal/sub-goal definitions 

4.2.1.2 Step 2: Derive a Preliminary Concept Model 
Step 2 focuses on the definition of domain concepts identified in the preliminary goal model from step 
1. The modeler identifies and defines the stable concepts from the stable, high-level goal model. These 
concepts are the subject nouns of the aforementioned goals. These subjects describe dynamic attributes 
of domain we need to control, or affect the attributes we need to control. The result is a complete, 
consistent set of universally-understood definitions and descriptions of the aspects of the system under 
control and environment relevant to satisfying the identified objectives. This domain specification is 
specified in the resulting preliminary state knowledge model. 

 
Fig. 4.46. Development path detail on step 2: derive preliminary concept models 

The Define State Variables practice (section 4.1.3.4) is central to this step. The domain information that 
will feed the state knowledge models is determined through analysis of the preliminary goal model and 
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available domain descriptions (e.g., schematics, operator interviews, supporting system specifications). 
The goal definitions from step 1 begin to list and describe the states we must consider with our control 
system. By identifying and relating the “subject nouns” of the goals and sub-goals, we begin a top-down 
description of the scope of the domain to address with the control system. The subject nouns of the 
defined goals and sub-goals are the system state variables. We also begin to relate the state variables to 
each other through state effects diagrams. 

Vignette 

Step 2 begins with the goal model definitions from step 1. The modeler analyses the goal definitions and 
available domain documentation to determine state variables. Relationships between identified state 
variables are represented in state effects diagrams. 

 
Fig. 4.47. From goal models to state effects 

In the example above, we identify Boresight Off-Angle as a state variable from the goal model and 
definition. We follow the Define State Variables practice to refine the state variable in terms of related 
domain concepts (in this case, Azimuth and Elevation Offsets). This process proceeds until the state 
variables are specific enough to be addressed by single controllers in the case of controlled state 
variables, or single models in the case of uncontrolled state variables. 

Note that this entails early decisions on the scope of the control system. While the decision to control or 
not to control is easy in the case of state variables like Sun Angle, it is not as clear cut in other cases and 
will depend on larger architectural concerns. 

As the state variables are refined into greater detail, the modeler may find relevant state variables that 
are not covered by goals in the original goal model. These newly-identified state variables are then 
addressed by updating the goal model as part of the iteration between steps 1 and 2. 

Step 2, and by extension the preliminary specification phase of the development process is complete 
when the team is able to demonstrate to stakeholders that… 

All desired system-level functionality and behavioral qualities are specified. 
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The goal specification exhaustively lists and describes what the system should do (i.e., goals describing 
the realization of functions) as well as the system “quality” constraints (e.g., level of service, latency, 
etc.). The goals are traced back to objectives and user needs, providing a means for reviewers to validate 
the specification. 

The scope of the system is appropriately defined. 

The system scope is represented in the specification as the portion of the domain that must be 
controlled or coordinated to achieve the identified user needs. This is reflected in the set of state 
variables represented, as well as decisions to control (requiring active measures to enforce constraints) 
or coordinate (model state variable and use information to influence other controllers) the respective 
state variables. 

These and other questions are answered as part of a System Requirements Review. 

4.2.2 Technical Specification 
In the technical specification phase, modelers complete the architecture specification by describing how 
a system would meet the user requirements developed in the previous phase. While the user 
requirements (captured in goal and state knowledge models) are described in “operations-centric” 
terms (focused on desired outcomes and free of details of particular implementation details), the 
specification resulting from this phase will have a level of detail from which design decisions can be 
made. The resulting specification is reviewed in the Preliminary Design Review at the conclusion of the 
phase. 

4.2.2.1 Step 3: Elaborate the Goal Model with Supporting Goals 
The goal model developed and validated in the previous phase is a high-level, operator-focused, 
implementation-neutral description of what the system needs to do to achieve user needs. We now 
must further refine this model using sub-goals describing the technical aspects of achieving the user 
goals. The ultimate result of this step is an implementation-ready (i.e., we can realize the controllers to 
implement them) set of goals that can be achieved to satisfy the user need. 

 
Fig. 4.48. Development path detail on step 3: elaborate the goal model with supporting goals 

In this step, we refine the aforementioned user goals through devices such as operating scenarios. 
Operating scenarios provide a framework to fill in the practical details necessary to specify how a system 
can satisfy the constraints described by the goals. The scenarios also guide analysis on necessary 
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relationships (e.g., timing, ordering) between goals. The resulting elaborations and relational constraints 
are captured in the updated goal model. 

Scenarios are also a means to identify alternate elaborations (tactics) to satisfy goals. As part of making 
implementation decisions, the architect analyses the alternate elaborations to determine which sets are 
suitable for the class of designs that are being considered. The architect also must begin to specify 
criteria for selecting between alternate sets of suitable elaborations as well as mechanisms for selecting 
between them. 

The primary state analysis practices for this step are Goal Elaboration and Planning (section 4.1.3.2) and 
Define Scheduling Rules (section 4.1.3.3). The goal model from step 1 is refined into sets of 
implementation-level sub-goals through the Goal Elaboration and Planning practice. The Define 
Scheduling Rules practice guides the specification of constraints (e.g., ordering, concurrency, timing) 
between sub-goals. 

Step 3 is carried out simultaneously with Step 4: Derive Updated Concept Model. As we shall see in the 
vignette below, refining goals in scenarios goes hand in hand with refining the state variables. 

Vignette 

We refine the original Image Exists goal from the preliminary goal model developed in step one into a 
set of sub-goals. As before, this representation of goals can be thought of as, “these sub-goals must 
succeed in order for the top goal to succeed”. At this point, there is little ordering specification given, 
besides loose ordinal words such as “during” or “before”. 

 
Fig. 4.49. Elaborating of original goal model 

As mentioned previously the state effects accompanying the goals are also required for scenario 
definition. The interactions between state variables guide the specification of constraints, and ensure 
that the modeler does not omit state variables necessary to achieving goals. We determine the state 
variables through analysis of the sub-goals and other domain specifications. 
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Fig. 4.50. Determination of state variables from sub-goals 

Scenarios, particular threads of execution, provide a framework for elaborating goals in an operational 
context. Scenarios are specified as related timelines of state variable values and constraints. System 
scenarios are found in documentation such as the ConOps. 

Scenarios are defined as sets of parallel state variable timelines. The necessary timelines are the set of 
state variables constrained by the sub-goals of the elaboration set of the original goal (see figure 4.49). 
To define the scenario, the modeler specifies boundary conditions; assuming starting states and 
imposing ends states. In imposing states, the modeler is in effect specifying goals (constraints on states). 
By refining the specification of the constraints, the modeler is able to update the loosely-defined 
previous goal definitions into more operationally-relevant constraints. 

 
Fig. 4.51. Scenario definition from state variables 
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The scenario above describes the ordering of state variable constraints necessary for imaging with our 
remote camera system. Through the integrated models, we can begin to predict necessary durations, 
and side effects of activities. By iterating with step 4, we progressively refine the state variable 
definitions and relationships as well. 

4.2.2.2 Step 4: Derive the Updated Concept Model 
Step 4, the updating of state variables, is closely related to the previous step of goal refinement. As with 
step 3, we add operational details by elaborating how elements relate in accomplishing scenarios. 
Refinements in goals lead to refinements in state variable models and vice versa. This iteration is 
represented in the development path detail below. 

 
Fig. 4.52. Development path detail on step 4: derive the updated concept model 

As goals are elaborated, new state variables may be identified and related to existing state variables. 
This is done through application of both the Goal Elaboration and Planning and Define State Variable 
practices. 

While previous steps focused on identifying state variables necessary to meet objectives, we now begin 
to consider what control is needed to enforce the necessary constraints on the state variables. In 
addition to identifying and describing supporting state variables as part of elaboration, we also begin to 
consider implementation details such as how to manage state variable data to support data 
management goals. This analysis and specification is accomplished through the Define State Value 
Histories (section 4.1.3.5) practice. 

Vignette 

As mentioned, step 4 is accomplished in parallel with step 3. The refinement of the goal model leads to 
refinements in the state variable models and vice versa. The original goal is decomposed into a 
supporting set of sub-goals describing constraints on the updated state variables. Through scenario 
definition, we can refine our state variable descriptions and relationships to the point where we can 
define controllers to enforce constraints. Scenarios also help us specify resource and other constraints 
based on system limitations (e.g., slew times, required power, bandwidth) that must be included in the 
updated system model. Figure 4.53 represents the updated imaging scenario, with early specification of 
temporal constraints based on preliminary durations from modeling of actions (i.e., time to slew 
camera, represented as Camera Pointing = “Turning”). The modeling of resource usage, and durations of 
actions is part of the state knowledge model (state effects). 
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Fig. 4.53. Updated scenario with durations 

Comparing the above scenario figure with the initial scenario model (figure 4.51), we see that the state 
variable timelines are now divided into intervals with concrete states and more precise ordering 
constraints. The state variable states are included into the definition of the respective state variables, 
along with rules for transitioning between the states. The specified states on intervals are the state 
variable constraints to be enforced by controllers. 

4.2.2.3 Step 5: Analyze Responsibilities and Elaborate Controller Models 
In step 5, we use the updated state variable constraint (goal) definitions from the previous steps to 
define the controllers to enforce the constraints, and the estimators to determine current state. As we 
covered in section 3.3.2, state control and state estimation are both activities under the control system 
function of execution. Both activities of execution involve achieving goals; control goals for controllers, 
knowledge goals for estimators. The focus of this step is to define how the necessary constraints will be 
satisfied, either directly by active control, or through other controllers acting on models of state 
variables outside of the scope of the control system. As a goal of the architecture is to explore the 
design space in order to “bracket” the span of suitable designs, we can specify alternative controllers for 
goals where applicable. We decide between alternative controller implementations in later steps. 
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Fig. 4.54. Development path detail on step 5: analyze responsibilities and elaborate controller models 

In step 5, we detail the agents charged with ensuring the outcomes specified in the previous four steps. 
To analyze responsibilities, we must answer “what is capable of controlling the state variables 
constrained by goals?” and “what how can we monitor the variables to be evaluated for that goal?” In 
determining agents to control goals, we have the flexibility to select software, human agents or 
combinations of the two (e.g., software sensors, human executives with software executive backup). 

The initial controller specification should be an “abstract” (i.e., specify what the controller needs to do, 
not “how”) description. This gives the architect the flexibility to decide between implementation options 
based on which option can best satisfy the initial specification in accordance with wider architectural 
concerns (e.g., reliability, responsiveness, cost). 

The key state analysis practices of this step are Define State Controller (section 4.1.3.6), Define 
Actuators (section 4.1.3.7), Define Sensors (section 4.1.3.8) and Define State Determination (section 
4.1.3.9). 

Vignette 

Iteration on the goal model in the previous steps results in a full set of sub-goals for achieving the 
original high-level goals. The definitions of the “leaf” (bottom-most) sub-goals are refined enough to 
specify controllers to enforce them, and estimators to estimate the values of their state variables. In this 
example, we begin to consider control and estimation of a sub-goal to close the power switch for the 
camera. This sub-goal supports a higher-level goal that the camera be powered, and this connection is 
documented in the goal and state effects models (figure 4.55). 

Controller specification begins with defining a control algorithm. The algorithm expresses each of the 
actions a controller can accomplish to satisfy the goals allocated as a function of estimated states. 
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Fig. 4.55. Allocation of controller to goals 

Controller algorithms are driven by the requirements of the particular application. Algorithm suitability 
is driven by architectural concerns such as accuracy requirements and computational complexity 
limitations. In our switch position controller example, a modal controller meets these requirements. 

 
Fig. 4.56. Controller algorithm and related specifications 

The controller algorithm is a function of the states of the state variable controlled, as well as the set of 
goals allocated to that controller. The states are determined through from the state variable definition. 
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The state variable definition consists of both a physical and estimated set of states. The estimated states 
extend the physical states by including modeling of uncertainty. We also include faulted states, as 
applicable in the physical definition. In this case, we determined that switch trips are a contingency that 
must be explicitly addressed by the controller. 

As articulated in classic control, and further explained in the Define State Controller practice (section 
4.1.3.6), the controller must use estimated state, as is does not have direct access to system state 
variables. These estimated states are included in the controller algorithm. To complete the specification, 
we add the goals allocated to the controller (i.e., Switch Open and Switch Closed). The commands issued 
by the controller are a function of the estimated states and the current goal. These commands fill the 
cells of the resulting matrix of goals and estimated states (top left of figure 4.56). 

The physical and estimated states, along with the controller algorithm inform the command and 
measurement models as well (left portion of figure 4.56). These specifications serve as requirements for 
actuators and sensors, respectively. The estimator will use the command and measurement information 
described here in its determination of the most likely state variable value. An example of this was given 
in section 4.1.3.9. 

4.2.2.4 Step 6: Make Choices among Alternative Options 
In step 5, we wrote abstract specifications for sets of controllers, estimators, sensors and actuators. 
These specifications serve as requirements for particular implementations of these elements and 
configurations to accomplish them. In step 6, we make decisions on particular implementations based 
on wider architectural considerations as well as compliance to the specifications developed in the 
previous step. 

 
Fig. 4.57. Development path detail on step 6: make choices among alternative options 

At this point, all the state analysis models, goals, state knowledge, state estimation and control exist in 
at least preliminary form. From here on, modelers will refine the existing models in order to facilitate 
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early design decisions. Unlike the previous step, step 6 does not involve specification, per se, but 
selection among specifications based on an analysis of suitability. 

In addition to the practices involving the specification of controllers, sensors, estimators and actuators, 
we must refer to the Consider Deployments (section 4.1.3.10) and Requirements/Goals Elicitation 
(section 4.1.3.1) practices to inform selection decisions. Through considering the appropriate 
deployments, we can determine the context (e.g., distribution, relation of elements, latency) that the 
items will operate in. The requirements/goals elicitation practice describes how modelers refer back to 
the original system requirements, and demonstrate satisfaction. 

Heuristics for Selection 

There are many conceivable heuristics for making selection decisions in architecting; [Rechitin2002] and 
[VanLamsweerde2009] are two excellent references. A couple of key heuristics to consider are… 

• Use qualitative reasoning techniques to select options contributing the most to system higher 
priority “quality” measures (performance, reliability, cost) without hurting the lower-priority 
measures too much. 

The explicit specification and traceability from needs to objectives to satisfying elements through 
models makes this approach possible. The relative merit of particular implementation tactics in terms of 
“quality” is determined through application of (usually normative) heuristic evaluations (e.g., “avoid 
implementations using toggle commands”). The integrated model facilitates such global appraisals and 
trades. 

• Use quantitative techniques, such as multi-criteria analysis to gauge the relative suitability of the 
available options. 

This is also made possible by the traceability of need and requirements to the implementation 
specifications. Another advantage of the state analysis model framework is the executable nature of the 
models. These models can be used to specify the prospective system variants for simulation, allowing 
modelers to evaluate alternatives prior to committing to any one design. Analysis of these executable 
system models is key to the next step Build and Analyze the Behavior Model. 

4.2.2.5 Step 7: Build and Analyze the Behavior Model 
In step seven, we make the realized system behaviors explicit by completing the specification of the 
dynamic system properties in the models. As mentioned in the previous step, the executable nature of 
the models provides a capability to simulate systems based on the specifications developed. While 
simulation in development is nothing new or esoteric, building useful, valid simulations is easier and 
cheaper when using an explicit, structured ontology such as the state analysis framework. 

Simulation provides developers, operators and other stakeholders the opportunity to perform earlier, 
more frequent validation (demonstration of suitability) of designs. The structure (i.e., explicit, consistent 
semantics) and transparency of the models enables the team to assess the completeness and 
correctness of the specifications. The accessibility of the models leads to stronger designs and better 
product decision making over the lifecycle. 
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Fig. 4.58. Development path detail on step 7: build and analyze the behavior model 

In addition to aiding selection among alternatives, simulation using the executable models of the 
architectural specification plays a number of important roles over the remainder of the system lifecycle. 
While we touched on the utility of simulation using executable models for evaluating prospective 
designs in trade studies in step 6, step 7 describes how simulation is used in detailed design and 
operations. Analyses of the simulations feeds back into earlier steps (step 3 and 5) as well. Simulation of 
the emerging system provides insights, guiding changes to specifications. 

Behavior specification is an aspect of multiple state analysis practices, but this effort centers around the 
Define Projections activity is the Goal Elaboration and Planning practice (Section 4.1.3.2). We describe 
this activity as part of the vignette in this section. 

The ability to simulate systems allows developers to answer important performance questions before 
committing resources to implementation. While the use of simulation is well established among 
individual hardware-centric fields (e.g., power, telecommunications, mechanical), the structured 
analysis of system-level behavior has not achieved the same maturity. The state analysis models provide 
a framework allowing the team to describe and simulate the overall system (structure and 
relationships). This system-level analysis provides the insights into system issues (e.g., performance, 
resource usage) at a precision and resolution previously achieved by subsystems only. Just as 
importantly, the shared framework links the previously separate subsystem specifications, ensuring the 
overall system specification is consistent. 

Consistent specification provides assurance that all threads of the development effort work from the 
same set of expectations and assumptions. The shared specifications also link the development 
knowledge to operations. Operators use the models from development to specify, verify and validate 
their goal nets. 
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The simulation capability described goes beyond simple projection of states based on extrapolations of 
current conditions. The models (particularly the state effects models) feature rules describing how 
projected states depend on other states. This explicit treatment of cross-system causality provides a 
more valid system model with wider applicability and credibility. For example, a system with a heater 
estimated as “failed” would take this into account when coordinating plans that require higher 
temperatures in the future. Let’s elaborate projection with an example using a simplified heater model. 

Vignette 

Developers need to understand projected state to validate their designs (establishing the system can 
meet objectives), while operators use the same projections to validate plans and verify sequences. The 
projected state represents both the intended state (specified in the goals of the plan), and reachable 
states (the range of possible values as a function of time) using a given achiever, estimated state, and 
dynamic system model. 

 
Fig. 4.59. Projected state prediction inputs 

The physical model describes how the state variable in question responds to commands and other 
events. This information comes from physical models of state knowledge and command models. The 
intended state is specified as networks of goals for state variables. Goals represent the state we would 
like specific state variables to be in as the plan executes. Estimated and projected states describe the 
range of states possible for the state variable, including uncertainty. The estimated and projected states 
are determined from the estimation model. Achiever behavior accounts for what the controller can do 
to influence state. This is described by the command model. 

Projected state is represented as function of intent (intended state) and projected/estimated state 
subject to the physical and achiever behavior models (see figure 4.59). The projected state prediction is 
represented in plans as goals (same as intended state). The future time history of predictions forms the 
set of possible (estimated) state trajectories. 
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Fig. 4.60. Determining projected state from model inputs 

Projections allow the user to validate the system by checking intent (the plan) against expectation. 
While developers use projection to assess system capability (e.g., “does the heater selected meet our 
thermal requirements?”), operators use projection to validate their plans (e.g., “does the heater have 
enough time before imaging?”). 

 
Fig. 4.61. Comparison of projected state to intended state 

Figure 4.61 details how the projected state of the prediction model is compared at planning time to the 
intended state specified in the x-goal. While the example on the left illustrates an x-goal’s predicted 
success, the right example illustrates a failure due to a predicted “Failed Off” condition. Since the “Failed 
Off” condition is modeled as persistent, there is no way to satisfy the x-goal, so an imminent goal failure 
is flagged at planning time. 

By projecting estimated current conditions and comparing to future user intent, the control system can 
identify future conflicts of timing or resources. Having identified the conflict in advance, the system can 
employ user-specified resolutions to repair plans or drop the offending goals. See section 5.3 for details 
on this topic. 

4.3 General Principles for Specification using State Analysis 
In this section, we cover cross-cutting concerns practitioners should consider in the specification of goal-
based systems. In section 4.3.1, we introduce the reader to basic design principles for architecting goal-
based systems. Section 4.3.2 covers basic design patterns describing common arrangements of 
framework elements to realize control system elements. Section 4.3.3 is a list of basic questions that the 
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integrated specifications must answer with references to the applicable state analysis practices covered 
in section 4.1. 

4.3.1 Guiding Design Principles for Architecture 

Separation of control system from system under control 

When designing a control system it is essential that the designer understand the difference between 
what can be controlled and what can’t. This has to include what aspects of the design and 
implementation can be managed versus what is given by the system decomposition. While it may in 
some cases be possible to negotiate design changes to a subsystem, this becomes harder to do after a 
system is initially decomposed, particularly if the subsystem is hardware. Where the line is drawn is less 
important than the fact that it is clearly defined, and the interfaces across the line are unambiguous and 
understood and accepted by implementers on both sides of the line. 

Separation of estimation from control and the expression of state knowledge 

It’s a common mistake in control system implementation to combine control decisions with logic needed 
to make sense of the incoming measurements. Although this might seem efficient, it often results in a 
system whose behavior is hard to explain in terms of what one can observe from the outside. If a 
developer, operator, or tester can’t see what the control system believes the state of the system to be it 
will be more difficult for them to verify that the behavior is correct, or to determine why it isn’t correct. 
Furthermore, when state knowledge is needed to inform more than one control decision it is essential 
that the system provide a single source for that knowledge in order to avoid the control conflicts that 
can easily emerge when two different controllers are deriving their own estimates of the same state. 

Expression of intent through declarative goals rather than imperative command actions 

Imperative commands specify an action to change the state of the system. What they don’t say is what’s 
supposed to happen after that. They merely imply an intent for the state of the system to remain in the 
changed state, and may not even accomplish that. In large complex systems, particularly space systems 
where dependability and safety are important, this can make it exceedingly difficult to predict what the 
state of the system should be given a sequence of commands without performing a detailed simulation. 
Imperative commands also may not work as intended if the target device has failed. 

A goal is a constraint on a state variable of the system (the physical system) over a specific interval of 
time. As such it is (can be) completely unambiguous about what the intended state of the system should 
be at any given time. 
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4.3.2 Design Patterns (adapted from [Wagner2008]) 
Design patterns provide practitioners with normative guidance on solutions to recurring problems in a 
domain. Pattern spares us the expense and risks associated with “re-inventing the wheel”; practitioners 
can leverage accumulated experience and best practices in their own efforts. Control system designs 
specify the instantiation of framework design elements (metamodel elements introduced in section 4.1) 
to solve particular problems. In this section we introduce a number of recurring patterns for design in 
the State Analysis framework. Readers may refer to [Wagner2008] for a more detailed treatment of this 
topic. 

 
Fig. 4.62. (Re-stated) Metamodel of state analysis design elements 

4.3.2.1 State Estimation 

Purpose 

Define an architectural pattern for estimating the values of physical state variables based on available 
evidence; cleanly separate estimation from control. 

Motivation 

It is a common mistake in control system engineering to make control decisions based on incomplete 
knowledge of the state of the physical system as described in raw measurements. Measurements can be 
noisy, and intermittent. Filters are commonly applied to raw measurements, but if the results are buried 
in a control algorithm, they cannot easily be reused by other controllers. Worse, two different users of 
the same raw measurements, using different filters, may arrive at different estimates of the state of the 
physical system, resulting in control conflicts. Having a single explicit representation of any physical 
state variable of the system under control, using a single estimator, ensures consistent representation of 
that variable in the control system. 
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Structure 

The primary structural elements that participate in this pattern are described in figure 4.63. First, the 
State Variable provides an explicit representation in the control system of a corresponding physical state 
variable of the system under control. This is also known as the software state variable to make the 
distinction clear. State Variables are first-class entities in this pattern for three reasons. First, a direct 
representation in software of the physical state being controlled makes the software more readily 
understandable. In addition, telemetry based on state variable values is generally more informative than 
raw measurements because they refer to a physical state being monitored and possibly controlled. 
Second, the existence of the state variable permits a separation of concerns between estimation logic 
and control logic. Third, the existence of a single software state variable for each physical state variable 
ensures that there is one definitive source for estimates of a given physical state in the control system, 
and only one way to access it. This avoids the common situation where two different controllers each 
have their own private yet inconsistent estimates of a physical state, leading to surprising and 
potentially hazardous interactions. 

 
Fig. 4.63. Estimation pattern (minus command evidence) 

An Estimator is responsible for actively providing values to populate the state variable with the best 
estimate of its value from available evidence. In the simplest case an estimator may have only one 
source of evidence, such as measurements from a single sensor, but in the general case there are 
multiple sources of evidence: measurements from multiple sensors, commands sent to multiple 
actuators, and estimates of other state variables. The role of the estimator is to combine that evidence 
into a “best guess” of the value of the physical state, known as an estimate. Estimators must deal with 
discrete and continuous values, noisy, missing or corrupted measurements, and inconsistent evidence 
from multiple sources. These characteristics underscore why state estimation deserves special 
attention, quite apart from control. 

The Hardware Adapter is simply a formal interface to the system under control. It provides a command 
interface for components that can be directly commanded (actuators), and a measurement interface to 
components that provide measurements of the system state (sensors). Its main role is to formalize the 
interface, but it can also serve to normalize the interface (like a device driver) and buffer data. 
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Measurements are raw samples delivered from sensors to an Estimator via a Hardware Adapter. They 
can have any form, since this is often determined by the sensor hardware. They should have time tags to 
eliminate timing ambiguity. It is important to remember that measurements are not state estimates; 
measurements are a type of evidence used by estimators to generate state estimates. 

Commands are another type of evidence used by estimators, though not shown in figure 4.63. 
Specifically, a command issued to an actuator effects one or more physical states, and can therefore 
provide evidence about the values of those physical states. Thus, estimators may acquire not only 
measurement evidence from sensor hardware adapters but also command evidence from actuator 
hardware adapters. 

State Variables store information about the system state in the form of State Value Functions. These are 
distinct from Measurements in that State Value Functions must be continuous over time, and explicit 
about uncertainty. Measurements are readings at discrete points in time, and usually provide a single 
uncalibrated value. The process of Estimation (the role of the Estimator) involves calibration, smoothing, 
or noise elimination, and application of system models to determine and express uncertainty. State 
values can explicitly represent the fact that the system state may be unknown in situations where 
measurements are not available (e.g., if a sensor is powered off or failed). Estimators produce state 
knowledge and repeatedly update software state variables. The precision and certainty of that state 
knowledge depends is driven by need, typically the need to control one or more physical state variables 
to a desired accuracy. Goals are used in this pattern to express constraints on the desired quality of the 
state knowledge, which may vary over time. Thus, estimators can be viewed as “achievers” for these 
goals. 

Applicability 

This pattern applies in any control system where knowledge of the target control states must be 
inferred from sensors or other raw evidence available in the system under control. In any given system 
the line between control system and system under control can be drawn somewhat arbitrarily, so the 
“sensors” in the system under control layer can be arbitrarily complex. A measurement can be a raw 
sample from an A/D converter measuring voltage on a line, or it can be a highly-processed position and 
orientation vector produced by a complex navigation instrument. This pattern is usually applicable 
regardless of the quality of the devices in the system under control producing the measurements. As 
long as there is an inter-system interface the control system designer needs to consider the need to 
account for missing or discontinuous samples. In the most ideal case where the system under control 
produces values that can be used directly as state knowledge, the control system will still need to copy 
values into a state variable using a trivial pass-through estimator. In a case like this, though, you may be 
drawing the line between control system and system under control inappropriately. 

Results 

The existence of software state variables as first-class citizens in the architecture encourage a separation 
of concerns between estimation and control. The State Estimation pattern—and the State Control 
pattern that follows—formalize this separation. This separation is important because it decouples two 
concerns that have often been intertwined in control system software, making each concern easier to 
design, implement, verify, and reuse. Also, the role of a software state variable as the sole source of 
information for estimates of its corresponding physical state variable eliminates the potential problem 
of multiple, private-but-inconsistent estimates within a control system. This pattern also makes a clear 
distinction between measurements and state estimates. This is an important distinction for robust 
control systems because there are often multiple sources of evidence about the state of any single 
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physical state variable—sources that should be examined and reconciled before making control 
decisions. 

4.3.2.2 State Control 

Purpose 

Define an architectural pattern for exercising control over a given target system in a way that directly 
uses knowledge of the state of the system under control. 

Motivation 

Consider a simple thermostatic temperature control system. The system under control includes a 
temperature sensor and a heater that can be controlled by a switch. The goal is to maintain the 
temperature within a target range, or within a target range. Designing and implementing a software 
control system for this is straightforward. However, what if the underlying system changed (such as a 
change to the sensor) after the software was written, or you had to port the control system to different 
hardware? How hard would it be to pick apart the various models, assumptions, and algorithms from 
the code? The closed-loop control pattern is intended to address this problem by defining placeholder 
elements for each of the key roles in a control loop, and rules governing separation of responsibilities 
between these elements. 

Structure 

The elements of this pattern are shown in figure 4.64. 

 
Fig. 4.64. State control pattern 

As in the State Estimation pattern, a Hardware Adapter provides a line of separation between an 
Actuator in the system under control, and a Controller in the control system. Control intent is expressed 
through the use of Goals, which express a constraint on the target state over an interval of time. 

A Controller is responsible for any direct interactions with the system under control required to change 
or control the target physical state. The controller can issue commands to the target system through a 
Hardware Adapter. A controller is goal-directed in the sense that it issues commands as needed in order 
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to drive the state of the physical system into agreement with the goal, or desired state. Note that the 
controller bases its decisions on the comparison between the goal and state knowledge provided by 
state variables. In other words, the controller never examines raw measurements to make control 
decisions (i.e., it never performs any internal state estimation). 

Applicability 

This pattern applies in situations where the control intent (the goal) can be expressed as a constraint on 
state over a time interval, or as a sequence of such constraints, and where the target state can be 
explicitly described in a state variable, and where the target state is directly controllable. This pattern is 
typically limited to primitive states of the system under control that can be effected through actuators. 

The controller may rely on models of the system under control to determine appropriate control actions 
when the target state can only be indirectly controlled. 

Results 

This pattern, like the State Estimation pattern, supports the separation of concerns between estimation 
and control, and therefore makes control software easier to design, implement, and verify because 
control logic is cleanly separated from estimation logic. This pattern places responsibility for control of a 
physical state variable within a single controller. As such, a controller may issue commands to multiple 
actuator hardware adapters that have an effect on the physical state being controlled. 

4.3.2.3 Reactive Closed-Loop Control 

Purpose 

Define an architectural pattern for exercising simple closed-loop control over a given target system in a 
way that directly represents knowledge of the state of the system under control, distinguishes between 
raw evidence and state estimates, cleanly separates state estimation from control, and bases all control 
decisions on the relationship between estimated state and desired state. 

Motivation 

Consider a simple thermostatic temperature control system. The system under control includes a 
temperature sensor and a heater that can be controlled by a switch. The goal is to maintain the 
temperature within a target range, or within a target range. Designing and implementing a software 
control system for this is straightforward. However, what if the underlying system changed (such as a 
change to the sensor) after the software was written, or you had to port the control system to different 
hardware? How hard would it be to pick apart the various models, assumptions, and algorithms from 
the code? 

The reactive closed-loop control pattern is intended to address this problem by defining placeholder 
elements for each of the key roles in a control loop, and rules governing separation of responsibilities 
between these elements. 

Structure 

The structure of this pattern is a simple composition of the state estimation pattern and the state 
control pattern as shown in figure 4.65. 
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Fig. 4.65. Reactive closed-loop control pattern 

What is important to note in the structure of this pattern is how it can be composed from the sub 
patterns due to the clean separation between estimation and control. Estimation and control are 
separate functions that only interact through the state variable. 

Applicability 

This pattern applies in situations where the intent (the goal) can be expressed as a constraint on state 
over a time interval, or as a sequence of such constraints. In the simplest case, the goal may be statically 
built into the system. In the more general case, an external sequencing mechanism delivers goals in 
order, as described later in the section 4.3.2.7, Executive Control. 

Results 

Some states can only be controlled indirectly. In this case the pattern may extend, and control loops 
may overlap one another via common state variables. As long as the system is accurately modeled and 
estimation and control algorithms are faithfully executed, this pattern works for all control problems 
where the intent can be expressed as a single constraint, or at least a single constraint at a time. The 
pattern can be extended to support more complex behaviors in the following ways: 

• Complex constraints (e.g., trajectory) – Here the goal includes timing information that describes a 
path through state space over time. An example of this is a transition goal, which is defined as a goal 
that allows for the transition from one stable state value to another. Transition goals express intent 
to have the state arrive at a target value, yet avoid a determination of failure if the state is not 
immediately being satisfied. For example, a transition goal on a temperature state variable might be 
defined so that it is succeeding as long as the temperature is moving toward the target value, 
whereas a maintenance goal would be defined so that any excursion from the constrained value 
range would be considered a failure. 

• Hierarchical layering of achievers – goal achievers can be organized in a control hierarchy whereby a 
higher-level achiever issues goals to subordinate achievers to coordinate their actions in real time. 
An example is a position & heading controller for a Mars rover that issues real-time goals to the 
multiple driving and steering controllers. 
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• External sequencing of constraints – this approach is commonly used in robotic systems not only to 
sequence the constraints on a single state, but also to coordinate the application of goals applied to 
many states. See section 4.3.2.7, Executive Control. 

These patterns can be combined in various ways to implement quite complex behaviors. A common 
limitation, though, is the limited tolerance for faults. In particular, the sequencing of goals into complex 
activities will typically describe one plan or script with all events ordered in time, or possibly sequenced 
according to states being achieved. If something breaks, or something unexpected happens, these 
scripts have only a limited ability to recover because there is no explicit representation of the higher-
order intent, and no formal mechanism for expressing alternative methods to accomplish them. This 
limitation motivates the Deliberative Closed-Loop Control Pattern described in section 4.3.2.9. 

4.3.2.4 Goal Network 

Purpose 

Define an architectural pattern to represent the relationships between a set of goals on a set of state 
variables that specify control coordination across states and over time. 

Motivation 

The primitive patterns described thus far provide the means to control state variables individually. In 
order to coordinate control of multiple states, a way is needed to represent relationships among goals 
on different state variables. 

Structure 

A Goal Network (see figure 4.66) is primarily a container for a set of goals and their associated software 
state variables. To make any sense as a plan, goals must be temporally related with one another. This is 
done using Time Points and Temporal Constraints. A time point represents an abstract event. Every goal 
associates with exactly one starting time point, and one ending time point. However, time points can be 
shared by many goals. Time points carry no internal relationship to time. Instead, all temporal 
relationships are represented through Temporal Constraint objects, which also associate with one 
starting time point and one ending time point. A temporal constraint can specify a minimum and 
maximum duration allowed between two time points, or simply a sequential ordering constraint. 

A Goal Network contains goals, time points, and temporal constraints, as shown in figure 4.10 in section 
4.1.3.2. The term “goal network” is used because the topology of the container is that of a directed 
graph where the time points are the nodes, and the goals and temporal constraints are the edges. The 
“parent” relationship illustrated in the figure means that each goal has a link to its parent goal. This 
parent/child relationship is populated during goal elaboration, as explained in section 4.3.2.5, on the 
Goal Elaboration pattern and the Goal Elaboration and Planning practice in section 4.1.3.2. 
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Fig. 4.66. Goal network 

Since time points can be associated with different goals on different state variables, they enable 
coordination of goals across different state variables. Figure 4.10 in section 4.1.3.2 depicts an example 
of a goal network. The yellow circles represent time points. The green boxes represent goals aligned 
along state time lines. 

Time points joined by vertical lines indicate that those time points are shared, representing events that 
connect the state time lines. The arcs between time points represent temporal constraints, in this case 
indicating a minimum and maximum duration allowed between the given time points. Earlier, a goal was 
defined as a constraint on the value of a state variable over an interval of time. Note that the goal’s 
relationship with time is indirect, through its relationship with a starting and ending time point. 
Constraints on the duration of the goal are specified through temporal constraints on the bounding time 
points, and not as part of the goal itself. This separation of concerns allows for goals that do not have 
any temporal constraints, but it also allows temporal constraints that are not elaborated from goals to 
be added as part of the scheduling process, which will be described later. Every goal instance in the 
network associates with a specific software state variable that it constrains. The set of goals associated 
with a single state variable can be computed into a sequential timeline through the process of ordering 
the time points into a topological ordering that satisfies all of the temporal constraints. This may result 
in overlapping goals on the same state variable. Thus, goals must have the property that allows them to 
be combined, or merged. The process of merging two goals may result in a new, more constrained goal. 
Merging occurs as part of the scheduling process described later. A goal network can exist in two states. 
When initially constructed, an unscheduled network is simply the aggregation goals, time points, and 
temporal constraints representing a proposed plan. An executable plan has undergone scheduling and 
verification (described later) to merge and order goals according to temporal constraints, and verified 
that the proposed plan is achievable. 

Applicability 

This pattern becomes applicable as soon as coordinated control over multiples states is required. 

Results 

The use of temporal constraints to indirectly constrain event times allows for temporal flexibility in the 
plan. Contrast this with sequences having fixed event times, or purely sequential ordering. 
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4.3.2.5 Goal Elaboration 

Purpose 

Define an architectural pattern to represent causal dependency relationships among a set of goals. 

Motivation 

Coordinated control is about controlling several component states to accomplish some higher intent. In 
order to achieve intent on a given state variable, the control system may need to control other state 
variables that are causally related. In other words, goals may beget other supporting goals. 

The elaboration pattern provides a formal mechanism by which a goal (an expression of intent) can 
specify dependencies on other supporting goals needed for their own achievement. 

Structure 

Elaboration is defined as the process of generating the additional supporting goals that would be 
needed in the same plan in order to accomplish the “parent” goal. A goal can associate with an 
Elaborator (see figure 4.67) whose job it is to provide the additional plan elements needed to achieve a 
given goal. This set of supporting goals—plus any needed time points and temporal constraints—is 
known as a Tactic. Tactics are small goal networks defined in support of a particular parent goal. A goal 
can have more than one tactic, i.e., there may be more than one set of supporting goals that can help 
achieve the parent goal. 

 
Fig. 4.67. Goal elaboration pattern 

When the elaborator provides multiple tactics, only one can actually be used at a time in a single plan. 
An elaborator determines the tactic to apply depending on a variety of possible conditions, including 
current state variable values, scheduling failures, and failures of supporting goals during execution. In 
the latter case, goal elaboration in response to execution failures is called re-elaboration, and is 
described further in section 4.3.2.8, Goal Monitoring and Fault Response. In the case of a scheduling 
failure, a schedule using one tactic is determined to be unachievable, so the elaborator tries a different 
tactic if one is available. The elaborator is separate from its goal mainly to separate specification of 
intent (the goal) from planning behavior that may or may not need to exist where the goals are 
executed. 

The process of elaboration is performed at the level of an entire goal network. The initial set of goals is 
elaborated and then their supporting goals are elaborated recursively until the process bottoms out 
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with goals having no elaborators (i.e., having no need for supporting goals). Goal elaborations are 
normally defined such that supporting goals are on state variables that are either the same state 
variable as the parent goal, or are state variables that affect the parent goal’s state variable. 

The elaborator class can be more than a simple container of a set of predefined tactic sub-networks. It 
can use information available in the network context including current and historic states of the system 
(from state variables) to compute tactics appropriate to the given situation. 

Applicability 

This pattern applies to any system where coordinated control across multiple state variables is needed. 

Results 

A goal represents a desired outcome, and that encourages operators to think in terms of the outcome 
rather than in how it will be achieved. Of course, somebody still has to design the tactics to achieve the 
outcome, but that is done once, and then appropriate tactics are selected thereafter via goal 
elaboration. The elaboration process can be invoked prior to execution (at plan design time) to 
elaborate operator-specified goals into the complete set of goals needed to accomplish the intent. A 
modified version of the process can be used during execution to respond to goal failures. (A goal with 
failing tactics can be re-planned by removing its current tactics from the goal network, and elaborating 
and scheduling an alternate tactic.) 

4.3.2.6 Goal Planning and Scheduling 

Purpose 

Define a pattern for automatically preparing a goal network for execution. 

Motivation 

The power of the elaboration process is that it makes it possible to describe a high-level goal and all of 
the supporting goals it needs to be achieved. Maximum flexibility is achieved if the elaborations specify 
the fewest temporal constraints. Additional constraints need to be added to the goal network by the 
planning and scheduling process to create an executable goal network that is known to be “achievable”. 
Achievability is determined by the planner by checking the executable goal network against the 
capabilities of the control system, and the physics of the system under control. 

Structure 

The planner/scheduler shown in figure 4.68 represents the object performing planning and scheduling. 
A planner/scheduler is basically a constraint solver. Given a set of proposed goals, and temporal 
constraints (edges in a directed graph) the planner first elaborates all goals recursively to populate a 
complete set of goals needed to achieve the proposed goals. The planner then merges concurrent 
portions of overlapping goals on the same state variable. Merges that result in unachievable goals are 
rejected. 
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Fig. 4.68. Planner/scheduler Interactions 

Scheduling a goal network is the process by which an elaborated goal network is prepared for execution. 
At the end of elaboration, each state variable has goals and time points defined on it. Scheduling picks 
an ordering of the time points for each state variable. Goals that overlap over time intervals are merged. 
If merging results in an inconsistent goal, then a different time ordering is selected by the scheduler. In 
addition, the temporal constraints in the goal network are propagated to determine if the goal network 
is temporally consistent. Before a scheduled goal network is ready for execution it must be validated. 
Validation of a scheduled goal network checks that sequential goals on state variable are consistent and 
that state predictions based on the ordered and merged goals meet the intent of the ordered and 
merged goals. Sequential goals are checked against transition achievability criteria to determine if a goal 
can begin executing when the previous goal’s end condition is met. Predictions are computed using a 
mechanism called state projection that takes into consideration models for the effects of goals on 
affecting states, initial state variable values, physical models of state variable behavior, the behavior of 
the control system when it executes goals, and temporal constraints on the goals. If a consistency check 
for sequential goals or a state prediction check fails, the scheduled goal network is rejected, and the 
scheduler attempts a different ordering of time points. If all consistency checks succeed, then the 
ordered and merged goal net is promoted for execution as an executable goal network. The projections 
for each merged goal are saved with that merged goal in what is called an executable goal. If no ordering 
of time points results in a valid goal network, the planner/scheduler backtracks to choose another 
elaboration tactic. 

Applicability 

Needed if goal elaborations are to allow for temporal flexibility. 

Results 

A key advantage of the planning and scheduling pattern is that problems can be detected before they 
happen by checking predictions for planned executable goals. An executable goal network has been 
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validated against models to ensure that every goal is achievable, and every transition from one goal to 
the next is achievable. Although the order in which goals are executed along any given state variable 
timeline will be fixed by this process, the network may still permit flexibility in the order in which events 
occur on different timelines, and the firing of time points. 

4.3.2.7 Executive Control (Timeline Execution) 

Purpose 

Define an architectural pattern for execution of a planned and scheduled network of goals (an 
executable goal network) that will execute goals associated with planned activities according to a time-
driven, and state-driven schedule. 

Motivation 

Given that operator intent is captured within a goal network as a series of goals placed upon state 
variables, how is this translated into activities performed by the system under control? Using the simple 
thermostatic control example, the switch to the heater must be turned on at time t0 and turned off at 
time t1. During that span of time, the heater must remain within a certain temperature range. In this 
example there are two events that must occur; turning the switch on then turning it off. During the 
period of time the switch is on the temperature of the heater must be monitored to ensure it remains 
within the range specified by the goal. The Executive Control pattern ensures the events occur within 
their temporal windows. 

Structure 

The purpose of the Goal Executive, as depicted in figure 4.69, is to carry out the intent represented in an 
executable goal network by dispatching goals for execution at the appropriate times. The executive 
relies on the fact that goals express a continuous intent on a target state variable as long as they are in 
effect, and it is the responsibility of the control system to continue to try to achieve each assigned goal 
for each state variable until the next goal is dispatched for that state variable. The executable goal 
network specifies the intent timelines for each of the state variables modeled within the control system. 
An intent timeline for a state variable is represented in the executable goal network as of a series of 
time points connected by merged, executable goals. Scheduled time points can retain some temporal 
flexibility as allowed by the set of temporal constraints in the goal network. As time is advanced by the 
executive, it is the responsibility of the executive to continually propagate the temporal constraints to 
refine the schedule of each time point. 
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Fig. 4.69. Executive pattern 

Like goals, executable goals are bounded with starting and ending time points, some of which may have 
been generated during the scheduling process due to partially overlapping goals. A time point 
represents a time at which the executive must perform an action. The temporal constraints of the 
contributing goals determine the valid range of times, or window, in which the time point is considered 
open, or eligible to fire. To fire a time point, the Goal Executive checks that all the goals that have this 
time point as their starting time point are “ready” to start executing; that is, the post-conditions and 
pre-conditions associated with the transition from the current executable goal to the next executable 
goal on the timeline have been satisfied . When the Goal Executive fires a time point it becomes 
“grounded” in time, removing any temporal flexibility it may have had, and the next executable goal’s 
constraint is dispatched to the control system for execution. The Goal Executive will honor a not-ready 
transition status while within the eligible window of the time point and not dispatch the next executable 
goal; however once past the window the Goal Executive will fire the time point and issue the next 
executable goal even if it is not ready for transition. Thus a temporal problem in execution will be 
manifested as a potential goal failure by the goal that was not ready to transition. 

Results 

Executive Control provides for the sequencing of activities on individual state variable time lines and the 
coordination of events across all state variables modeled within the system. As an independent 
functional entity, the Goal Executive may continue to execute the latest mission plan while other 
planning activities occur. It provides an intermediate rate of execution between potentially long-term 
planning activities and rapid execution cycles of a reactive control system. As such, care must be 
exercised when choosing a rate of execution for the Goal Executive. 



Human-Rated Automation and Robotics 

106  
 This document has been reviewed and determined not to contain  
 export controlled technical data. 

4.3.2.8 Goal Monitoring and Fault Response 

Purpose 

Define a pattern for monitoring the execution of goals in order to respond to goals that cannot be 
achieved (goal failures). 

Motivation 

Time continues moving forward regardless of what happens in the system. Although a reactive control 
system, with the knowledge of intent available in a goal, may be able to compensate for some 
unexpected events, things can still fail. Since the current goal network was planned using a specific set 
of tactics to achieve certain goals, there may be other goal networks (using alternate tactics) that could 
still achieve the plan’s intent. For example, consider a goal to drive a mobile robot from point A to point 
B through city streets. The set of available routes is constrained, and a given plan may choose one route. 
However, after executing part of the route, an obstacle is encountered, preventing further advance 
along that route. Now the only option is to give up the current plan, and try another route. Since the 
current plan may also contain goals that are still relevant, the executive and the goal achievers cannot 
just stop – they must continue trying to achieve the current plan until a new plan can be produced. So, a 
separate mechanism is required to notice that the plan is failing, and notify the planner to do something 
about it. 

Structure 

The Goal Monitor is a separate element of the control system that monitors the status of all currently 
executing goals. The Goal Monitor consults each executable goal’s associated state variable to check the 
estimated state against the intent of the goal. The Goal Monitor may also check temporal constraints 
and projections to determine if a goal can still be satisfied. If the state variable reports that a given 
merged executable goal is no longer satisfiable, the Goal Monitor will then initiate a fault response. 

 
Fig. 4.70. Goal monitor pattern 

First, it will attempt to determine which of the contributing goals merged into the failing executable goal 
have failed. To do so, it will query each of the contributing goals to see if it is still satisfiable. For each 
failing goal it then finds that goal’s parent goal (using relations in the goal network), and notifies the 
parent goal’s elaborator, which in turn determines an appropriate fault response. 
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Fig. 4.71. Fault response 

The parent goal’s elaborator has several options. It can decide to do nothing (i.e., just let the plan 
continue to execute and hope for the best); it can assert an error condition that would stop and safe the 
system; it can propose a change of plan by invoking re-elaboration of a different tactic; or, it can “fail 
up” by consulting its parent for a fault response. The process of failing up the goal elaboration hierarchy 
allows a fault to propagate up to the level of intent at which it can be appropriately dealt with. 

Results 

Separating the goal monitor from the executive allows the executive to continue trying to achieve the 
current plan as best it can. Separating the goal monitor from the planner/scheduler allows the monitor 
to continue checking the status of goals even after a fault is detected and a response initiated. If a 
second fault occurs, the monitor and planner/scheduler can then prioritize their response based on 
relationships between the failing goals. For example, if several goals are all failing at the same time (a 
likely situation if their state variables affect one another), then the goal monitor, or planner can 
determine that they are all children of the same parent goal, and then only have to replan that one 
parent goal. Or, it can determine that the goals are entirely independent, and re-elaborate and 
reschedule them separately. 

Fault management is a key aspect of our robust control concept. While we have introduced the pattern 
for monitoring and here, we provide a more in depth treatment of these topics in chapter 5. 

4.3.2.9 Deliberative Closed-Loop Control 

Purpose 

Reactive control is very useful for many situations when control decisions can be made without looking 
far into the future. However, sometimes the determination of what should be accomplished in the 
present depends on what is planned or predicted for the future. Because reactive control systems have 
no knowledge of future plans beyond the activity they are currently trying to accomplish, there is a need 
for a mechanism to control systems that must consider the future. The deliberative closed-loop control 
pattern provides such a mechanism. This mechanism constructs, monitors, and revises goal networks 
that take into consideration requirements on what needs to be accomplished in the future. The 
deliberative closed-loop control pattern monitor function responds to unpredictable or unanticipated 
events as they occur during execution. 
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Motivation 

Consider the problem of maintaining a battery state of charge through a series of activities that both 
consume and produce energy. One can represent the requirement to maintain the battery state of 
charge above a minimum limit as a goal on a battery energy state variable. The activities, represented as 
a series of goals, need to be ordered in time into a plan such that the battery state of charge does not 
fall below the minimum limit. The goals that affect the battery state of charge in the plan are used to 
predict the battery state of charge, and validate that the plan does not violate the minimum battery 
state of charge limit. The goal to maintain the state of charge can be monitored during execution, and 
activities can be shed if the use an unexpected amount of power. 

Applicability 

This pattern is applicable to situations in which: 

(1) A large number of state variables need to be controlled in parallel; 

(2) The control strategy involves a series of activities organized into a long term plan; 

(3) The activities can be expressed as goals on state variables; 

(4) The state variables must be controlled to meet user-defined goals; and 

(5) The plan needs to be able to be changed automatically in response to unanticipated or 
unpredictable events. 

Structure 

This pattern is a composition the following patterns described previously: 

(1) Goal Network 

(2) Goal Elaboration 

(3) Goal Planning and Scheduling 

(4) Executive Control (Timeline Execution) 

(5) Goal Monitoring and Fault Response 

Construction of a goal network includes the elaboration of operator-specified goals, scheduling the 
resulting goal network, and validating the result as an executable goal network. The executable goal 
network is executed by the goal executive, and as each executable goal executes it is monitored by the 
goal monitor. The goal monitor notifies the planner when an executable goal fails, allowing the planner 
to modify the plan to respond to goal failures. Combining these patterns enables the kinds of complex 
behaviors possible using traditional sequencing and fault management mechanisms, but in addition, it 
accommodates dynamic changes to the plan. Specifically, it provides a coordinated mechanism for 
responding to faults or other unexpected deviations from the plan. 

Results 

A key advantage of the deliberative closed loop control pattern is that problems can be detected before 
they happen by checking predictions for executable goals. Corrective action can be taken before serious 
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consequences ensue. For example, if battery energy is being used faster than predicted, the goal 
network may be revised to shed lower priority energy-consuming goals. Or it may schedule new goals to 
charge the battery. The deliberative closed loop control pattern may require significant computing 
resources and time for performing scheduling. This can be ameliorated by ensuring that goal networks 
are scheduled for a limited time horizon, avoiding the computational expense of long-term planning. 
Also, prescheduled networks can be quickly swapped in if a fast response is required. An example may 
be a “safe-mode goal network” that puts the system into a safe state. This pattern needs good models 
of physics and achiever behavior to validate scheduled goal networks. However, models only need to be 
as good as necessary to achieve objectives. Many times conservative simple models are adequate. 

4.3.2.10 Deliberative and Reactive Closed-Loop Control 

Purpose 

Reactive and deliberative closed-loop control patterns are combined into a single pattern to allow for 
highly flexible and robust control system behavior. 

Motivation 

Control systems may need to be both reactive to small changes in the system under control, as well as 
being able to plan and execute a long-range series of tasks. For example, a Mars rover needs to be able 
to deliberatively plan a safe path across rocky terrain and also reactively control its wheel rotations to 
accommodate slippage while maintaining forward progress. 

Applicability 

This pattern is applicable to most embedded and robotic control systems, which require both 
deliberative and reactive control. 

Structure 

This pattern is a composition the following patterns described previously: 

(1) Reactive Closed-Loop Control 

(2) Deliberative Closed-Loop Control 

These two patterns are connected through software state variables. State variables are estimated and 
controlled by the reactive control system in response to executable goals metered out by the 
deliberative closed loop control system. The deliberative control system sequences and validates the 
plans for goal execution, and detects goal execution failures as the reactive control system acts on the 
goals. The deliberative control system responds to goal failures through goal re-elaboration and 
scheduling to produce a modified executable network. 

Results 

The integration of deliberative and reactive control brings some complexity in terms of interactions 
between the two patterns, but this complexity is largely inherent in the challenging control problems for 
which it is applicable. The intent of specifying this architectural pattern is to provide a structured means 
of dealing with this complexity. 
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4.3.3 General Specification Questions 
A complete goal-based specification carried out using state analysis must demonstrably satisfy the 
original top-level requirements for the system. This is aided by the inherent traceability of the 
implementation specification (e.g., controllers, sensor, actuators) to the domain (state variables) to the 
intent (goals) back to the originating requirements. 

To be assured of a complete specification, practitioners should consider this basic list of related 
questions (figure 4.72). While this list is by no means exhaustive, it may serve as a starting point for 
assessing the completeness of the description of the system. We continue this section with brief 
descriptions of each question along with references to the most relevant state analysis practices from 
section 4.1. 

 
Fig. 4.72. Basic specification questions for state analysis 

4.3.3.1 State Knowledge 
State knowledge concerns how the control system knows about the system under control and the 
environment. This should be an exhaustive description of the attributes of the domain that must be 
controlled, along with the attributes of the domain that affect what we must control. This understanding 
is captured in the state knowledge models. 

Question: What state variables describe the system under control? 

Primary Practice(s): Define State Variables (section 4.1.3.4) 

To determine the necessary state variables for control, it is best to start with the goals derived from the 
top-level system requirements determined through the Requirements/Goals Elicitation practice (section 
4.1.3.1). By analysis of the goals, modelers get a better sense for what attributes of the domain matter 
(what we want to constrain) and why (their links back to requirements, and effects on each other). By 
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starting top-down from the initial set of goals, modelers can avoid specifying state variables that do not 
contribute to or affect the state variables of interest. 

A related question is “when is state analysis done?” The aim of modeling is to provide a set of 
specifications describing the problem along with the characteristics of solutions (to be instantiated in 
design) responsive to the original problem. The models should only be as complex as to describe the 
above. Engineering judgment and the project risk posture will drive the requirements for model detail. 

Modelers can “prune” their models of unnecessary state variables by asking “why do we care about this 
attribute?” If the state variable does not trace to a goal from Requirements/Goals Elicitation, or does 
not impact such a state variable, consider taking it out. 

Another sign of over-modeling is the same state being represented by more than one state variable. 
State variables should be unique in the specification. This uniqueness ensures consistency and greatly 
simplifies implementation. 

Question: How do state variables represent variation in time and uncertainty? 

Primary Practice(s): Define State Value Histories (section 4.1.3.5) 
Define State Determination (section 4.1.3.9) 

State value histories provide modelers with a means to specify how a state is expected to change over 
time. Any deterministic progression of state (e.g., time or event based state machines, time-based 
polynomial functions) can be accommodated. This specification also provides a means to specify how 
long predictions last, allowing modelers to describe how certainty can degrade with time. 

Robust controllers explicitly represent uncertainty in their knowledge of the system under control. This 
uncertainty is specified as part of the Define State Value Histories practice for each state variable. 
Uncertainty in state variables can be represented in a number of ways ranging from enumerated 
confidence tags (e.g., “known”, “unknown”) to variance in Gaussian estimates or covariance matrices. 
The only requirement is that the state function selected satisfies the modeler’s requirements on 
certainty. 

In the Define State Determination practice, modelers consider the allowable uncertainty for each state 
variable. The resulting requirement on certainty is then allocated to the responsible estimator, 
describing the required estimator capability. 

Question: To what extent must state variables describe past and future? 

Primary Practice(s): Goal Elaboration and Planning (section 4.1.3.2) 

Answering this question is central to the Define Projections activity of the Goal Elaboration and Planning 
practice. In this activity, modelers think about the system’s requirements for state information on future 
events. The ability to estimate future state gives the system the ability to check the feasibility of plans 
against the profile of available resources (e.g., power, storage space, bandwidth, angles). This is 
especially important in applications where resources are relatively scarce and must be allocated 
amongst multiple options in a deliberative manner. 

Projection also lets operators check the validity of plans, providing assurance that the outcome will be 
consistent with user intent. 
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The ability to project backward into the past is important for monitoring and diagnoses. The record of 
state variable values gives analyst insight into why the system behaved as it did. This is invaluable in 
validating the system models and verifying proper functioning of the system. The amount of historical 
data stored may also be a function of how quickly or frequently it can be transported to remote 
deployments that might be monitoring system behavior. 

Question: How are state variables stored, managed and transported? 

Primary Practice(s): Define State Value Histories (section 4.1.3.5) 
Requirements/Goal Elicitation (section 4.1.3.1) 

Acquisition of data is often the reason for missions. By modeling how data is acquired, managed and 
transported, practitioners can better incorporate the data management requirements into the overall 
system specification. This complete specification provides systems engineers with a means to specify, 
analyze and optimize using a more operationally representative system model. 

Data management models described in the Define State Value Histories practice specify how 
engineering (onboard estimation and telemetry) and science (e.g., observations, health/safety 
measurements) are merged, compressed, made persistent across system restarts, and transported to 
other deployments of the system. These models also describe data attributes; relevant aspects of the 
data used to control it. 

4.3.3.2 State Constraints 
State constraints describe the limits that we impose on state variables as part of achieving desired 
system behavior to meet mission objectives. This specification proceeds from higher-level descriptions 
in terms of desired user outcomes to implementation-level constraints on controlled state variables. 
These two views are connected through the integrated set of state analysis models. 

Question: What type of constraints must the control system be able to enforce? 

Primary Practice(s): Requirements/Goals Elicitation (section 4.1.3.1) 
Goal Elaboration and Planning (section 4.1.3.2) 

The first step in answering this question is to first determine the high-level goals describing key safety 
properties (maintenance goals) as well as goals describing the actions that accomplish mission 
objectives (mostly achieve goals). This is determined through careful analysis of mission objectives and 
system-level requirements in the Requirements/Goals Elicitation practice. 

Once the high-level goals are identified, the goals are further refined by breaking them down into 
supporting sub-goals. The sub-goals describe what it means to satisfy the abstract high-level goals in 
terms of the domain objects (e.g., state variables, resources). This process continues until the abstract 
goals are defined in implementable terms (i.e. all necessary sub-goals identified, sub-goal can be 
achieved by a single controller, sub-goals can be evaluated for success or failure in terms of domain 
concepts). This process is guided by the Goal Elaboration and Planning practice. 

Question: How can state variable constraints be elaborated, projected, and scheduled? 

Primary Practice(s): Goal Elaboration and Planning (section 4.1.3.2) 
Define Scheduling Rules (section 4.1.3.3) 

State variable elaboration is done as part of goal elaboration. Modelers use the state effects models to 
guide the elaboration of goals into sub-goals. As described in the Goal Elaboration and Planning practice, 
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sub-goals can be identified by identifying the state variables that affect the state variable of the original 
goal. Control of the original state variable involves controlling these affecting state variables through 
achieving sub-goals. 

With the sub-goals identified, we must also specify the rules for how goals can be arranged in relation to 
each other (scheduled), as well as how they are evaluated against expectations (projection). This 
description is the focus of the Define Scheduling Rules practice. Modelers add scheduling rules (e.g., 
resource requirements, relative ordering constraints) to the goal descriptions. 

These specifications also utilize the projection models of the Goal Elaboration and Planning practice as 
part of their evaluation at planning and run-time.  

Question: How is state variable constraint execution regulated and monitored? 

Primary Practice(s): Define State Controllers (section 4.1.3.6) 
Define State Variables (section 4.1.3.4) 

Control and estimation are the two parts of the Execution function. The controller specification 
describes how individual state variables are regulated to satisfy user intent. Through use of the 
integrated system model, modelers insure that the specification is consistent and complete. The 
algorithm in the controller specification must be able to achieve all allocated goals. This specification is 
the focus of the Define Controllers practice. 

Estimation describes how state variable values are determined. The estimator specification uses 
measurements (determined via the measurement models employed by sensors) with command and 
state variable histories to calculate the most likely value of the state variables. Being estimates, the 
estimator models must explicitly handle uncertainty for more robust performance. 

While Estimation and Control use the same models, modelers are cautioned not to perform estimation 
in the controller or control in estimation. 

4.3.3.3 State-Based Model 
The state knowledge model is the superset of the real (modeling continuous quantities such as position, 
velocity) and modal (e.g., “healthy”, “unknown”) system state variables. This section focuses on the 
modal state variables of the system. These modal state variables are aggregated to describe the control 
states of the system, responsive to commands and key to estimating future states. As with all state 
variables, these modal, state-based state variables are constrained using goals. 

Question: How do state variable states behave and affect one another? 

Primary Practice(s): Define State Variables (section 4.1.3.4) 

The state variable physical model defines how states evolve over time and under the influence of other 
states. The state effects view documents the affecting states, while the enumeration and transitions 
between states for particular modal state variables is specified as a state machine. This specification 
should clearly capture related assumptions and rationale for the transitions. 

The physics model is the starting place for the estimation and control models defined in their respective 
practices (see the next two questions). 
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Question: How do commands affect state variable states, nominally or otherwise? 

Primary Practice(s): Define Actuators (section 4.1.3.7) 

The command model describes how state variable state changes as a function of the current state and 
commands issued. It is important to note that while the command model is integrated with the state 
effects model, it is a distinct product in itself. The command model describes how issued commands 
result in control states (modes governing system), while state effects is a wider description including 
how the governing modes affect the wider domain (e.g., physics). An example would be a command to 
change a motor rate profile. While the command model specifies that the result of receiving a particular 
command would be that the motor rate profile becomes “ramp”, the state effects model would 
represent quantities such as the resulting angular rate and position over time of in that mode. 

In addition to serving as the “menu” of inputs to the actuator, the command model complements the 
estimator and controller models of the framework. The command model describes the instantaneous 
effects of issued commands on state for the estimator model. The controller algorithm uses the 
command model to describe the commands required to achieve desired states. 

Question: In what way do measurements depend on state variable states? 

Primary Practice(s): Define Sensors (section 4.1.3.8) 

The measurement model describes how the control system obtains evidence of the system truth as a 
function of related estimated state variables and physical measurements. This specification is directly 
utilized in the estimation model. 

4.3.3.4 Goal Achievers 
Goal achievers (controllers) enforce state constraints to satisfy system objectives. 

Question: How are models used in determining state knowledge from potentially 
inconsistent or uncertain evidence provided by measurements, commands, 
and other states? 

Primary Practice(s): Define State Determination (section 4.1.3.9) 

Estimation is the achievement of goals on knowledge quality in support of controller goals. The 
estimator accuracy requirements are driven by desired knowledge quality requirements, which are 
determined as part of activity specification. Estimator specifications must explicitly handle quality of 
evidence by considering the failure modes of sensors as well as their inherent capabilities. 

4.3.3.5 Measurements and Commands 
Measurements and commands are part of the definition of the interfaces between the control system 
and the system under control. Measurements provide insight into the state of the system under control, 
while commands serve as the mechanism for effecting needed changes to the system under control to 
satisfy the constraints of goals. The systems we consider often have the system under control as a 
deployment operating at a remove from the deployment specifying intent and performing analyses 
based on measurements. In this case, the modeler must consider how commands and measurements 
are transported, stored and managed. 
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Questions: How are Measurements and Commands stored or transported? 
 And 
How is system data managed and transported? 

Primary Practice(s): Define State Value Histories (section 4.1.3.5) 

 One of the focuses of the Define State Value Histories practice is the description of how data is 
transported and managed. Using this practice, modelers describe how command and measurement data 
is transported and managed to satisfy the demands of the controllers and estimators in the same 
manner as the other data in the system. Modelers describe data management by grouping command, 
measurement and state variables into data state effects, specifying attributes for the data, and writing 
sub-goals based on the attributes in support of higher level goals. 

The resulting data management specification describes how transport of data is accomplished in support 
of data management goals. Examples of sub-goals to support transport objectives are constraints on 
acknowledgement status (e.g., ensure product exists until acknowledgement of receipt) or sub-goals to 
store data until it can be sent. 

4.3.3.6 Deployments 
Deployments describe how the control system functions are allocated to physical entities in the system. 
This partitioning is driven by the architectural considerations of the problem at hand. Architects have 
wide latitude as to how functions are allocated, with the option to allocate functions in multiple 
deployments as well as locating them singly. 

Question: How are control system functions deployed across the system? 
 And 
How can computing and communication attributes be used to assign 
responsibilities among deployments? 

Primary Practice(s): Consider Deployments (4.1.3.10) 
Define State Value Histories (4.1.3.5) 

The first question addresses how the control system functions (as first described in section 3.1.2) are 
allocated to the physically distinct entities of the overall system (control system and system under 
control). In allocating to deployments, the architect must take the widest view of the system, and work 
“inward” to ensure the right scope is considered. For example, while we might be tasked with specifying 
control for robotic system on the moon, we would also have to expand our scope to consider the 
operators (on the moon and Earth) as well other interacting systems and actors (e.g., scientist waiting 
for data, astronauts being aided by the robot). Each participating element would be a candidate for 
carrying out a portion of the control system functions. 

Allocation of functions to deployments must also take into account the native computing capabilities of 
the elements. “Smarter” elements can take on higher-level functions of the control system such as 
Elaboration, while computationally-limited elements would merely respond to commands from other 
elements of the control system. 

Lastly, allocation decisions must also take into account the communication requirements (e.g., latency, 
bandwidth) between elements implementing control system functions. Modelers address the 
requirements and mechanics of this aspect of the design in the Define State Value Histories practice. 
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4.4 Verification and Validation of Goal-Based Systems 
System quality, conformance of the system with requirements and suitability of system for intended 
use, is a key measure of project status. Quality provides the yardstick for assessing progress as well as 
managing project risks. Verification and validation (V&V) is the ongoing assessment of system quality. 
These assessments feed into project decisions on progress between phases, guiding allocation of 
development resources, and gauge readiness for reviews and critical events. In this section, we describe 
how goal-based specification through the state analysis framework enhances V&V. Through goal-based 
specification, the state analysis model framework, and implementation measures, we can realize a 
“defense in depth” approach to V&V, building in quality early and at all levels of detail. 

4.4.1 Benefits of Models in Verification and Validation 
Models provide abstractions of a system of interest in terms of relevant attributes. Being abstractions, 
they can be available before the delivered system, enabling engineers to validate assumptions, explore 
options and make decisions earlier in the lifecycle. As described earlier, models provide a shared 
repository of system and domain understanding. This is especially important as an interface between 
developers and testers, who are typically separated organizationally and temporally (bulk of test effort 
comes later in development). 

This communication aspect of models is vital to carrying out V&V of a concurrently-engineered product. 
Systems engineers capture what the system should do in terms of requirements and goals, while 
developers specify the system that responds to these needs. This integrated set of models provides 
testers with easily inspectable verification and validation criteria (from traceability of goal statements to 
system objectives and user needs), as well as insight into the workings of the system that satisfies the 
goals. As a result, verification and validation are done earlier in the life cycle, and more often, saving on 
development costs resulting from rework or late fixes. Goal specification breaks the system behavior 
into a resolution fine enough to size and plan the test program, helping the program to allocate the right 
resources and schedule for V&V. 

These models also provide an avenue for operators to become involved earlier in development. The 
models are abstract enough to provide users and other stakeholders a discipline-neutral means to both 
convey their inputs and understand the emergent characteristics of the developer’s specification 
responding to their needs. 

Goal-based modeling through the state analysis framework provides systems engineers with a more 
natural way of expressing and relating requirements than the traditional text-only approach. By 
representing behavioral requirements as goals, systems engineers are able to clearly specify the desired 
system behavior, relationships to supporting behavior, and specify the required behavior and attributes 
of systems that enforce that behavior. The resulting set of mutually-referencing models provides the 
project with an effective means to maintain traceability between requirements specifications. This 
traceability is invaluable for test and integration planning. 

The models created in the course of state analysis aid V&V managers and testers with the sizing and 
planning of the concomitant test program. Test cases are directly determined from inspection of goals, 
which is greatly aided by the fact that goals are inherently “Pass/Fail”. The job of satisfying each goal 
falls on one controller. This set of goals and controllers (with their attendant sensors and actuators) are 
included as part of test case specifications. 
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As a result of this explicit coupling of desired behavior specifications to executing elements, test 
program planners can get an early and accurate sizing of the test program based on the number and 
complexity of test cases. Having been determined by early yet descriptive models of the system-to-be, 
the test planners are in a better position to budget, schedule and staff their test program, ensuring that 
this crucial set of activities has the right allocation of time and resources to ensure an acceptable level of 
residual project risk. 

4.4.2 Architecture Benefits for Verification and Validation 
Architecture frameworks enhance V&V by providing normative sets of patterns for specification and 
designs. By using these established sets of patterns, practitioners tap into a store of “approved 
solutions” to common problems in a domain. In addition to avoiding “re-inventing the wheel”, pattern 
use provides some measure of assurance that the specification or design will be valid and consistent, 
making V&V of such systems easier. 

In addition to the state analysis set of patterns we’ve introduced, we cover the benefits of the 
implementation architecture benefits of using the Mission Data Systems (MDS) component framework. 
While the state analysis model framework we’ve covered provides a rich set of conceptual patterns, the 
MDS component framework provides patterns for detailed design and implementation. These 
complementary sets of patterns, one abstract and one concrete, provide layered benefits for V&V. 

4.4.2.1 State Analysis Framework Architectural Benefits for V&V 
The state analysis model framework, being a goal-based modeling framework, is well-suited to 
specification of complex, behaviorally-dominant systems. Specification of behavioral requirements as 
goals leads to unambiguous and traceable propositions that the system must satisfy. Requirements 
specified in this manner are readily verifiable, and easily traced to the supporting specifications of the 
elements of the control system responsible for achieving that goal. 

In addition to the development and testing benefits of goal-based specification described, the state 
analysis framework features a number of important operational and run-time benefits as well. 

Goal-based systems control behavior via explicit constraints, specified as goals. These constraints range 
from state variable constraints, to allocation constraints specifying allowed resource usage, to temporal 
constraints. The state of compliance with these constraints is continuously checked during the course of 
execution. Through the closed-loop evaluation of state and issuing of commands to bring state in line 
with goal specifications, the system actively maintains desired user intent. As a result, the system 
executes a running check at all times of whether the exhibited behavior is in accordance with user 
intent. This continuous verification is a distinguishing feature of closed-loop, cognizant control. In cases 
where system performance does not meet user-specified intent, the system can execute pre-defined 
behaviors to compensate for failure or safe the system. This capability will be covered in detail in the 
section on Robust Execution and Fault Management (section 5.3). 

In addition to the run-time verification of execution, the system also can project state into the future, 
enabling evaluation of future plans against estimated future states. This projection capability gives 
operators a means for validating future plans. Projection can also be carried out by the executing 
element, providing the system a capability to re-plan to deal with contingencies detected in-situ. 

The concept of state facilitates direct comparison between flight, ground and simulation. State variables 
are the domain attributes of interest the system must control. By modeling the rules governing state 
variables and their interactions, the framework provides an unambiguous set of quantities with which to 
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compare expected versus actual system behavior and performance. In this framework, the same models 
from development are used for operations and testing. 

Being executable, the models of the framework facilitate Monte Carlo approaches to verification. These 
approaches are especially important as test of statistically-specified requirements and goals. This 
simulation can be done at three levels of increasing detail, State, Functional and Bit level. 

State level simulation is made possible by the direct connection between simulated and actual state 
variables of the state analysis framework. As mentioned before, state variables are the system level 
expressions of behavior, and state level testing can rightly be considered system level tests. Operators 
and testers can use state level simulations to tests systems either through hardware (higher fidelity, but 
more expensive) or software (faster, often desktop machines) emulators. 

Functional level simulations test subsets of elements of the total system as part of development before 
integration. Examples would be tests of estimators or controllers. The state analysis framework makes it 
easy to determine the proper set of elements for a function, as well as specifying the proper emulator 
characteristics for the affecting elements which are simulated in the tests. 

Bit level simulation allows testers to test the CPU running the flight code derived from the state analysis 
specifications. These high fidelity tests provide concrete assurance of proper run-time behavior for the 
given hardware, as well as provide model validation input to higher level tests. 

In addition to verification at run-time and planning time, models play a major role in validation. While all 
engineered systems utilize models, state analysis advances the practice by making the models easily 
inspectable as the main repository of system understanding. Instead of inspecting source code (high 
detail) or PowerPoint fever charts and diagrams (low detail), reviewers have access to an integrated set 
of appropriately detailed models. Through the framework, these models are all traceable from a 
user/stakeholder view (tilted towards objectives and intent) all the way to the development decisions 
and rationale implementing the system. By bringing these models out of discipline-specific, separate 
repositories and making them inspectable, reviewers charged with validation are afforded a broad, deep 
insight into the system. 

By specifying systems through models, engineers can utilize formal methods of verification. Formal 
methods use specifications of desired system properties along representations of domain and system 
behavior as input for proof engines to determine whether the desired properties hold in all executions 
(possible paths). Executions where the system fails to satisfy the desired properties are flagged, giving 
designers insight into weaknesses in design. 

The power of these methods lies in the fact that designs can be checked not just against foreseen failure 
modes, but failure modes not envisioned or deemed “not credible”. Formal guarantees of behavior 
guarantee system safety and correctness of all possible executions for the given set of models, providing 
a powerful confirmation of a proper design. This compares most favorably to testbed-only approaches, 
where pass/fail tests are conducted to verify proper behavior over a single execution thread, omitting 
the vast possible space of executions. Such test can be said to be “existence proofs” for proper behavior, 
and not the global guarantees of proper behavior we need. Recent advances such as symbolic model 
checking have proven valuable in contemporary problems in domains as diverse as aviation and 
telecommunications [Berard1999]. 

The models of state analysis, with their unambiguous specification of “correctness” (goals) and the 
explicit representation of properties, relationships and dynamics are readymade for formal verification. 
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In the formal verification of a system specified using state analysis, the modeler represents the goals 
using temporal logic, describing how properties are constrained in a formally “correct” system. These 
statements act as the propositions which must be proven to hold for the design by the proof engine, 
using the system dynamics derived from the other state analysis models. 

 
Fig. 4.73. Properties checked by formal methods 

Since the state analysis models are a structured specification, this translation from state analysis models 
to models for the proof engine can be automated, providing all the benefits of formal verification 
without suffering the added overhead of a parallel modeling effort. 

4.4.2.2 Component Framework Architectural Benefits for V&V 
While the majority of our description of has focused on the conceptual state analysis framework, the 
verification story would be incomplete if we did not consider implementation framework benefits for 
V&V. The reader should note that the systems specified using conceptual framework we’ve described 
can be implemented any number of ways. The conceptual framework focuses on what the system 
should do, and describes the qualities of a system that satisfies user intent. What we now describe is an 
implementation framework representative of the emerging preferred architecture framework for 
distributed systems, that of component-based architecture. We shall relate how this implementation 
framework enhances V&V through application of patterns. 

Component-based architectures (CBAs) have emerged as a dominant paradigm in software. Component-
based systems are realized by coordinated sets of software elements, components interacting across 
well-defined, shared interfaces. The modularity enabled by this architecture has resulted in systems 
proven to be more flexible, adaptable, scalable and reliable than more traditional, monolithic software 
architectures. 
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The component-based architecture we consider here is the Mission Data Systems (MDS) component 
framework. The components of the MDS framework comprise the design elements of the state analysis 
framework introduced in section 4 (see figure 4.3). As with other component-based architectures, the 
MDS component framework is comprised of layers of components which are progressively combined as 
you move up the stack into higher-level services. 

Software agents are autonomous processes capable of reacting to and initiating changes in the 
environment. These agents act in collaboration with human users and other agents to achieve user 
intent. These agents are in turn composed of components. 

Component architecture patterns guide practitioners in realizing solutions. By conforming to patterns, 
practitioners increase the odds of design correctness. By providing a set of criteria for inspection, these 
assurances serve as a layer of verification of design and implementation. 

 
Fig. 4.74. Component architecture pattern concepts 

Components interact with other components through interfaces specified as connections between 
component ports. As practical applications have potentially thousands of components and connections 
between deployments, it is important to govern the configuration with a small set of easy rules. 
Architecture patterns provide this set of rules, enabling the practitioner to assess correctness at both 
design and implementation time. 

The patterns described in the above figure significantly reduce the potential for errors such as 
unconnected ports, dangling or crossed connections and doubly-connected ports. The limited number 
and simplicity of the patterns also facilitates review by outside parties such as independent verification 
and validation (IV&V) teams. 
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Layered Implementation 

“Layering” of applications has proven to be an effective way of simplifying the job of building and 
maintaining mission software. By building new applications out of the services provided by more stable, 
widely-used lower layers, developers can reduce development effort and costs with lower technical 
risks. This model leverages the inherent advantages of re-use, while allowing developers the flexibility of 
tailoring their solutions using the proven utilities of the lower levels. 

 
Fig. 4.75. Layered implementation of systems 

The MDS framework layer provides the most basic level of services such as interfaces with the operating 
system. Being the most primitive, these services see the widest use between projects, as they are 
intended to be widely applicable with little required change for particular applications. 

The adaptation layer implements a more complex set of services using the framework layers services as 
the building blocks. The adaptation layer is where developers begin to tailor their implementation for 
particular applications using the proven services of the lower layers. 

The deployment layer software comprises the high-level services directly used by user software or on 
the flight system to carry out the control system functions. 

4.4.3 Well-Rounded, Comprehensive Verification and Validation 
It is commonly observed in practice that V&V is most effective when done early and often to best ensure 
project success. V&V is best accomplished by involving key stakeholders, systems engineering and 
developers, and providing a number of complementary checks on the specification, design and flight 
code. 



Human-Rated Automation and Robotics 

122  
 This document has been reviewed and determined not to contain  
 export controlled technical data. 

 
Fig. 4.76. Healthy, well-balanced verification and validation (adapted from [Feather2002]) 

Figure 4.76 is inspired by the federally-recommended diet pyramid, in this case giving a pictorial 
representation of the recommended relative proportions of the respective V&V measures. While the 
proportions above are not exact (no way they can be, the sizing is always a project judgment call), they 
give an idea of the relative recommended use for each measure. The recommended “size” of a measure 
is governed by the ratio of the utility of the measure (efficacy in reducing risk) to the cost of employing 
the measure. The state analysis model frameworks we have introduced and described in this paper 
increase the power of the less expensive measures, while reducing reliance on the most expensive 
measure, debugging. 

Checklists, inspection and reviews are relatively inexpensive measures of V&V. Models enhance the 
utility of these measures by providing an expressive, cogent and integrated specification of the system. 
While source code is still available, non-developer reviewers can avail themselves to appropriate views 
of the domain and system. Views generated from the integrated model provide an appropriate level of 
detail, and prove more easily navigable than disparate collections of system information. 

Process and software metrics provide description of quality and guidance for development respectively. 
Through providing a description of the system at an arbitrary level of granularity, models allow 
developers to assess system quality on meaningful collections sub-units (functions, agents, 
components), increasing the precision of software metrics. The aim of process in development is to 
increase system quality through prescribing proven methods for realizing products. The state analysis 
practices introduced in section 4.1, coupled with the appropriate implementation patterns can be 
employed as part of a development process (as sketched in section 4.2). Anchoring on models as first-
class products of systems engineering gives the process guidance an elevated degree of meaning and 
coherence. 

Testing and Analysis, while powerful measures of V&V, are relatively expensive and resource-intensive. 
Traditional software analysis also suffers from the common perception of being a specialist-intensive 
measure of limited practical utility. Application of the state analysis model framework largely invalidates 
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this perception. By representing the system and characterizing the design through models, we get an 
analysis-ready set of executable specifications. These specifications can be analyzed through simulation 
at various levels of system abstraction, or can be run by a formal proof engine to assess the global 
suitability of designs. 

Analysis through formal methods also acts as a powerful complement to traditional testing. Traditional 
testing is expensive and often of limited utility as the success criteria are often not clearly stated. Model-
based specifications of systems through state analysis provide clear success criteria (goal achievement) 
as well as clear traceability to the system elements responsible for achieving respective goals. 

Testing with models has the potential to significantly reduce the cost of testing, while increasing its 
value. While testbed-centered testing programs test a limited fraction of the test space, model testing 
allows developers to more exhaustively test the execution space, providing early verification of designs. 
The system specifications can be validated through simulations, providing deeper and broader 
guarantees of system correctness by covering many more permutations than practical by testbeds 
alone. The ideal is to migrate the testbed from being a venue of system V&V to a venue for validating 
the models. 

Debugging is the most expensive and least effective means of insuring quality. Mistakes captured this 
late in development are much harder to fix largely due to the ripple effects of late changes. As described 
in section 2.2, fixing requirements is much less expensive than fixing the flight code. Models, by 
increasing the quality of the intermediate products leading to the flight code, decrease the likelihood of 
rework due to mistakes resulting from incorrect specification. 

While decreasing the reliance on debugging, the model framework and component-based architectures 
aid debugging by organizing the system as loosely-coupled, atomic units of functionality and code. The 
modularity and granularity of the architecture and specification ease the isolation of problems, in 
addition to enhancing the testing and maintenance of the code. 

 



Human-Rated Automation and Robotics 

124  

This page intentionally left blank. 



 

 125 
This document has been reviewed and determined not to contain  
export controlled technical data. 

5 Operations, Execution and Fault Management 

5.1 Goal-Based Sequencing 
Sequencing, as commonly defined, is the specification of the activities or commands necessary to 
achieve mission objectives. In traditional sequencing, a list of commands is specified with criteria for the 
execution of each one (usually time). The traditional sequencing approach has many practical 
limitations, as we have described in sections 2 and 3, chief among these being the lack of cognizant 
control. Goal-based sequencing provides operators with a means to specify desired system behavior, 
which, coupled with models of the system under control, enables truly closed-loop systems. In this 
chapter, we cover how users specify system behavior in operations through the agency of goals and the 
integrated models from state analysis. We also cover how the system recovers in cases where intent is 
not satisfied, due to faults in the system under control, and unexpected environment or improper 
specification (bad models). The control system functions most directly involved in sequencing are 
Elaboration, Projection and Scheduling. 

 
Fig. 5.1. Elaboration, projection and scheduling in the control system context 

5.1.1 Coordinating Control through Goal Elaborations 
Practical systems can have from hundreds to thousands of states that must be controlled in a 
coordinated way. States are controlled through the enforcement of goals specified on them by 
operators. These goals describe the system behaviors necessary to achieve mission objectives. 

Goals break down into two major categories, maintenance goals and achieve goals. 
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Maintenance goals are specifications of behavior that must always hold. These are best understood as 
system invariants; properties the system must exhibit in all operational context. Maintenance goals are 
behavioral requirements that can be specified at many different levels of the system. An example of a 
low-level maintenance goal (one satisfied by a single controller) would be “doors shall never be open 
while the train is moving”. Goals at higher levels of abstraction involve more controllers and more 
abstract/composite states. Flight rules and Mission Rules are examples of system constraints best 
described by higher-level goals. “Do not point the camera boresight within 10 degrees of the sun” is an 
example of a flight rule that can be written as a maintenance goal. Enforcing this goal would involve a 
number of controllers (e.g., azimuth/elevation gimbals, relative geometry knowledge) working in 
concert to control a number of related states. 

Mission rules, while invariant, give descriptive rather than prescriptive guidance to 
planners/sequencers. Mission rule guidance describes what makes better plans, giving planners a set of 
normative guidelines from which to evaluate the “goodness” of plans. An example of this would be 
“minimize gimbal actuation necessary in activities”. While invariant, this guidance does not succeed/fail; 
this rule is satisfied to a matter of degree. These rules are best specified using the “soft” goals first 
described in section 3.2. The soft goals give the system a means to discern between alternate courses of 
action in accordance with user specification. 

The maintenance rules, being invariants, are more commonly identified and specified earlier in the 
system development by systems engineers as opposed to operations personnel. Being “always on”, the 
maintenance goals serve as the background of the achieve goals. 

Achieve goals are behavioral constraints that specify how a system goes about accomplishing activities. 
Achieve goals describe networks of transient conditions that must be satisfied to accomplish system 
objectives. Achieve goals are specified using sequencing rules and other models created by the systems 
engineers using the state analysis practices. By using the integrated, shared set of system specifications, 
operators are able to focus on the desired operational outcomes (state behaviors), while letting the 
models account for the implementation details. 

Specifying Operational Behavior through Elaboration 

Operators specify the behaviors required for the system to meet objectives by providing sets of achieve 
goals. Operators start with high-level objectives (e.g., an image exists) and progressively refine these 
goals through the state analysis practice of elaboration. Guided by state effects diagrams and other 
details from the integrated system models, the operators identify the required set of supporting and 
precursor constraints needed to achieve the original high-level goal. The elaboration practice is 
described in detail in section 4.1.3.2. 
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Fig. 5.2. Progressive activity specification through elaborations 

While the depiction in figure 5.2 might suggest that elaboration is done by humans in the ground 
deployment, the framework allows elaboration to happen in either or both deployments. Elaboration is 
guided by the same set of rules captured in the integrated system models. As a result, any deployment 
with the capacity to apply the system model logic can process user-supplied goals into networks of 
executable goals (x-goals, introduced in section 5.2) for execution. 

5.1.2 Planning and Scheduling 
Once the necessary set of elaborations has been defined, they are integrated into plans through 
planning and scheduling. Integration by planning and scheduling is done by the application of the 
constraints between respective goals to the sets of goals defined in elaborations. The constraints 
between goals were defined as part of the state analysis process (the elaborations of section 4.1.3.2 and 
the scheduling rules of section 4.1.3.3). These constraints (part of the respective goal definitions) specify 
restrictions on ordering of goals, duration and resource requirements of individual goals. These 
constraints, along with scheduling rules, result in exhaustive descriptions of allowable behavior known 
as goal nets (more on these in section 5.2). 

Once the system constraints and behavior specifications of goal elaborations are integrated and 
consistent, operators can build more complex activities up from previously-defined lower-level activities 
with the confidence that the compositions will at least be minimally consistent. These activity 
fragments, represented as macros, can be used to simplify the task of building larger activity plans. 
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Fig. 5.3. Example of a goal macro 

Each goal-based macro encapsulates the necessary sub-goals for particular activities. The macros are 
instantiated by providing the applicable macro parameters, and integrating the expanded macro into 
the plan. 

Reusing predefined macro compositions in operations is both safer and easier than creating plans from 
primitive units because the larger units save steps and can be pre-validated. 

5.1.3 Validation of Goal-Based Plans 
Validation is the process of ensuring that a given activity plan specification is likely to succeed at run 
time. Validation of goal-based activity plans involves certifying that the integrated expression of intent 
will result in the desired system behavior, or at least will not result in any conflicts that would prevent 
the desired outcome. Validation of goal-based plans relies first on the fact that goals only specify the 
outcome to be achieved – not how the achievers in the control system will accomplish them. This 
separation allows achievers to be verified independently from larger plan compositions (i.e., as unit tests 
that can have provable completeness over the range of goals that can be specified). The elaboration and 
planning process then ensures that compositions are achievable by first eliminating obviously 
inconsistent combinations (e.g., zero-time transitions, constraints outside allowed operating ranges, 
mutually conflicting goals on the same state variable, etc.) and then verifying through projection that 
the sequence of goals specified in the plan is achievable. To do this the system uses projection models 
for each state variable to project currently estimated states forward informed by physics and the 
sequence of constraints being applied (so, projection models can take into account the expected 
behavior of achievers to change or constrain system states). Projection models can also take into 
account the projected values of affecting state variables. Then, the system checks that each goal 
constraint is satisfied (system state remains within the constraints) across the entire plan. 

If goals in the plan identify alternative elaboration tactics (different ways to accomplish the same goal) 
the planning process can respond to conflicts detected during this verification process by automatically 
backtracking and choosing alternate tactics. This process of automatically searching through the space 



 

 129 
This document has been reviewed and determined not to contain  
export controlled technical data. 

of alternatives can save a great deal of time and effort during planning, particularly if the choice of 
elaboration tactics is optimally directed by the current state of the system. 

5.2 Goal-Based Execution 
Execution is the attainment of user-defined goals by the control system. The control system issues 
commands to the system under control in accordance with user intent and the estimated system state 
determined using model-specified interpretations of measurements from the system under control. 

 
Fig. 5.4. Execution function in control system context 

Execution exercises cognizant control of the plant through use of the integrated set of models defined 
through state analysis. The state knowledge model (introduced in section 3.3) specifies the attributes of 
the system under control that must be constrained in order for the system to meet user objectives. 
While the execution function may be distributed over deployments, every executing element in every 
deployment works from the same models, ensuring the elements can work in concert to accomplish the 
user goals. 

5.2.1 Accomplishing Intent through Goal-Based Sequencing 
Goal-based control systems process specifications of user intent (goal networks created by sequencing) 
into timelines of executable goals known as x-goals (first introduced in section 4.1.3.3). X-goal timelines 
are comprised of ordered sets of state constraints at a level of specification executable by the control 
system. The x-goal timelines are previously validated by applying the projection models described in 
section 5.1.3. 

Goal-based commanding is inherently closed-loop. Closed-loop control is achieved by providing the 
control system with a model of the system under control, along with a specification of desired behavior 
and a means of detecting and correcting discrepancies between actual and desired state. This 
architecture is directly analogous to the feedback control concept of classic control. The goal-based 
architecture also affords the analytical insights featured by classic feedback systems, namely 
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boundedness (statements on the range of behaviors possible) and stability guarantees. This is covered in 
more detail in section 4.4 on verification. 

Goal-based control systems accomplish intent in two ways. Designers have the option not only to 
choose between these methods, they can also combine the methods as they see fit. The method that 
makes sense will depend on the particulars of the state variables and the nature of the applicable user-
defined constraints. 

The first option for accomplishing intent is to exercise active control of the system under control to 
achieve specified constraints on state variables of interest. This is appropriate in cases where the state 
variable in question represents a controllable (i.e., can be influenced by an actuator in the scope of our 
control system) quantity for which it is possible and appropriate to assign a controller. As we have seen 
in the state analysis practices (in particular Define State Controller section 4.1.3.6), the controller and its 
subordinate sensors and actuators are specified using the integrated system and domain models. An 
example of this type of accomplishment of intent is pointing control (gimbal controllers act to position 
the boresight in accordance to goals). 

The other option for satisfying intent is to wait for the conditions specified in the goal to be true before 
attempting the activity using that goal. This option is especially appropriate in cases where the state 
variable of interest is not controllable (e.g., sun must be up to do imaging). Keep in mind that while the 
domain attribute in question might not be controllable, it must still modeled to enable the control 
system to plan activities around it (we can know when the sun will be up and plan accordingly). 

While the case where an effective actuator does not exist (e.g., no actuator can make the sun rise, so 
the control system will wait for it) is the most obvious, there are other situations where waiting for a 
condition to be true makes sense. An example of waiting as a best strategy is opportunistic science. The 
signatures of phenomena of interest that cannot be predicted (e.g., dust devils, gamma ray bursts) can 
be modeled by the control system. When the conditions of the signature are detected, the control 
system then carries out the activities satisfying the goals associated with the phenomena. 

5.2.2 Goal-Based Execution in Action 
X-goal timelines are compiled from user-specified goal nets. While both products represent user intent 
over a timeline, x-goals are specified at a level of detail where each state variable controlled is 
represented at the level that it can be enforced by the control system. This automated translation from 
goal nets to x-goal nets is made possible by the integrated system models we have described. This 
partitioning between the higher level, user-focused specification of operational intent and the 
execution-ready x-goal network allows operators to focus on the domain and system in operational 
terms. The integrated system model enables this abstraction for the user, while providing traceability 
from the high-level specification to implementation detail to an executable product. 

Execution of x-goal networks proceeds by the successive firing of time points when the appropriate 
temporal and state constraints are met. Temporal constraints are specifications of the timing criteria for 
a time point to fire. These criteria are specified so that the time point fires when the specified window is 
open and firing the time point does not cause other temporal constraints to be violated. 
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Fig. 5.5. Time point firing on temporal constraint satisfaction 

Time points act as the “gate” between successive x-goals on a timeline. When the constraints on a 
timeline are satisfied, the executor proceeds to the subsequent x-goal. Time points with the same end 
criteria (defined by the Tmax on a goal) are joined to evaluate as a single time point. In this case, the time 
point acts as a logical AND where each evaluation must evaluate to “true” to progress. The evaluation is 
“true” if and only if Tnow is greater than Tmin and less than Tmax for each state variable at the time point. 

In addition to temporal constraints, state constraints must be met for a time point to fire. Engineers 
specify the necessary conditions for each possible pair (preceding and subsequent) of x-goals on the 
intent timeline as part of the Define Scheduling Rules (section 4.1.3.3) state analysis practice. The state 
constraints are evaluated as ReadyToTransition conditions, providing rules to the achiever on 
transitioning from one x-goal to the next. The ReadyToTransition conditions are written in terms of the 
state variable for which the transition condition applies. As time advances, “active” (x-goals being 
executed at Tnow) x-goals on the timeline are issued to the appropriate controllers and estimators to be 
achieved. 
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Fig. 5.6. Specification and evaluation of ReadyToTransition conditions 

In figure 5.6, we illustrate an example of a ReadyToTransition specification and evaluation. The Camera 
Temperature state variable (top timeline) has two successive x-goals linked by a ReadyToTransition 
condition applied to a time point. This condition is specified by engineers as part of the goal 
specification in the scheduling practice. Note that the ReadyToTransition condition can be more 
restrictive than the subsequent goal. 

The Gimbal Pointing ReadyToTransition condition is an example of a compound evaluation. In this 
example, the engineer uses the estimated state variable as well as the rate of change of the state 
variable to specify the ReadyToTransition condition. 
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Fig. 5.7. Evaluation of merged time points 

Execution proceeds when all current time points evaluate to “true”. To evaluate to “true”, the time 
point temporal constraint and state constraint (specified as ReadyToTransition condition) must be 
satisfied. 

Assuming the temporal constraints were satisfied, the ReadyToTransition criteria are evaluated for the 
joined time points. The joined time points act as an AND condition, where all ReadyToTransition 
conditions must be satisfied to continue. Upon transition, the subsequent x-goals are sent to their 
respective controllers to be achieved. The execution horizon (delineating the achieved intent) moves to 
the right as all applicable time points at the edge are evaluate to “true”. 

Returning to our camera system example, let us consider x-goals on state variables Camera 
Temperature, Heater Switch & Health and External Temperature. Control or knowledge of each member 
of this group of state variables is required to satisfy constraints on camera temperature in support of 
imaging. Our system uses a resistance heater as part of an active thermal controller. The External 
Temperature state variable is not actively controlled per se, but is modeled since it factors into the 
Camera Temperature (relationship described in state effects model). Being an uncontrolled state 
variable, External Temperature is controlled not through actuation, but through waiting for it to be 
satisfied by the environment. 
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Fig. 5.8. External temperature goal example 

Figure 5.8 illustrates a supporting goal of the imaging activity for the External Temperature to be above 
10°C at some point in the next 12 hours. While we cannot control when or if this goal can be achieved, 
we can model the environment to plan when we expect it to happen. The engineer further considers the 
goal specifications from figure 5.7 and decides that the heater is unnecessary when the External 
Temperature is above 10°C. To enforce this condition, the engineer adds a goal for the heater to be “off” 
when the External Temperature is above 10°C (bottom goal). 

Upon further examination of the x-goal specification in figure 5.7, we can see a problem. The time point 
evaluation at Tnow (under the yellow arrow in the bottom figure) has no state constraints to evaluate. 
The subsequent x-goals for Camera Temperature and Heater Switch & Health are unconstrained (i.e., no 
desired state specified). As a result, this time point will always fire; a situation the operator may not 
want. 

There are two tactics for dealing with this situation. One tactic is to include a temporal constraint on x-
goals preceeding the unconstrained x-goals. As a result, we give the preceeding goal a minimum 
duration over when it must hold before considering a transition to the unconstrained state. This tactic is 
illustrated in the top portion of figure 5.9. 

The second tactic is to include an x-goal on a related state variable. The transition condition of this 
subsequent x-goal acts as a final check for readiness to proceed. This added x-goal allows the engineer 
to further elaborate what is necessary before transitioning out of the preceeding x-goal. This tactic is 
illustrated in the bottom portion of figure 5.9. In this example, state variable Camera Mode is added 
with a goal for the Camera Mode to be “camera ready”. Since there is no temporal constraint on the 
Camera Temperature goal of “Between 10 and 20 degrees C”, the succeeding transition will fire as soon 
as this state variable is achieved. However, the engineer wants to ensure that some modeled condition 
of the camera is achieved (modeled as Camera Mode) before transitioning out of the Camera 
Temperature goal. To accomplish this, the engineer specifies the necessary ReadyToTransition condition 
for Camera Mode state, ensuring that the system will not transiton before this condition it met. 
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Fig. 5.9. Tactics for specifying transition constraints for unconstrained states 

5.2.3 Monitoring Goal-Based Execution 
Monitoring execution is accomplished by comparing estimated state (represented as state variables) 
with intended state (as specified in goals). Monitoring execution provides operators with insight into the 
actual operation of the system, allowing continuous verification of proper system behavior. The goal-
based architecture also provides deployments of the system with the capability to self-monitor 
execution. This ability to self-monitor is a distinguishing feature of goal-based control. Self-monitoring 
enables deployments to exercise timely, robust control, making the goal-based systems more capable 
and reliable compared to procedure-driven systems. 

As discussed in the state analysis deployments practice (section 4.1.3.10) and other sections, the 
architect has wide latitude in how they can elect to allocate the control system functions between 
physical deployments. A common pattern of deployment for situations where the system under control 
is operated at a remove from the planning elements is to co-locate the execution function with the 
system under control (figure 5.10). This pattern allows the control system to command locally (in 
accordance with user-specified goals), as well as to perform estimation using the locally-available data 
from sensors. 
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Fig. 5.10. Distribution of monitoring over deployments 

The comparison of actual versus intended state happens in the orange circles. To achieve tighter (i.e., 
less lag between estimation and response) closed- loop control, monitoring is done in both deployments 
in the deployment pattern of figure 5.10. 

While both deployments use the same models for the system under control, the state variables that 
represent the knowledge of the system under control must be transported between deployments. This 
is done by using the proxy and basis state variables first introduced in section 4.1.3.10 on deployments. 
While the Flight deployment monitors the locally-estimated basis state variables, the Ground 
deployment must use proxy state variables. The proxy state variables are created by obtaining the basis 
state variable information through the specified data transport mechanism (described in section 4.1.3.5 
on state value histories). The data transport mechanism specifies how the control system collects the 
value histories stored in the basis state variables, and transports these histories to the appropriate proxy 
state variables in the other deployments. This specification defines details such as what information 
needs to be transported, as well as the required regularity of proxy updates. The same systems 
engineer-specified data transport mechanisms govern how measurement and command histories are 
moved between deployments as well. This allows monitoring to proceed in parallel between 
deployments, providing an extra check on how monitoring is being performed by the respective 
deployments. 

Operators in the Ground deployment monitor execution by comparing the proxy state timelines to their 
original intended state constraints specified in the uplinked x-goal network. 
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Fig. 5.11. Monitoring execution from the flight and ground deployments 

In the example above, we monitor a set of x-goals for a single state variable, Camera Temperature. The 
x-goal network in this case allows flexible timing of goal achievement for one of the goals (Camera 
Temperature Between 10 and 20 degrees C). For this goal, an interval specifying a min and max time is 
provided. This goal will transition when the subsequent ReadyToTransition condition is met. While we 
would have modeled an expected duration for this goal to be achieved through projection as part of 
planning, part of monitoring is to compare actual execution to our plans. To evaluate the behavior, the 
ground needs to know the exact time of time point firing. This information is provided through data 
transport, along with the state variable history at downlink time. From the state variable history, and the 
transitions between goals, the ground can determine not only that the goals were met, but that 
evaluations of transitions were properly executed resulting in the system state conforming to the 
original plans. 

5.3 Robust Execution and Fault Management 
Truly safe and reliable control systems must not only provide for the monitoring and execution of 
nominal situations. To realize the highest reliability, safety-critical systems must also be architected up 
front to handle off-nominal situations due to endogenous (e.g., system faults, incorrect models) and 
exogenous (e.g., unexpected environment) causes. In this section, we shall illustrate the advantages of 
goal-based control in the specification, testing and operations of robust, reliable systems. 

5.3.1 Goal-Based Control for Fault Management 
Throughout the course of this document, we have made a case for the specification and operation of 
systems using an expressive, integrated set of representations of structure and behavior. It should come 
as no surprise to the reader that this concept carries over into considering off-nominal behavior as well. 
As we shall see, explicit specification of behavior is even more important when dealing with the often 
unforeseen situations of fault scenarios. 
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As with nominal scenarios, the strength of goal-based control systems stems from the closed-loop 
nature of the execution. In goal-based control systems, engineers explicitly specify behaviors that must 
hold in situations. By specifying desired behaviors, engineers can employ more appropriate, nuanced 
responses to off-nominal situations. Focus on system behavior fosters a more integrated approach to 
fault specification and management. This is especially important in applications where a number of 
parties may make demands on the system with the potential for cross-interference. This is especially 
true when one considers the somewhat arbitrary and counterproductive dichotomy between 
sequencing and fault protection. 

The readily-inspectable nature of the system models we have described facilitates review over the 
system lifecycle. This is especially important not only to inform the operators and maintainers who will 
“inherit” the system as to how the system works, but to document the decisions and assumptions 
underlying the system. By making this knowledge clear and accessible in models, these operators and 
maintainers are empowered to make needed changes as domain knowledge evolves with the system. 
The problem of opacity of implementation is especially acute when considering the issue of fault 
protection parameter “tuning”. 

Fault protection tuning often involves the proper selection of the parameter values (e.g., persistence 
check durations and counts, thresholds, priorities) sourced by the flight code governing system behavior 
in the presence of faults. A major difficulty with fault protection tuning is that this structure forces 
operators to consider the parameters without the underlying logic. It is difficult to put the parameters in 
the system context, since there is little traceability from individual values to the full set of behaviors 
they might impact. The situation gets worse when you consider that a typical system may have 
hundreds or thousands of such parameters. 

This complexity, without traceability to requirements or relationships between attributes, leads to a 
system where adjustments are rarely made in a manner that can be considered principled or holistic. 
Reviews, a major tool in assessing change as part of configuration management, are less effective since 
parameter values without a context are a poor guide to behavioral intent or probable results. 

 

[Section removed]  
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While it is true that models can be wrong just as much as commands, we hope we have demonstrated in 
chapters 3 and 4 and illustrated through this example that models are more easily verified than raw 
commanding or parameters alone. Owing to the explicit representation of intent in goal-based systems, 
reviewers have immediate insight to the desired outcome. Models also transparently lay out how the 
system is expected to work in the context of the domain. Being executable, models provide planning 
time and run-time verification and validation against the explicit intent, and can take more appropriate 
corrective measures when that intent cannot be satisfied. 

Fault Protection versus Behavior Management 

The “holistic” specification and management of system behavior is a distinguishing feature of goal-based 
fault handling. By architecting fault handling as part of overall behavior specification, practitioners can 
realize more integrated and elegant fault management. In particular, the arbitrary and limiting barrier 
between sequencing and fault protection is breached, allowing both communities access to the same 
models, tools and assumptions. The result is a more rational, globally-optimal “top-down” specification 
of what the system should (or should not) do in nominal and off-nominal scenarios. You no longer have 
the potential for work at cross-purposes caused by teams working from different assumptions or 
conflicting demands on the same system. 

Goal-based specification considers fault management as part of overall behavior specification and 
management. Instead of the localized, reactive treatment of “symptoms” of traditional fault protection, 
goal-based systems provide mechanisms for control based on knowledge of the overall system. This 
framework allows engineers and operators the ability to specify a spectrum of responses, tailored to the 
nature and severity of the problem. As opposed to the often dangerously simplistic localized responses 
of traditional fault protection, users can specify how plans can be selectively de-scoped due to conflicts. 
This implementation is potentially more robust, due to the inherently closed-loop nature of goal-based 
execution and the resulting traceability between implemented software and system fault models. 



 

 143 
This document has been reviewed and determined not to contain  
export controlled technical data. 

 
Fig. 5.13. Reactive fault protection versus goal-based fault management 

Figure 5.13 further summarizes the philosophical and structural differences between the two 
approaches to fault handling in execution. The key is the consideration of sets of linked “symptoms” 
versus achieving desired behavior. While the traditional approach focuses on limited, often irrevocable 
escalating responses, the goal-based approach starts with the description of desired outcomes as well as 
invariant behavior specifications. Goal-based fault handling then makes the necessary changes to satisfy 
intent escalating from localized changes to system level responses, while using the integrated system 
model at all levels for diagnosis and execution. This layered response is more fully detailed in section 
5.3.3 of this chapter. 

5.3.2 Elements of Goal-Based Fault Management 
The first challenge for fault management is diagnosing that something is wrong. Specifying and 
implementing this capability is one of the more difficult, time-consuming and expensive aspects of 
software and systems engineering. Traditionally, this has been done by focusing on what could go wrong 
with the system under control. Off-nominal scenarios were identified through failure mode and effects 
analysis (FMEA) or fault tree analyses, often after the architecture or design was complete. By thinking 
about off-nominal events and mitigations after important the architectural decisions are made, 
practitioners miss the opportunity for a more robust design. By considering off-nominal behavior as part 
of the original specification, more considered, balanced risk mitigations can be employed. 

The models used to specify the system capture both the nominal and off-nominal behaviors from the 
beginning. As we have seen in the state knowledge, estimation and command models, modelers 
explicitly state not only what they would like or expect to happen, but what could happen. As a result, 
the control system has the proper guidance to act in the face of known or unknown fault modes. 
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Fault diagnosis is accomplished though hypothesis testing. Hypothesis tests use the available evidence 
(system states, commands) to prove or disprove suppositions about the system modeled as state 
variables. The state effects, measurement and command models are used to design the estimator 
algorithms for fault management as described in the Define State Determination practice (section 
4.1.3.9). This explicit state modeling enables the use of model-based estimation/diagnosis software to 
fuse the disparate system for diagnosis. Let’s illustrate this process with an example. 

 
Fig. 5.14. Sensor health hypothesis test example 

As part of fault management specification, the modeler determines that knowledge of the temperature 
sensor health is important enough to the control system to warrant explicit modeling. To this end, the 
modeler creates a state variable Temperature Sensor Health with three states, “healthy”, “saturated-
low” and “failed-no-signal”. This state variable affects Temperature Measurement, along with other 
state variables and is represented in the state effects model. The algorithm for Temperature 
Measurement is represented on the left. Together, the state effects and measurement models provide 
the full information required to prove a hypothesis on Temperature Sensor Health. 

The hypothesis to prove is “Temperature Sensor Health is Healthy”. The hypothesis is stated in the 
positive, as it is easier to conclusively prove a hypothesis is true, than to prove it is false. We begin by 
computing the Temperature Measurement (m) based on the estimated state variable values. The 
estimated Measurement is then compared to the truth data for camera temperature and compared to 
the actual measurement. The hypothesis on the health of the sensor is proven or disproven by 
comparison of the estimate versus the actual. 

Onboard execution monitoring uses the hypothesis testing capability we have just examined along with 
specification for how to change the system to satisfy behavioral constraints. This self-monitoring is 
enabled by the integrated models developed as part of state analysis. Recall that monitoring of goal 
network execution (section 5.2.2) is the comparison of estimated state with intended state along the 
timeline. 

The executive element monitors goal execution in real-time, and responds in the event of goal failure. 
Failures can happen due to endogenous (e.g., fault, unexpected configuration, bad model) or exogenous 
(e.g., unexpected environment) causes. In any case, the control system uses the system state knowledge 
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to diagnose problems and effect responses in accordance with the original goals as well as maintenance 
goals. 

Checking the success or failure of a goal means constant evaluation as to whether the specified 
constraint is being satisfied. The IsStillSatisfied condition captures the result of this on-going run-time 
comparison. 

 
Fig. 5.15. IsStillSatisfied condition evaluation of goals 

For goals expressed on a continuous condition of a state variable (figure 5.15 left), this check is trivial. 
Any measurement outside the specified range for the state variable over the time span results in a goal 
failure. Goals expressed as percentages (figure 5.15 right) require more information to evaluate. In this 
case, looking at the latest measurement does not provide enough information to make the evaluation. 
For this evaluation, the modeler can employ inferential checks based on the duration of state conditions 
such as the specification on the right. This specification saves the system from waiting the entire hour to 
evaluate for goal success/failure. 

5.3.3 Off-Nominal Execution of Sequences 
The exceptions we have described manifest themselves in execution in two ways, temporal constraint 
violations and goal failures. The category of the exception and the priority and scope of the affected 
goals factors into the response. Goal-based fault responses are described in section 5.3.4. 

Temporal constraint violations occur when a temporal constraint at a time point cannot be satisfied. The 
temporal constraints are determined from the goal specifications in the goal net. One way for a 
temporal constraint to be broken is for a goal to take too long to be accomplished. In this case, the 
execution gets to a time point, evaluates the temporal constraint (checking if it is time to evaluate the 
next x-goal) and the ReadyToTransition condition on the state variable. While the time constraint says 
“go”, the ReadyToTransition fails. As a result, the executive fires the time point, and the subsequent x-
goal may fail. 
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Fig. 5.16. Temporal constraint violation example 

Figure 5.16 is an example of a case where an x-goal temporal constraint is violated. In the top figure, the 
joined time point has conditions from two x-goals to evaluate. At the end to the time interval, both state 
variable ReadyToTransition conditions are evaluated. In the case of the top x-goal, this check fails. The 
subsequent x-goal (Between 10 and 20 degrees C) is then evaluated to determine if it can still be 
satisfied. If not, it will fail, leaving the failure to be resolved by fault management (as described in the 
next section 5.3.4). 

The other type of execution exception is a goal failure. As described previously, state variables are 
continuously evaluated to determine if they are behaving in accordance with the constraints of their 
goal specifications. The result of this evaluation is represented by IsStillSatisfied. 

Upon failure of a goal, the exception is resolved in accordance with the behavior specification pertaining 
to that goal. 
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Fig. 5.17. Goal failure example 

5.3.4 Reacting to Off-Nominal Execution 
As illustrated in figure 5.13, goal-based fault management is realized as a defense-in-depth. The general 
principle is to do the least required to ensure that the desired behavior is achieved. This entails doing as 
much of the original plan as possible, using integrated responses starting at the lowest possible level. In 
the case the goal-based fault management, “low level” is not a reference to physical system elements 
(i.e., “boxes”) but to goals. As we have stated previously in this document, decomposition of functions 
to physical “boxes” or subsystems is often misleading, as functions are often not uniquely assignable to 
physical elements. Decomposition of behavior, with explicit mapping of behaviors to the controllers that 
achieve them, provides the cleanest allocation. This decomposition based on behavior drives how fault 
responses are broken down. 

Systems engineers define the appropriate reactions for the different types of execution failure through 
state analysis. Response design depends on the type of exception as well as the priority of the goals 
affected. 

5.3.4.1 Local Responses by Robust Achievers 
The first line of defense is to avert goal failure in the first place. Many failures can be avoided by 
designing achievers with the robustness and flexibility to react immediately to off-nominal states. By 
careful specification of the goal’s IsStillSafiable condition, engineers can specify how a controller can 
attempt recovery to potentially recoverable faults. Let’s illustrate this concept with the following 
example. 
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Fig. 5.18. Robust controller example 

In this example, a modeler wishes to specify a controller for an Inertial Measurement Unit (IMU). To 
make the control system more robust, we decide to build into the controller the capability to attempt 
recovery from a designated set of IMU faults deemed potentially recoverable. By dealing with these 
faults at the controller level, we can potentially avoid alterations to our plans due to goal failures. More 
serious, pervasive faults not in this set will be remedied by higher level responses. 

The modeler begins specifying the controller as in the Define State Controller practice (section 4.1.3.6) 
by looking at the state effects model (top of figure 5.18). From this model, we identify the applicable 
state variables to consider in the controller specification, IMU Power/Op Mode, IMU Health, and Power 
Switch Position. 

In this example, the modeler chose to describe the IMU behavior as a composite state machine using 
the identified state variables. The idea is to exhaustively list the significant configurations of the IMU 
along with the attendant transitions, conditions and effects. This description guides the controller 
specification as we shall show. To make the controller robust, the modeler identifies a number of 
relatively minor IMU faults that can be recovered in short order. An example might be startup 
transients, where the IMU can self-remedy by a quick reboot. 
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The composite state machine describing the IMU behavior uses the states from state variables IMU 
Power/Op Mode and IMU health (bottom diagram in figure 5.18). The result is a composite state 
machine with two regions for the respective sets of states. Uncertainty is explicitly represented, since 
the controller has access to estimated states (as we covered in Define State Determination, section 
4.1.3.9). In this example, we represent this uncertainty as state “unknown”. We add transition 
descriptions (triggers, guards and effects) to the state machine using information from all three 
identified state variables. The transition descriptions include the command model and measurement 
models from the identified state variables. The transitions describe what the controller can do to the 
IMU to get it into specified states (command models), and how it determines the state the IMU is in 
(measurement models). 

Using the composite state specification of the IMU controller, the modeler now defines the goals the 
controller will achieve as well as the mapping between the goals, the estimated states and the 
appropriate commands to effect the desired transitions. We represent this as a matrix in figure 5.19. 

 
Fig. 5.19. Robust controller example specification 

As with all controllers, the controller specification gives the appropriate commanding for any mix of 
estimated state (from the composite state description) and desired goal (from goal model). For our 
robust controller, we had included a state in the IMU health state variable to represent conditions 
where the IMU could employ self-remedies such as resetting or turning off (state = “probably 
recoverable”). The set of commands for this state are in the green row. 

Another local option can be described as “do nothing”. While this measure may seem off-hand or 
cavalier to some, pilots would recognize this option by the old flying rule-of-thumb “sometimes doing 
nothing is best”. Systems accomplishing critical sequences (e.g., Mars Entry, Descent and Landing) often 
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do not have time to apply more complicated, time-consuming responses to faults. In these cases, it may 
be appropriate to leave the failed goal in the network and continue “best effort” to achieve the goal. 
This is best accomplished through careful, robust controller specification and explicit definition of how 
the controller might “re-try” goals. 

5.3.4.2 Non-Local Responses to Faults 
When faults cannot be handled locally by a single controller, we must consider higher-level 
interventions involving possible changes to plans due to goal failures. As described above, we try to 
change the original intent as little as possible, while ensuring safety invariants are honored. The fault 
handling method used is an engineering judgment call, depending on the circumstances of the fault and 
the priority and relationships of the goals affected. 

 
Fig. 5.20. Non-local goal-based controller responses to faults 

We remind the reader that the architecture of the response, as with all behavior, focuses on the goals. 
The trees in the response category descriptions of figure 5.20 are trees of goals, not system “boxes”. By 
crafting responses to sets of goal failures, we have the necessary framework to make the right diagnoses 
(using system models of affected states) and make the appropriate interventions (command models) 
based on them. 

The left diagram of figure 5.20 represents how goal-based fault management responses provide layered, 
tailored protection commensurate with the scope of the fault and appropriate intervention. This 
diagram also gives the sense for how the interventions are focused in different functions of the control 
system. As described in the previous section, the most local response is in the controller itself. As we will 
describe, the non-local responses begin to involve the Elaboration, Scheduling and Planning functions of 
the control system as well. 

Partial goal shedding is an appropriate response in situations where the failed goals (and supporting 
sub-goals) can be simply extracted from the network. By removing the failed non-critical goals, the 
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original intent is still satisfied to some degree by the other sub-goals at that level. The determination to 
shed is made in accordance with the specification in the parent goal. An example of this is the 
sequencing of “bonus science” observations for the Mars rovers. Since many activity durations cannot 
be known exactly at planning time, planners include “optional” observations for the rover to carry out if 
time is available. The system evaluates the parent goals at run-time to determine if the observation sub-
goals can be accomplished, and sheds them in accordance with the specification when they cannot be 
satisfied. 

Re-elaboration and re-scheduling is the most common and versatile method of dealing with goal failure, 
providing a means to leverage system physical or functional redundancy. Re-elaboration and re-
scheduling is more appropriate in cases where there is a strong desire to ensure the offending goals 
happen sometime. This provides a flexible, assured means for non-critical but non-expendable failed 
goals to be re-introduced to plans. In this method, alternate tactics (ways of achieving the goal, see 
section 4.1.3.3 on scheduling rules) are specified, describing how failed goals can be re-integrated and 
tried again at other times in accordance to the behavior specification. 

As with traditional fault management, safing is appropriate in cases where safety is at risk, no obvious 
local response is identified or when there the failure has potential implications on the success/failure of 
future activities. Safing can result from the violation of a safety invariant such as a flight rule or other 
safety constraint serious enough to warrant stopping the original activities in order to ensure the system 
does no harm to others or itself. Goal-based safing results in running a basic set of behaviors (safe goal-
net) specified to ensure the system will be safe for an indefinite period, waiting for controller 
intervention to diagnose and fix the problem. 

The globally-considered goal-based specification of safe behavior offers important advantages over 
more traditional localized, procedural implementations. Since the procedural method does not have 
cognizance of the system state, there is an elevated risk of misconfiguration due to the system not 
having a model of the overall effect of the commands run up to that point. Such a system may have run 
a number of localized responses to deal with localized faults before escalating to the system level 
response. With no explicit tracking of system state, these local responses may interact in ways that 
defeat the intent of the engineers. In contrast, goal-based safing works by using a declaration of intent 
for each of the states necessary to ensure the system’s indefinite safety in safe mode. This 
implementation provides a measure of safety against misconfiguration due to the system being in an 
unexpected state, as the goal-based achievers check the state of the system at run-time and command 
accordingly.



Human-Rated Automation and Robotics 

152  
 This document has been reviewed and determined not to contain  
 export controlled technical data. 

This page intentionally left blank. 



 

 153 
This document has been reviewed and determined not to contain  
export controlled technical data. 

Appendix A: Glossary 
This glossary is a collection of terms important to the framework introduced in this document. Further 
elaboration is provided in cases where these terms have been appropriated from more commonly-held 
definitions. 

Achiever: Element in control system responsible for satisfying control or knowledge goals. The 
achievers for these tasks are controllers and estimators respectively. 

Principle References (Controller): Define State Controller (section 4.1.3.6), State Control (section 4.3.2.2) 
Principle References (Estimator): Define State Determination (section 4.1.3.9), State Estimation (section 
4.3.2.1) 

Actuator: Elements of control system charged with effecting change to system under control in 
response to commands issued by controller. 

Principle References: Define Actuators (section 4.1.3.7), State Control (section 4.3.2.2) 

Allocation: The portion of a delegated goal that specifies the bounds of allowable control by the 
delegate achiever. 

Principle References: Define State Controller (section 4.1.3.6), Deliberative and Reactive Closed-Loop 
Control (section 4.3.2.10) 

Basis State Variable: A state variable estimated locally in the deployment with the system under 
control. Complement to Basis State Variable. 

Principle References: Consider Deployments (section 4.1.3.10), Monitoring Goal-Based Execution 
(section 5.2.3) 

Behavior: The manner in which the state variables of the system under control change. These rules 
governing state variable changes are modeled as part of state analysis. 

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4) 

Behavior Model: Expectations regarding the behavior of the system under control that are the basis 
for the control system design. 

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4) 

Bonus Goal: Low priority goals which can be shed from plans if failed (e.g. lack of time, resources) or 
conflicting with higher priority goals. 

Principle References: Non-Local Responses to Faults (section 5.3.4.2) 

Closed-Loop: Control actions to influence the system under control determined by comparison of 
the state and behavior of the system under control with the user goals. 

Principle References: What is Control? (section 3.1.1), Reactive Closed-Loop Control (4.3.2.3) 
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Command: Directive to an actuator to change the condition of one or more states in the system 
under control. 

Principle References: Define Actuators (section 4.1.3.7), Define State Controller (section 4.1.3.6), State 
Control (section 4.3.2.2) 

Command Model: Expectations regarding the change of state in the system under control that will 
result from given commands in the present state. This describes the instantaneous effects of a 
command on software or physical states. 

Principle References: State Control Models (section 3.3.2.4), Define State Controller (section 4.1.3.6), 
State Control (section 4.3.2.2) 

Control Goal: Specification of constraints on state variables of the system under control to achieve 
desired system behavior. 

Principle References: The Role of Goals (section 3.2), Goal Models (section 3.3.2.1) 

Control System: A system implemented to control another system (system under control) enforcing 
desired behavior to accomplish user objectives. 

Principle References: What is Control? (section 3.1.1), Reactive Closed-Loop Control (section 4.3.2.3) 

Controller: Element of the control system that achieves control goals by controlling one or more 
state variables (see Achiever). 

Principle References: Define State Controller (section 4.1.3.6), State Control (section 4.3.2.2) 

Data Command: Directive issued from a knowledge goal achiever to change the condition or 
transport one or more data value histories. 

Principle References: Define State Value Histories (section 4.1.3.5) 

Data Controller: Controller charged with the control of one or more data state variables to achieve 
knowledge goals for data management. 

Principle References: Define State Value Histories (section 4.1.3.5), Define State Determination (section 
4.1.3.9) 

Data State Variable: Metadata describing attributes of Data State Variable histories used for 
control of data states in data management. 

Principle References: Define State Value Histories (section 4.1.3.5) 

Deployment: A physically distinct locale to which a set of control system functions are allocated. 

Principle References: Consider Deployments (section 4.1.3.10), Monitoring Goal-Based Execution 
(section 5.2.3) 
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Delegate Achiever: Achievers allocated goals from delegator achievers to accomplish reactive 
control (see Allocation, Delegating Achiever). 

Principle References: Define State Controller (section 4.1.3.6), Deliberative and Reactive Closed-Loop 
Control (section 4.3.2.9) 

Delegating Achiever: Achievers allocating goals to delegate achievers to accomplish reactive 
control (see Allocation, Delegate Achiever). 

Principle References: Define State Controller (section 4.1.3.6), Deliberative and Reactive Closed-Loop 
Control (section 4.3.2.9) 

Derived State Variable: A state variable representing attributes of the system determined by 
computation using other state variables instead of measurement (e.g., Power Margin). 

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4) 

Discrete Value History: Record of state variable values at particular times in the past. Due to finite 
sampling, continuous phenomena histories are also represented in this manner. 

Principle References: Define State Value Histories (section 4.1.3.5), Define State Variables (section 
4.1.3.4) 

Elaboration: Refinement of a goal into a network of supporting sub-goals on related state variables. 

Principle References: Goal Elaboration and Planning (section 4.1.3.2), Goal Elaboration (section 4.3.2.5) 

Estimated State: The most likely value of a state variable as deduced by the Estimator using the 
available evidence (i.e., state knowledge model, measurement and command histories). 

Principle References: Define State Determination (section 4.1.3.9), State Estimation (section 4.3.2.1) 

Estimator: Control system element responsible for calculating the most likely values of state variables 
using the available evidence (i.e., state knowledge model, measurement and command histories). 
Estimators are achievers of knowledge goals (see Achievers, Knowledge Goals) 

Principle References: Define State Determination (section 4.1.3.9), State Estimation (section 4.3.2.1) 

Executable Goal (X-Goal): An implementable (i.e. achievable by a controller) statement of user 
intent for a state variable. X-goals are ordered in x-goal nets. 

Principle References: Define Scheduling Rules (section 4.1.3.3), Goal-Based Execution in Action (section 
5.2.2) 

Failure Handling: Mechanisms for coping with the impact of failed or conflicting goals in plans. 

Principle References: Robust Execution and Fault Management (section 5.3) 

Goal: A control objective, expressed as a verifiable constraint, consisting of state value range and time 
interval, on a state variable of the system under control. 
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Principle References: The Role of Goals (section 3.2), Goal Models (section 3.3.2.1) 

Goal Failure: State constraint violation detected during execution. 

Principle References: Robust Execution and Fault Management (section 5.3) 

Goal Network: An exhaustive description of intended system behavior specified as a set of 
interconnected goals and time points. 

Principle References: Goal-Based Sequencing (section 5.1), Goal-Based Execution (section 5.2) 

Hardware Adapter: Hardware element in the system under control providing a measurement and 
command interface between the control system and the system under control. Contains one or more 
command and measurement value histories. 

Principle References: Consider Deployments (section 4.1.3.10), Reactive Closed-Loop Control (section 
4.3.2.3) 

Intervallic Value History: Continuous (i.e., a value for any time, not just sampled times) value 
expression for state variables. Specified by use of State Functions. 

Principle References: Define State Value Histories (section 4.1.3.5) 

Knowledge Goal: A goal on the quality of state knowledge for a particular state variable. Knowledge 
goals are satisfied by Estimators. 

Principle References: Goal Elaboration and Planning (section 4.1.3.2), Define State Determination 
(section 4.1.3.9), State Estimation (section 4.3.2.1) 

Measurement: Evidence on the value of a state variable of the system under control obtained via 
hardware interfaces. Measurements provide time-tagged evidence about one or more physical states. 

Principle References: Define Sensors (section 4.1.3.8), Define State Determination (section 4.1.3.9), State 
Estimation (section 4.3.2.1) 

Measurement Model: Specification of expectations regarding the interpretation of measurement 
values from the system under control based on related states. This description includes a model of how 
system physical states affect sensor measurements. 

Principle References: Define Sensors (section 4.1.3.8), Define State Determination (section 4.1.3.9), State 
Estimation (section 4.3.2.1) 

Physical State: Description of conditions (“truth data”) in the system under control in terms of state 
variables. This may be a hardware, environment or even a software state. 

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4) 

Projected State: The control system’s prediction for a state variables value based on the latest 
estimated state, operational intent (goals), achiever behavior and other model specifications. 
Represented as a series of values over the timeline. 
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Principle References: State Knowledge Models (section 3.3.2.2), Goal Elaboration and Planning (section 
4.1.3.2), Define State Variables (section 4.1.3.4) 

Proxy State Variable: A state variable estimated outside the deployment local to the system under 
control. Complement to Basis State Variable. 

Principle References: Consider Deployments (section 4.1.3.10), Monitoring Goal-Based Execution 
(section 5.2.3) 

Scheduling: The merging of elaborated goals into a deconflicted (i.e., temporal constraints and 
resource conflicts resolved) goal network. Scheduled plans are validated through projection of states of 
the plan. 

Principle References: Define Scheduling Rules (section 4.1.3.3), Goal-Based Sequencing (section 5.1) 

Sensor: Elements of the control system which take measurements on the system under control, 
providing evidence for state determination. 

Principle References: State Estimation Models (section 3.3.2.3), Define Sensors (section 4.1.3.8), Reactive 
Closed-Loop Control (section 4.3.2.3) 

State: Dynamic aspects of the system under control relevant to accomplishing system objectives. 

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4) 

State Analysis: Model-Based systems methodology leveraging a model and state based control 
architecture to specify, develop and operate systems. State analysis features a set of concepts and 
processes for capturing system and software requirements in the form of explicit models, thereby 
reducing the gap between systems engineering specifications and software engineering 
implementation. 

Principle References: State Analysis Framework for Goal-Based Control (section 3.3.2), From State 
Analysis to Design Elements (section 4.1), [Estefan2007] 

State Control: The influencing system state to achieve mission objectives in accordance with 
constraints on state variables (specified as goals). 

Principle References: State Control Models (section 3.3.2.4), Define State Controller (section 4.1.3.6), 
State Control (section 4.3.2.2) 

State Effects Model: A description of the dynamics (behavior) of state variables, including how 
other states variables and commands affect it. 

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4) 

State Function: A description of how a state variable state changes over time. This description 
results in a continuous expression of state variable values for intervallic value histories. 

Principle References: Define State Value Histories (section 4.1.3.5) 
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State Knowledge: A representation of a control system’s estimate of the history of the state of the 
system under control, including the associated uncertainty of that knowledge. 

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4) 

State Variable: The container of persistent state knowledge for a dynamic attribute of the system 
under control. State variables are the link between state determination and state control. 

Principle References: State Knowledge Models (section 3.3.2.2), Define State Variables (section 4.1.3.4), 
Define State Variable Histories (section 4.1.3.5) 

System Under Control: The entity controlled to achieve mission objectives, distinct from the 
control system with an explicit set of interfaces between. 

Principle References: What is Control? (section 3.1.1) 

Tactic: An alternate arrangement of sub-goals for elaborating a goal. Tactics produce distinct goal 
networks in response to conditionals evaluated by the elaborated goal. 

Principle References: Goal Elaboration and Planning (section 4.1.3.2), Goal Elaboration (section 4.3.2.5) 

Time Line: Expression of a state variable’s estimated, intended, projected or reachable state over 
time. 

Principle References: Define Scheduling Rules (section 4.1.3.3), Goal-Based Execution in Action (section 
5.2.2) 

X-Goal: See Executable Goal. 
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Appendix B: Airlock Demo 

Overview and Motivation 
Human-Robotic systems often include people working with automation to accomplish goals that neither 
the people nor robots could accomplish entirely on their own. This airlock demo was intended to 
illustrate such a relatively simple case of safely egressing one or more astronauts from inside a 
pressurized spacecraft to the vacuum outside by coordinating between astronauts and automated 
subsystems. The job of “controlling” the process and enforcing the safety of the process is delegated to 
a process controller in this case. Our airlock was modeled after international space station (ISS) airlocks, 
where safety precautions are monitored through careful coordination between astronauts following 
printed procedures. While this is not a particularly complicated procedure, it provides a good example of 
a case where human participants can be modeled as integral parts of the control system, playing specific 
roles in the control process, while important safety constraints can be automatically enforced. 

State Analysis 
An airlock works on the same principle as locks in a canal. Airlocks are used to allow astronauts to move 
between a pressurized spacecraft and the vacuum of space (or possibly the atmosphere of some other 
planet) while maintaining the pressurized environment within the spacecraft. Using a chamber with two 
doors between the two environments, an astronaut can enter from one side while the chamber shares 
the same environmental pressure as the spacecraft (and the outer door is closed), close the inner door, 
and then change the pressure within the chamber to match outside environment’s. At that point the 
outer door can be opened allowing access to the outer environment. The process is reversed to reenter. 

 

Fig. B1. Airlock state effects 
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Fig. B1 depicts the states and state effects identified for our example airlock system. The primary goal of 
the system is to enable astronauts to egress and ingress the spacecraft habitat, so we have a state 
variable representing the astronaut location. In this case a simple enumeration of general locations is 
sufficiently precise: the astronaut can be in the habitat, in the airlock, or outside. 

To transition the astronaut between chambers, the system must coordinate the opening and closing of 
hatches and the transitioning of pressure within the chamber. So, pressure within the airlock is a key 
state here. Most of the elements of the airlock are there to allow the system to control pressure. So, the 
hatches and relief valves are used to contain pressure and release it. A depressurization pump is used to 
evacuate pressure from the chamber while recovering the precious resource, and a separate 
subassembly, the Pressure Control Assembly (PCA) is used to repressurize the chamber using gas from 
supply tanks. In our imaginary system we presume that the PCA and the pump are subsystems that can 
be automatically controlled. However, the astronaut must manually control the hatches and relief valves 
and the position of the astronaut because no electronic actuators are provided. 

In order to model this as a system under control, we have to include the astronaut as both part of the 
system under control as well as the supervisor of the system. Our analysis tries to keep these roles 
distinct because the nature of the interactions will be different depending on the role. As a supervisor, 
the astronaut can direct the system to begin the process of egress, may be asked to confirm readiness to 
proceed, and may choose to cancel the plan at any time. As the control system steps through the 
process, it will direct the astronaut to actuate valves and hatches at appropriate points as though issuing 
commands to an actuator. These directions to the astronaut would appear no different than reading 
procedure steps off a page, but to the control system they’re little different than issuing commands to 
hardware. As with any other hardware device, the control system has to have a model of the device that 
incorporates its known behaviors, which in this case include being distracted and not noticing the 
request, or confirming a step the hadn’t actually completed. 

An important safety constraint in this system has to do with the human physiology and the nature of 
dissolved gasses in the blood. When people are exposed to rapidly lowered air pressure, nitrogen in the 
blood stream can come out of solution forming bubbles that can be extremely dangerous. To avoid this 
situation, divers and astronauts alike are careful to purge the nitrogen from their systems before 
exposing themselves to decompression by breathing pure oxygen for a period long enough to replace all 
of the nitrogen with oxygen. Our simplified airlock system doesn’t model all of the steps involved, but it 
does model the fact that the prebreathing step takes place at a pressure lower than ordinary 
atmospheric pressure but high enough to avoid complications. 

Note from the state effects diagram that although we can measure pressure in the airlock directly, we 
cannot directly control it. We can only indirectly control the pressure by controlling the state of things 
that affect pressure. Specifically, pressure can be lowered by having both doors closed and turning the 
pump on, or opening the equalization valve to the outside and venting gas. Our control system models 
those as two tactics for accomplishing the same goal. Pressure can be raised by having both doors 
closed, the outer equalization valve closed, and then either commanding the PCA to repressurize the 
chamber using supply gas, or opening the equalization valve to the habitat. Again, the control system 
can model these as two tactics for accomplishing the same goal. 

The entire egress activity is encoded as a single macro elaboration that expresses the process of moving 
the astronaut from the habitat to the airlock, closing the inner hatch and equalization valve, lowering 
pressure to the prebreath level, waiting until the astronaut’s blood nitrogen level has diminished to a 
safe level (according to a model based on time). At that point the system will confirm that the astronaut 
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is ready to proceed and then control the pump to depressurize the airlock down to a pressure at which 
the pump is no longer effective. Then, the pump is stopped and the astronaut is asked to open the 
equalization valve to the outside to vent the remaining pressure. Once the pressure in the airlock is 
close to vacuum, the astronaut is requested to open the hatch and proceed outside. 

Implementation Details 
To stand in for the actual hardware this demo uses a simple functional simulator that models the 
behavior of pressure in response to valve and hatch positions and the commanded mode of the pump 
and PCA, including some failure states such as a non-responsive pump. Because this system relies on the 
astronaut to directly manipulate some of the hatches and valves the system also provides a graphical 
user interface to the simulator. A single hardware adapter provides the control system with the 
command and measurement interfaces to this hardware. 

A dialog manager similarly acts as a hardware adapter to the user in cases where estimators need to 
query the user for measurement evidence about the state of a valve or hatch, or issue a command to 
the user to change the states of those devices. Current state knowledge is delivered from the control 
system to the GUI through a state telemetry connector, and a third directive connector is used to 
support the user’s supervisory interactions with the control system. 

 
Fig. B2. Airlock demo system components 
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Fig. B3. Airlock control components 

How It Works 
When the astronaut proposes the goal to egress a directive is issued to the control system (depicted in 
Fig. B3) where the elaboration manager instantiates the top-level goal and then elaborates and 
schedules it as a goal network. The scheduling process verifies that all of the goals (constraints) 
expressed in the activity plan are achievable by checking that projected system states always remain 
within the expressed constraints. Once the plan is verified it can begin executing in the Executive. The 
Executive determines when time point events occur as a function of time and of readiness of incoming 
and outgoing goals to start or finish. In this system the pressure goals are defined so that a pressure 
transition goal is not finished (and so its ending time point cannot fire) until the pressure state has 
reached the target value. The system can detect cases where the pressure goal indicates intent to 
change the pressure, but pressure is not changing, suggesting a possible failure. For example, during the 
first step of depressurization the astronaut is directed to close the inner hatch and equalization valve 
before the pump is enabled to begin removing gas from the chamber. A lack of pressure decrease at this 
point could indicate a failure of the pump, or, a failure to properly close the hatch or equalization valve. 
The system can detect this situation and re-issue commands to the astronaut to actuate the hatch and 
valve to achieve the intended goals as it would for a simple actuator. 
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Appendix C: Lunar Rover (SEV) Demo 

Overview and Motivation 
The Multi-Mission Space Exploration Vehicle (MMSEV, or just SEV) is a pressurized robotic vehicle 
designed to carry two astronauts to various destinations in space. Mated with a driving chassis, its 
original application was to allow astronauts to explore the surface of the Moon. The SEV uses electrical 
energy stored in batteries to power its driving motors, life support systems, avionics, and other 
subsystems. Energy can be replenished from solar panels, but at a rate significantly lower than the rate 
at which energy is consumed while driving. So, it is important to not only keep track of energy 
consumption during operations, but to carefully plan out exploration activities to ensure that intended 
destinations can be reached without endangering the life support functions. 

Our demonstration system models the SEV’s battery state of charge as it Is affected by loads related to 
driving and life support, and is intended to provide advisory information about the viability of the 
current activity plan to drivers and mission controllers. Specifically, the demonstration system creates a 
goal network reflecting the sequence of driving destinations (as position goals), and including additional 
constraints on expected power loads. The system also adds constraints reflecting safety constraints or 
flight rules on the allowable depth of discharge of the battery. The system can then verify the viability of 
the plan by projecting model states forward in time in light of the given constraints and checking that 
the system state variables remain within the constraints (including the safety constraints) at every point 
in the plan. Furthermore, during execution of the plan the system can continuously re-project these 
states in light of current state knowledge, and thus continuously re-verify the plan’s achievability and 
conformance with safety rules. 

This system was intended only to advise astronauts about the energy situation, allowing the astronauts 
and ground controllers to decide how to respond. So, if the system detects a goal violation its response 
is merely to present the details of the situation and suggest some possible recovery actions. A future 
version of this system could easily be adapted to automatically re-elaborate the activity plan, interacting 
with drivers to choose alternate tactics, and then automatically transitioning to execute the repaired 
plan. 

State Analysis 
Fig. C1 depicts the state variables and state effects modeled in this system. The battery state of charge 
state variable reflects the amount of recoverable energy stored in the battery (in kW-hours). The state 
of charge cannot be measured directly, but we can measure the rate at which energy flows into or out 
of the battery as the product of bus current and voltage. In this case we used a simple model to 
integrate power over time to determine energy. In order to project bus loads in the future our system 
groups the power producers and consumers into five categories. The only producer is the solar panel, 
which is normally stowed while driving, and can be deployed to produce more energy while parked. 
Driving-related loads are modeled in two separate state variables, the mobility load models the power 
consumed by the driving motors, and the suspension load reflects the power consumed by the active 
suspension. The suspension motors draw variable current that averages out to a nearly constant load 
when the suspension is active. Although the suspension is normally powered when driving, it was 
modeled separately to allow for an alternate power-saving tactic to drive without it. Similarly, all other 
power consumers including avionics, life support, and lights, were grouped together as the “hotel” 
loads. The hotel loads were divided into two groups that included the “essential” loads that would never 
be turned off, and “optional” loads that could be powered off to save energy in an emergency. Although 
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some of these loads were periodic (i.e., pumps cycling on and off) or intermittent, as a group they could 
be modeled as a constant average load over time. 

As depicted in the diagram, the loads all affect the battery state of charge. The mobility load is primarily 
a function of speed and the slope and roughness of the terrain, although adding the terrain model was 
left as a future addition. For planning purposes our model assumes a constant terrain texture that 
permits driving at a particular constant average speed. Distances between destination waypoints can be 
computed as straight-line distances plus a fudge factor to allow for driving around obstacles. Our model 
uses this to determine the time it will likely take to drive from one waypoint to the next. 

 
Fig. C1. Energy state effects 

For simplicity this system elaborates most of the goals from a single elaborator that takes as a 
parameter a list of destination waypoints along with the time to be spent at each destination. A more 
detailed plan might have modeled the specific activities to be completed during that time, such as 
performing science observations, collecting samples, eating meals, or just waiting for the batteries to 
recharge (and having more details in the plan would make it easier to know what objectives might be 
foregone were the plan to change). The plan elaborator added goals reflecting the intent to drive to 
each waypoint and then linger at the waypoint for the defined wait period. In parallel with those goals it 
also added constraints reflecting the intent to have suspension on while driving, and off while parked, 
and to have solar panels stowed while driving and deployed while parked. The hotel loads were both 
elaborated to be expected during the entire activity. 
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Implementation Details 
The demonstration system was implemented using the same frameworks as the airlock system, 
including GUI and communicator frameworks. In order to optimize responsiveness to current state 
knowledge and interaction with drivers the system was designed to be deployed onboard the vehicle, in 
this case in a laptop computer carried as part of the avionics complement. In this configuration the 
application would continue to advise astronauts of plan safety even if telemetry links to the ground 
dropped out sporadically. Ground controllers could access the demo application using a virtual desktop 
interface to the onboard laptop (not flight-like, but cheap and easy to do in a demo) that would not 
interrupt operation of the advisory system if external connectivity dropped out. 

Onboard telemetry is distributed using a message bus. To allow the control system to receive 
measurements of bus current and voltage, and rover location a hardware adapter was developed to 
select these messages from the message bus (in this case the system under control included the 
onboard navigation system that could integrate various navigation sensors to produce a single high-
quality position and orientation measurement). 

 
Fig. C2. SEV demo system components 

How It Works 
This system has two user interfaces. One is a simple adaptation of the same user interface used in the 
airlock demo. This interface provides the controls to propose a new plan, and another more specialized 
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interface customized to display the essential energy situation details to the drivers. Specifically, this 
display (figure C3) shows a plot of the energy projections as a function of the planned driving activities 
(and elaborated expectations and constraints). Because the models are reflecting both temporal and 
state uncertainties, the plot shows a best case and worst-case projection along with the safety 
constraint on battery depletion. This way, users can immediately see where the projections cross the 
safety constraint (usually in the future) and adjust the plan before any actual violations have occurred. 

 
Fig. C3. Energy situation display 

In addition to continually displaying the energy projection plot this user interface could also display alert 
messages when constraint violations were detected, and suggest replanning options (as implemented 
these are just suggestions which would have to be manually re-elaborated into a new plan, but a future 
version could do this automatically). 

This system was field tested during the Desert Rats 2010 field exercises at the Blackpoint lava flow in 
Arizona. During those tests astronauts drove the SEVs in simulated exploration plans that exercised 
many planning and coordination procedures between scientists, ground planners, and astronauts. In 
particular, they exercised a safety protocol where the two rovers were operated in a coordinated 
manner so that, should one become disabled, the astronauts could always be rescued by the other 
rover. A future version of this demo could model the operation of both rovers and automatically 
compute the distance between them and energy needed to execute a rescue. However, the current 
version only models the “self” rover, so requires the astronauts to estimate the distance to the other 
rover. From that, the system can compute a rough projection of the energy needed to execute a rescue. 
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