
Goal-Based Fault Tolerance for Space Systems
Using the Mission Data System1

Robert D. Rasmussen
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109-8099

(818) 354-2861
robert.d.rasmussen@jpl.nasa.gov

1
 0-7803-6599-2/01/$10.00 © 2001 IEEE

Abstract—In anticipating in situ exploration and other
circumstances with environmental uncertainty, the present
model for space system fault tolerance breaks down. The
perplexities of fault-tolerant behavior, once confined to
infrequent episodes, must now extend to the entire
operational model. To address this dilemma we need a
unified approach to robust behavior that includes fault
tolerance as an intrinsic feature. This requires an approach
capable of measuring operators’ intent in the light of present
circumstances, so that actions are derived by reasoning, not
by edict. The Mission Data System (MDS), presently under
development by NASA is one realization of this paradigm
— part of a larger effort to provide multi-mission flight and
ground software for the next generation of deep space
systems. This paper describes the MDS approach to fault
tolerance, contrasting it with past efforts, and offering
motivation for the approach as a general recipe for similar
efforts.

TABLE OF CONTENTS

1. INTRODUCTION
2. SPACECRAFT FAULT TOLERANCE TODAY
3. A BRIEF OVERVIEW OF MDS
4. MDS FAULT PROTECTION
5. SYSTEMS ENGINEERING BETTER FAULT TOLERANCE
6. CONCLUSIONS
7. ACKNOWLEDGEMENTS

1. INTRODUCTION
Fault tolerance and its attendant operational complexity
have always been problems for space missions, requiring a
tense balance between tight ground control and flight
system autonomy. Ability to predict and certify every action
has been the hallmark of most operational models, with
reaction to faults considered as a necessary but disruptive
and potentially dangerous interference. While very
expensive, this approach, nevertheless, has been generally
manageable — until now.

In anticipating in situ exploration and other circumstances
with significant environmental uncertainty, the present

model breaks down. Operation in dynamic or unpredictable
situations will become common. Thus the perplexities of
fault-tolerant behavior, once confined (with luck) to
infrequent episodes, must now extend to the entire
operational model. What’s more, these behaviors must
remain affordable — or better yet, reduce costs below the
present norm.

This is one of several objectives undertaken by the Mission
Data System (MDS), a unified flight, ground, and test
architecture for the next generation of NASA’s deep space
systems presently under development at the Jet Propulsion
Laboratory. MDS will be adaptable to a wide range of space
systems, including interplanetary and orbital missions, small
body explorers, surface rovers, aerobots, formation flying
interferometers, observatories, and so on. All of these
systems, in one way or another, can benefit enormously
from a system that reacts to its circumstances and behaves
appropriately (though not necessarily predictably) to meet
its operators’ intent. This is the essence of fault-tolerant
behavior, extended to the general issue of performance and
survival in an uncertain environment.

To accomplish this, MDS has been composed of a full set of
object-oriented software frameworks, and of equal
importance, a set of systems engineering tools and
methodologies. The frameworks provide a basis for
reusable, reliable software grounded both in solid software
engineering principles and in a set of architectural
themes [1] tailored to achieve robust behavior. The systems
engineering approach supports an expression of system
design and operational considerations that is natural to
designers, yet directly interpretable in software. It is this
essential merger of software and systems engineering that
MDS claims as its fundamental contribution, not just to fault
tolerance, but to the whole problem of safer, more reliable,
and lower cost space systems.

2. SPACECRAFT FAULT TOLERANCE TODAY
Spacecraft fault tolerance is not a single entity. It arises
from characteristics of the hardware, such as intrinsic

reliability, redundancy, provisions for fault masking or
containment, physical robustness against adverse
conditions, interlocks on critical functions, adequate
margins, and so on. It also depends on various schemes to
detect problems and react to them soon enough to preserve
system safety and functionality. Such protection systems are
themselves generally divided into layers.

At the top is adherence to some operational model, which
one trusts will guide the system through its tasks with
tolerable risk. To date, this has been for the most part a
timed sequence of commands — predictable events at
predictable times. Conditional behavior in such sequences,
while not unheard of, is generally the rare exception. Such
behavior is more typically restricted to a supplemental layer
below the sequence, implemented in state machines or
similar embodiments of sequential behavior, but always
within a strict envelope of performance that planning efforts
can predict. There will be much more to say on this matter
below.

Barring unpredictable events outside the envelope of
nominal variations, conventional time-based sequencing
serves the system well, giving operators just what they
expect. In fact, much of the operational model revolves
around the detailed verification of “predicts”. For anything
unusual, however, the system must take care of itself. High
level “fault protection” software handles the bulk of this
responsibility, but it depends on lower level software to
assure an operational computing platform, which in turn
relies on protection in the hardware itself for power and
other fundamentals.

In this complex collection, many competing factors are at
work. For instance, missions are often characterized by one–
time opportunities or by a heavy workload that demands
very high availability to accomplish mission objectives.
This often dictates a compressed, carefully optimized
sequence of actions, where each activity is generally hard
won against concerns over tight margins. Therefore, any
contemplation of uncertainty, any lack of guarantee that
these planning conquests won’t be squandered by a system
that cannot promise each and every item its turn, is regarded
with deep suspicion. Nevertheless, there are no guarantees
— only the disquieting certainty that everything will go
exactly as planned, if nothing unplanned happens. This is
but a hollow victory, for the potential of tripping into a fault
response threatens every step.

Given this predicament, designing system fault tolerance for
space applications has been difficult. It has steadily
improved over the years. However, as currently practiced, it
remains a daunting, protracted labor for each new project to
bring to a level of maturity and reliability that is adequate to
the task.

This is especially so when critical mission activities are at
stake. If time or resources are constrained, then recovery
actions inevitably conflict with the urgent need to push
forward to a successful end — without ground intervention.

Even in less stressful conditions, where it is possible
(though generally undesirable) to forego normal operations
for the sake of system safety, there is a struggle between
assuring adequate fault coverage and satisfying the
misgivings of operators over finicky or unruly fault
tolerance systems. False alarms can be highly disruptive to
operations, but failure to respond adequately to genuine
faults is potentially calamitous. Thus, when the only options
are failure to perform versus failure to survive, the choices
available are frequently disappointing.

Operators also fear outright incorrect, or even dangerous,
behavior anytime they relinquish control to automatic
functions, and they find it irksome to realize that their
judgement is most facile in situations where the system
needs it least. That is, that which they trust the least to
manage routine operation is that which they must trust when
things get complicated. This is a fundamental irony in
present techniques, clearly indicating that we have taken a
blind alley in the evolution of fault tolerance.

Until now, these struggles have ordinarily resulted in a
satisfactory but wary compromise for all interests, but not
without great cost. Moreover, new, more challenging
planetary missions threaten to push even this expensive
concession out of reach. In essence, space systems are
moving into regimes where the unexpected will be routine,
so the line between fault tolerance and generally robust
behavior blurs. Attempting to carry old fault tolerance
paradigms into the broader functioning of the system is
simply impractical.

3. A BRIEF OVERVIEW OF MDS
Fortunately, there is a resolution to this dilemma, but it
requires the unification of fault tolerance with all other
aspects of system operation in a single operating paradigm.
Furthermore, any realization of this paradigm must allow
overt expression of the operator’s intent. It must be
explicitly cognizant of system state and the integral situation
of failure modes within this context. Also, guidance of the
system must be further informed by models of behavior and
operational constraints that provide the basis for reasoning
about alternative courses of action.

State Variables2

At the core of MDS, then, is the notion of a state variable —
an object of a formal class within which all software
knowledge of some external system state is captured. The
collective state of the whole system, including the

2 It is important to observe the distinction in this context between a

software state variable and the state of the software itself. State variables
are software objects that capture knowledge of the state of the external
system. The software itself may have internal modal behavior or other
state, but state variables do not refer to this software state. That is, state
variables are not introspective.

environment and relevant states of other interacting entities,
is captured in a set of state variables. A typical system may
require hundreds of them in order to express all knowledge
pertinent to its function. The key, however, is that this
knowledge is maintained in an internally consistent form
and all software actions derive solely from this information.

State variables span a wide range, from obvious items like
attitude and device states to less obvious minutiae like mass
properties and calibration parameters. They attend to system
resources, such as power or propellant. They keep track of
what data have been collected from science instruments and
what the next downlink opportunity might be. They follow
the moons and planets of the solar system. They can even
represent the dusty winds on Mars — whatever the system
needs to know.

Need is the governing factor on complexity. All state
variables represent state in a manner befitting the needs of
the system. Thus, in the final analysis, one finds that the
information provided would have been available in some
form anyway. A benefit of overtly formalizing state
knowledge within the MDS architecture is that it leaves no
room for questioning what indeed the factors are that govern
system behavior, or whether or not they collectively make
sense — a surprisingly difficult thing to discover in most
other systems.

MDS also encourages a statement of this knowledge in clear
and direct terms, rather than in myriad flags, counters,
parameters, and the like, scattered indiscriminately through
the code. For instance, one might give up retrying a
command, not because some counter has incremented to the
fatal limit, but rather because the commanded device has
been ascertained to be in an unresponsive state. Thus, state
variables tend to be much more descriptive. (Of course, this
begs the question of how the state value is determined. This
is described below.)

Knowledge Uncertainty

Another aspect of state knowledge promoted by the MDS
architecture is that all knowledge is suspect. Every state
variable, therefore, is required to declare its degree of
certainty in any knowledge it provides. In fact, a state
variable is never without an answer, even when it has no
knowledge. It merely declares its knowledge to be
completely uncertain.

The inclusion of uncertainty is essential for two reasons.
First, such information is usually crucial in making proper
decisions. What is appropriate when a value is well known
may be totally inappropriate if the same “best” value is
highly uncertain. One might not risk firing an engine, for
instance, even if the most likely values of pressure and
temperature were safe, if the envelope of uncertainty
extended beyond the safe limits.

The other reason for including uncertainty in state
representations is that uncertainty is often the principle

target of intent in a system rather than the value of state
itself. The operation of sensors, for instance, is motivated
foremost by the need for useful (i.e., relatively certain) state
knowledge, and only secondarily by how this information
will be used.

Estimation and Control

These two aspects of state knowledge result in two basic
aspects of system functionality: estimation and control.
Estimation deals with the determination of state knowledge
and is motivated by how good this knowledge must be.
Control deals with the manipulation of state, as represented
in state knowledge, and is motivated by what value this
knowledge must attain.

In MDS, these functions are cleanly delineated. Nothing
about the intended value of state is allowed to influence the
estimated value or its uncertainty. Likewise, none of the
evidence (measurements and observed commands) collected
for state estimation is used directly by state controllers.
They react only to the estimates themselves. This separation
helps assure the honesty and expressiveness of state
knowledge, and the consistency of action among controllers.
Moreover, it improves the modularity and reusability of
software components.

Goals

Estimators and controllers in MDS are also formal classes.
Together they (and a couple others not described here)
comprise a set of so-called goal achievers. This is because
all actions in such a system are directed by goals, not
commands.

The distinction between commands and goals is essential
and marks one of the greatest departures of MDS from
conventional approaches. A command is momentary. Any
lasting effect it may have is due to functions or behaviors
expressed elsewhere in the system. Thus, one cannot tell
from a command alone whether it contradicts the intent of
its predecessors.

Suppose one commands a device to some state, for instance,
with the intent to leave it in that particular state for at least
five minutes. It is possible that no change of state is
commanded after this until necessitated by a much later
activity, even though it wouldn’t matter after five minutes,
as far as the operators were concerned. Yet there is nothing
in the sequence of commands itself that declares such intent.
Moreover, there is nothing in the timing of commands that
indicates what flexibility might be possible in these times. A
fault response, needing to change this state, would have no
way to tell if it is creating a problem or how long it would
have to wait to avoid one.

These issues are at the root of incompatibility between
command sequences and fault protection. Absent any way to
discover intent or flexibility, fault protection is reduced to
assuming the worst, and that usually means terminating the
sequence.

MDS resolves this dilemma by expressing intent explicitly
as constraints: constraints on the value of state (or its
uncertainty!) over a time interval, and constraints on the
instants in time that demarcate these intervals. A constraint
is a condition on value, expressible in concrete terms (such
as with an inequality) that must be true.

State constraints with their associated time intervals are
called goals. A collection of goals and temporal constraints
comprise a goal network that unambiguously expresses
operator intent in a declarative manner that supports
reasoning and that affords the system flexibility in response,
which is unattainable in conventional space systems.
Whether or not two goals are in conflict is simply a matter
of comparing their state constraints and the temporal
constraints on their time intervals. Where conflicts do arise,
the system is free to try alternative actions and timing that
meet the constraints, because the constraints generally lay
down a broad set of possibilities rather than a specific
sequence of actions and times.

Closing the Loop

Commands are derived from these constraints, given any
discrepancies between desired state and current state
knowledge. Goal achievers, as described above, are the
means to effect these commands. Thus commands do
appear, but only indirectly as a byproduct of goals, not as
the first order means of system direction.

The specific set of commands selected is determined by
circumstances, given the goals, so commands are not fully
predictable. What is predictable, at least to the same extent
that timed commands have been, is that the constraints will
be met. In reality, however, a goal-driven system is much
more likely to produce the desired results because of its
ability to try alternative actions and timing. Conventional
systems, faced with problems, will usually just abandon
sequenced actions and wait for help.

Expressiveness

Constraints may seem, at first, like a limiting way to direct a
system. One might ask, for example, how one could use
constraints to direct a series of science observations. One
can’t simply say that the goal is to do the observations.
That, after all, is just a command, not a state constraint. So
how is it done? There is a simple answer that, nevertheless,
often generates surprise when first encountered. One merely
determines what one wants to be different about the system
after the observations from what existed before. The
difference in this case is clearly that the desired data exists
in storage afterward. If it already existed, the observations
would be unnecessary. This is the change of state desired, so
we represent the contents of data storage with a state
variable, and impose a goal (i.e., state constraint) upon the
system to be in a state where the required observation data
has been stored.

Another seemingly peculiar situation arises when
considering resource allocation and similar operational

situations where only indirect control is possible. One wants
to describe, not what set of values a state is allowed to take,
but rather what variability a state must be guaranteed at a
minimum. At first, this seems to violate the notion of a
constraint, but after some reflection, it is clear that both
ordinary constraints and resource allocations have
something to say about what states are allowed. Ordinary
constraints merely bound this allowed set from above, while
allocations bound it from below! With this subtle
generalization, the entire question of resource management
is also subsumed within the vocabulary of goals.3

Data transport, navigation, system safety, and so on can all
be managed in a similar manner. Thus we see that the
language of goals is not only very expressive, but also that
even the highest level of system operations can be directed
in a closed loop fashion. The power to handle both faults
and normal activities within the same operational model
emerges from this ability.

Elaboration

Of course, there are a few steps between expressing a high
level constraint and actually performing the low-level
actions that bring it about. This process in MDS is called
elaboration. A set of rules recursively expands the high level
goal into a goal network that is merged with the outcome of
previous elaboration. Because constraints can be compared
for conflict, everything can be arranged to meet all the
constraints unless it is logically impossible (or
computationally intractable) to do so. When unresolvable
conflicts arise, additional rules determine the precedence of
goals in order to find an acceptable subset that can be
resolved in a timely manner. This is described in more detail
below.

Data Management and Transport

One final note about the general MDS architecture is in
order before turning to the specific issue of fault tolerance.
Like almost everything else in MDS, data management and
data transport are entwined in the notion of state. Besides
current state knowledge, both past and future (i.e.,
experience and plans) are maintained in a timeline for each
state variable. Factors that govern the persistence (e.g.,
through reset), quality (e.g., after compression), and
transport (e.g., priority) of this data are all associated with
the state variables through policy mechanisms that are also
subject to direction by goals.

Notice also that in none of this discussion has the distinction
been made about where goal elaboration or achievement
occurs — flight or ground. In fact, these functions may be
distributed, as dictated by needs and feasibility, across both

3 Moreover, this enables a vital mechanism (not described here) for the

link between functions handled directly by goal networks and those
delegated to subordinate goal achievers.

locations (and any other collection of systems). This is made
possible by the sharing of state variable timelines in both
places and by communication across the link of goals,
measurements, and other common entities that also flow
within each realm. This is accomplished by data
management and transport capabilities dedicated to this end.
In fact, most engineering activity on the link, in both
directions, may be properly thought of as merely bridging
communication between two parts of the same system.
Thus, MDS is truly a unified architecture.

4. MDS FAULT PROTECTION
With this description in mind, it is now possible to show
how fault protection fits naturally within the larger
framework of MDS, not as an additional set of functions,
but rather as a logical extension of the core ideas. As with
most things in MDS, we start with the notion of state.

Failure Modes

A failure is a possible condition (state) of a device in which
it does not perform as designed. Failure modes are sets of
failures that share a common cause or symptom. These
failure modes, together with the conditions in which the
device does perform as designed comprise the total set of
possible states for that device. Therefore, MDS treats failure
modes and other anomalous conditions as just another
possible set of system states. All such potential states must
be included among the possible values of the collection of
state variables defined for the system. State variables are
augmented or added, as necessary, to make this possible.
Thus, one might say, for instance, that a valve is either open
or closed and working normally, or that it is stuck in one of
these two positions — four possible values for one state
variable, two of which are failure modes.

In these state variable representations, failure modes need
not be described explicitly. Rather, any portrayal that
captures essential observable behavior is sufficient. In
particular, what is most important is the circumscription of
normal or acceptable behavior, such that departures can be
ascribed to anomalous states. This allows the system to
categorize any deviant behavior, even if it arises from
unknown failure modes. One may know, for instance that a
linearly dependent set of gyros has a serious problem if a
parity test among them is violated without ever having a
clue about the source of the error. The state variable can
categorize this as “not right” even before any more
particular diagnosis is made.

Failure categories are chosen to discriminate mainly by their
effect, rather than by their cause, unless knowing the cause
determines what corrective actions might be possible. For
example, a valve may be stuck for a variety of mechanical
or electronic reasons, but one needn’t know which, if it is
deemed permanent. On the other hand, it is usually
important to know whether a valve is stuck open or stuck
closed, and not just that it is stuck.

Fault Monitoring

State determination collectively and dynamically chooses an
estimated current state for each state variable. These
estimates are chosen to best fit the observed evidence
(measurements and commands), given state–based models
of behavior maintained by state determination processes.

State-based models include behavior of sensors, data chains,
and commanding mechanisms. Therefore, the potential for
corrupted measurements and commands, or interrupted data
flow is taken into account by state determination.

Fault detection occurs whenever observations do not
adequately match modeled behavior if nominal states are
assumed. That is, if it is necessary to alter the estimated
state to one of the fault states in order to better explain the
observed evidence, then a fault is assumed to have occurred.

There may be more that one possible explanation when a
fault is detected. In this case, the ambiguity is reflected in
the uncertainty associated with every estimate.

To illustrate, consider a situation where a command has
been issued to open a valve, but the status measurement
from the valve indicates that it is still closed. This is a
departure from modeled normal behavior, but it is consistent
with three different failure models: a failure to deliver the
command (or failed valve driver), a stuck closed valve, or a
faulty valve position sensor. Barring further information, the
estimated states would be “possibly broken command
chain”, “unknown valve state”, and “possibly failed valve
position sensor”. That is, each state variable would report
some degree of uncertainty, each with the possibility of a
failure.4

If, subsequently, additional information arose that the valve
was indeed open (perhaps due to no observed pressure
difference across the valve), then the estimated states would
resolve to “command chain okay”, “valve open”, and
“definitely failed valve position sensor” as the only modeled
behavior fitting all observations without assuming two
simultaneous but independent failures.

Note that no decision regarding potential action is made in
any of this determination. This is consistent with the
separation of state estimation from state control.

Note also that the representations of state are quite explicit,
whereas in conventional designs one will often see such
conditions appear only as momentary expressions evaluated
in conditional code branches. Separation of state estimation
from state control fosters the explicit form, which greatly

4 Of course, much more quantitative descriptions are possible, based on

Bayesian methods or other approaches. However, the simple enumerated
possibilities, used here for illustration, may also be used, if appropriate.

clarifies the assumptions going into the design, making
them open for easier inspection.

Finally, note that the failure values of state are totally within
the same representation as normal values. Fault detection is
not a separate function from normal state estimation, nor is
it ever possible for one part of the system to react to a
detected failure, while other parts go about business as
though everything were normal.

Flight Rules

Goals specify constraints imposed on the state of the
system. Most goals are in service of operational objectives.
Others, however, embody flight rules and constraints. One
might require, for example, that an instrument never be
pointed close to the sun while the spacecraft is inside
Jupiter’s orbit, or that power margin never be allowed to fall
below 10 Watts, or that high voltage power supplies remain
off during launch vehicle ascent. Each is a constraint on
system state that must be assured, and each may have a
prescribed interval of applicability, just like any routine
operational objective. That is, flight rules and constraints are
just business as usual. Thus, in MDS, this important aspect
of operations is neither outside normal activities nor
imposed upon them as a separate step. Rather it is simply a
coequal part within the total process of expressing operator
intent.

Goals are achieved by controlling their associated states
(when possible) through goal achievers, and through a
process of goal elaboration, which creates additional
subgoals designed to enable or facilitate the achievement of
the original goals. Elaboration relates subgoals to parent
goals and to one another in such a way that dependencies
among them are enforced. These dependencies include
access to all necessary resources via allocations. Elaboration
also imposes additional temporal constraints, as necessary to
properly order actions and motivate completion at
appropriate times.

Most subgoals support goal achievement, either through
further elaboration into subgoals on states that affect the
target state, or by directly commanding controllers of the
target state. In addition, there are often supplementary
subgoals on knowledge quality. A case in point is a goal to
maintain some temperature within a narrow range. If
knowledge of the temperature were uncertain by more than
this range, then there would be little hope of meeting the
control objective. In any event, the goal would be declared
unsuccessful, because success cannot be determined.

Subgoals on knowledge quality assure that states are
sufficiently well known to permit declaration of success by
the originating goals. The essential role of these knowledge
goals is to configure the appropriate sensors for the task
through further elaboration of their own. A supplemental
subgoal on temperature knowledge uncertainty results in
steps to configure sensors that make the required accuracy

possible, so in the example above one would find this a
necessary part of the elaboration.

Knowledge goals are an important component of fault
tolerance in MDS, because actions to disambiguate fault
indications generally arise from goals to have unambiguous
knowledge. This is discussed further below.

Flexibility

As described, MDS gains much of its strength by specifying
intent flexibly, in order to give the system room to explore
alternative actions. Therefore, an important aspect of goal
network designs is that they be flexible, to the extent
possible, in the constraints they impose. For instance, it is
often the case that temporary outages or delays in service
are acceptable. (As a case in point, the outage of gyro data
for a few seconds is rarely a serious issue.) Moreover, many
performance thresholds are soft. Why should an error of
2.000 milliradians be acceptable, for instance, while 2.001
milliradians is not — just because someone set a threshold
at this value? In both conventional designs and in MDS this
is handled by more sophisticated tests. Consequently,
constraints might consider both the severity and persistence
of deviation, allowing for a variety of acceptable excursions.

What MDS adds is the ability to make such criteria much
more dependent on the context of other activities. Thus the
constraint on some state that determines whether it is
deemed faulty can be readjusted with every elaboration —
never more tightly than necessary just because some worst
case had to accommodated.

Safety

The most perseverant and flexible of goals is that
responsible for general system safety. It is the source,
through elaboration, of the more particular constraints
against system hazards that populate every goal network.
Such hazard avoidance goals might, for instance, specify
safe temperature ranges outside what might be necessary for
good performance; or they might require that at least one
receiver chain be operational at all times, even when no
uplink is expected; or that pressure regulators be isolated
when propellant flow rates are low, whether or not a leak is
detected.

The safety goal that hosts these hazard avoidance goals
would never declare failure, since to do so would involve
conditions in which the software would likely not be
running in the first place. Thus, although it may set limits of
tolerability, it nevertheless suffers the arbitrarily long
persistence of danger without giving up. It is the goal,
therefore, that always has more alternative elaborations to
explore and which is always able to trump other goals in the
system with higher priority, as required, in the attempt to
regain the upper hand and restore the system to safe
operation (commonly referred to as “safing”).

Fault Responses

Goals monitor their associated states for adherence to the
constraints. When a fault occurs, the system state will
generally change to one in which one or more state
constraints is either now or soon will be violated. This can
be either because the state is believed to have strayed from
its allowed range, or because the knowledge of the state has
degraded such that it is no longer possible to tell for sure
whether or not the constraint is satisfied. Either possibility is
problematic.

State determination should recognize and report this change,
at which time goals monitoring these constraints will
respond. This response may be to attempt an alternate
method of achievement, if one exists and there is time to
attempt it. Otherwise, the affected goal and all its subgoals
are abandoned, and an immediate declaration of failure is
made to a parent goal where responses of greater scope are
possible. All goals share this failure behavior. Responses are
escalated in this way to the appropriate level, while
simultaneously simplifying the context of the response. This
has important consequences for the ability of the system to
respond in a timely and uncluttered manner.

In selecting an alternate achievement method, responses
may need first to perform actions that resolve ambiguous
estimates. For instance, the system configuration may have
to be altered in such a way that additional, appropriately
discriminating information becomes available. Suppose, for
instance, that a sun sensor ought to have seen the sun, but
didn’t. Is the sensor at fault, or is it simply not pointing
where the attitude estimate says it is? Turning on a second
sun sensor will tell for sure. As described before, such
responses are generally motivated by subgoals on
knowledge quality.

One type of alternate achievement method is the invocation
of block redundancy. This is possible when a goal
specifying the availability and health of some resource does
not explicitly constrain which redundant element may be
used to fulfill the goal. In elaborating this goal, a choice
may be made among the remaining healthy resources, and
this is accomplished via a subgoal for a specific element.
Failure of this element results in failure of the subgoal, but
not of its less particular parent, which may then re-select
among the remaining healthy redundant elements via a new
subgoal.

Alternate achievement methods need not always be so final
relative to the deviant element. Re-commanding, reset, or
other actions against the originally selected element may be
sufficient to clear a fault condition. These, too, may be
manifested as subgoals. For instance, it may be necessary to
cycle power. This could be accomplished by a pair of
subgoals. However, in localized cases, responses are often
delegated to controllers, which can respond directly and
more quickly to the observed state and adjust their actions
accordingly.

In all of these alternate method responses, allowance for the
time necessary to perform the switch must be granted via
flexible goal specifications, as described above. Similarly,
where block redundancy has not been provided, or no
redundant element remains, alternate methods of
achievement with degraded capabilities may still be
available for selection, if goals are flexible.

The patterns described here repeat over and over throughout
the design. Unlike conventional approaches, however, each
application can be considered in relative isolation — all
interactions that typically bedevil fault responses being
handled through the normal coordination functions provided
automatically to every goal network. One may anticipate,
therefore, a much more rapid convergence to a robust
design.

Hazard Avoidance

Some faulty units may be a hazard to the system in their
discovered state. However, a typical goal is happy in its
elaboration simply to acquire an alternate set of capabilities
that supports its objective. Otherwise, it just gives up. Either
way it typically leaves the faulty unit to its own ends. To
keep things safe and tidy, there are, among the goals in the
system, goals to avoid hazardous states, as described
previously. Such goals are generally either passive, since in
a healthy system normal goal elaboration in conjunction
with resource management (via allocation goals) would
seldom select such states, or they merely enforce
conservative behavior, stepping in with cautious direction
only when no other factors dictate a particular configuration.

If a hazard violation were caused by a fault, however, the
affected hazard avoidance goal would be threatened, and
with no other line of defense from active fault recovery. In
such situations, if allotted sufficient flexibility, the hazard
goal itself would respond to the situation, for instance by
isolating or disabling the faulty element. A simple case is
illustrated by a device in a battery-powered system with an
internal short circuit that leaves it inoperable. The main
response may have turned on a backup unit, but the faulty
unit remains a hazard both for drawing excessive current
and for reducing energy margin, even though both might
still be within allocation. One would rely on hazard goals to
turn off any unnecessary or faulty devices. Hazard
avoidance goals would also take steps to recover margin.

Suppose, however, that nothing could be done to recover a
safe margin. Perhaps other functions using energy are
simply too critical to perturb further. They may have been
able to resume after the fault, but hazard avoidance has
failed. In a worst case like this, when their responses are
insufficient, it is ultimately the responsibility of the system
safety goal, as parent, to attend to failures of hazard
avoidance goals, imposing more extreme responses to
attempt recovery. There is no appeal beyond this level until
ground intervention is possible, so this is where one decides
out of desperation, for instance, whether to pursue a

hopeless goal into likely oblivion, or to let the opportunity
pass with some hope at least of reporting what went wrong.

Goal Networks

Fault responses will often conflict with other activities,
including other fault responses. Since all system objectives
are expressed as goals, this conflict manifests itself as
conflicting constraints. That is, two or more goals may
attempt to establish different constraints on the same state
variable at the same time, and no single value for state can
satisfy them all. A typical situation will find a goal present
to support some operational objective in conflict with a goal
to establish a safe condition or to restore some resource.

Conflicts such as this may be resolvable by postponing or
rearranging the order of activities, possibly retrying
activities that were interrupted. This depends on how much
temporal flexibility is provided in the goals. In such cases,
normal activities would resume as soon as the fault was
cleared, completing normally, albeit delayed.

Otherwise, the conflict is not resolvable unless some goals
are removed. Only those goals immediately affected by a
conflict would be in jeopardy. Later goals, after the situation
has been resolved, would be left in place unless they
depended in some way on dropped goals. In this way, most
planned operations should proceed, depending on the
severity of the incident.

Priority determines which goals win in such conflicts.
Priorities of subgoals derive from their parents, so
problematic situations, such as two high priority goals each
losing key low level subgoals so that neither can succeed,
are avoidable.

Priorities will be set by adapters to suit each mission’s
needs. A representative pattern would have immediate
safety goals at the fore, followed by resource preservation
goals, critical mission goals, communicability goals, and
normal operational goals in decreasing priority order. Of
course, there is room for variability in such a scheme. There
may be some critical activities, for instance, that need to be
completed even it ultimately dooms the system by
exhausting some resource. What’s important architecturally,
therefore, is not the particular order, but rather the fact that
it is adjustable. In MDS, this control can be exercised freely
as a function of mission phase or activity.

Recovery

As a system begins to recover, it is likely to find that
conditions are substantially altered from those in place just
prior to the fault. In conventional designs this is made
tolerable only in the most critical cases, where massive
effort is expended on specialized sequences and fault
responses unique the situation. A typical system would
handle this by establishing a handful of “marked” sequence
states to which the system can return and from which
resumption of the timed command sequence is possible.
This may repeat previous commands so actions not rolled

back must be made tolerant of re-commanding. In addition,
because the sequence is tardy from the fault interruption, it
must be designed to allow compression — basically by
running as fast as possible until it catches up. However,
because this is not guaranteed to honor all timing
constraints, conditional delays must be sprinkled (with
conservative parsimony) through the sequence. And, no
matter what the actual fault had been, there would never be
anything but the original sequence of commands to resume,
compelling the system always to return to the same narrow
path.

Plotting such a universal path to success is difficult. Yet
despite all the “predictability” of this cherished approach,
fault protection is still saddled with recovery from almost
arbitrary starting conditions. Moreover, it must arrive, not at
the safest state nor at the best state to proceed necessarily,
but rather at one of the marked sequence states. And all this
must be accomplished with virtually no architectural
support: no resource management, no conflict avoidance …
just lots and lots of code. Details vary across systems,
obviously, but the general character of the problem remains.

Thus, in the attempt to reconcile these competing
operational models, we end up with the worst of both.
Getting this right is so complicated and so fragile that it is
reserved only for dread cases. It is so bad, in fact, that the
temptation (and often the resulting design) is simply to turn
fault protection off and go through the episode on blind faith
in good luck. How ironic that fault protection should be the
enemy!

In MDS surviving goals after fault resolution are still in
force. Through elaboration they can rebuild all of the
activities required to re-establish normal operation, just as
they did in the first place. Depending on how widely the
effects of the fault spread, this may result in a sweeping set
of activities involving the whole spacecraft. Since most of
this activity is driven by normal elaboration, which is
designed to achieve goals from any reasonable initial
condition, fault responses, as such, tend to be fairly simple.
They deal with immediate local consequences of the fault,
while normal architectural mechanisms of elaboration,
coordination, resource management, conflict resolution, and
so on, orchestrate the recovery process and make it
straightforward to specify.

The result won’t be the sequence that would have occurred
originally, but rather will be a different one adapted to the
new situation — without backtracking or repetition, and
with all the state and timing constraints preserved. Since this
occurs seamlessly within the normal workings of the system
used in day-to-day operation, it naturally supports
resumption of activities under any circumstances, not just
those few special cases that would ordinarily have merited
all the extra work. Even the most mundane activities can be
made recoverable.

Really, the only consideration one need make in MDS for
critical situations is to assure that preemptive actions are

taken to enable contingencies should the need arise. If there
are backup items that need time to warm up or prepare for
operation, for example, then making sure they’re ready
ahead of time allows the system to switch, if necessary, and
still meet deadlines. One might leave more margin in
consumable resources, as well, just in case fault responses
use a little extra. Though these are simple things to arrange,
handling such contingency planning is not yet a totally
automated part of the MDS architecture. Some day it will
be. For now, it is a small burden compared to any
conventional alternative.

Reporting

Another aspect of recovery is notification of the ground that
something has happened that requires attention. It may first
be necessary just to gain the ground’s attention, if for
example the spacecraft is being operated using beacon
tones5 for this purpose. Such actions would normally be
driven by goals that raise the proper semaphore whenever
there is something to report and downlink is not otherwise
scheduled. This is expressible as a state constraint, because
data management and transport states are included as part of
the system representation in state variables.

When ground intervention becomes possible, one of the first
objectives will be to gain insight into the preceding events
and their residual effects. Most of the interesting data will
have been captured in state variable timelines, showing the
explicitly stated beliefs to which the system reacted, and the
steps (as goals) it took in responding to the situation. Other
data, such as measurements, may also be available, if
policies to preserve such data are imposed by fault
responses. In addition, message logs will record low level
events, and special reports can be generated (as dictated by
adapters) to augment normal reporting.

Clean Up

If further action from the ground is required, it may be to
perform additional actions to clarify what happened, to
refine the assessment of fault states made by the system or
the models used in making these assessments, to make
adjustments in existing safety and hazard constraints, to
impose additional constraints on the use of faulty
equipment, to adjust margins in resource usage, to identify
new alternate ways for the system to accomplish its goals,
and so on. Only a few of these operations require
corrections to code. The remainder can be carried out via
goals on the system, updates to state knowledge, or other
standard actions within the MDS architecture.

5 Beacon tones are simple modulations of the downlink signal amounting

to the steady transmission of a single symbol. This is quickly and easily
detectable by small ground stations, which would then notify a larger
station of the need for attention.

Other Facets of Fault Protection

The discussion so far has dealt mainly with the functional
aspects of fault protection. Not discussed here are low level
issues such as recovery from resets, reliable startup
processes, management of computing resources like buses
and mass storage, arbitration among redundant computers
for system control, computer swaps, computer failure
detection and fail safe mechanisms, software assertion
mechanisms, software fault handling, software update
mechanisms, redundant data storage, soft error scrubbing,
the preservation and reliable distribution of clock time, and
many other lower level topics. These have not been
neglected by MDS. They are merely outside the scope of
this paper, especially since some of them depend
significantly on the underlying computing system
architecture. MDS is doing an adaptation for all these
functions on a candidate platform with an eye for
standardizing upward looking interfaces in order to facilitate
ports to other platforms.

5. SYSTEMS ENGINEERING BETTER FAULT
TOLERANCE

As a final note, it is fitting to return to the role of systems
engineering in MDS that was advanced at the beginning of
this paper. Clearly, systems like MDS are dependent on
sound representations of state and their behavior, and every
effort has been made to ease the translation from common
systems engineering terminology into software expressions.
The adoption of a state- and model-based approach to
systems engineering, consequently, would be a boon to any
system using MDS. This is hardly the only reason to adopt
these methods, though. The rigor and formality of modeling
reaps benefits from the moment a project is conceived until
the last bit of data arrives home.

One sees this as soon as one attempts to model something
about the system. If this modeling is hard to do because of
complex coupling, or if state boundaries aren’t easily
delineated, or if models seem to be full of exceptional cases,
or if abstracting high level behavior is problematic, or if it is
difficult to express intent against the mechanisms available,
then there is ample reason to believe that the underlying
system design is flawed. The same principles that facilitate
modeling are those that guide good systems engineering.

Moreover, models turn out to be an excellent way to specify
a system design in the first place. Not only do they
encourage clean, integrated design throughout the process
by highlighting issues as they appear, but they are directly
applicable to the verification of the ultimate design, serving
both as a proof against which the system is judged and as a
simulated environment within which tests can be performed.
The value continues into operations, with models providing
a basis for planning and analysis. The fact, then, that both
flight and ground software happens to find these same
models handy in order to reason about the system in a
variety of ways is just frosting on the cake!

The relevance of all this to fault tolerance is simply that a
clean, well-integrated system is going to be more reliable,
and if it does fail, the system’s ability to deal with it is going
to be greatly enhanced. The concern, often raised, that a
model-based system like MDS is only as good as its models,
misses the point. All systems are dependent at the very least
on the models in the designers’ heads. Models are always a
factor in any design. What MDS provides is the discipline to
write these models down, get everyone to agree on a single
consistent set, and then apply this knowledge directly, rather
than encrypting it implicitly into code from which the
original model has long since been scrubbed away, as in
most conventional designs. Besides, in MDS, if a model
turns out to be wrong, the consequences will likely be less
severe, because reactions across the system will at least be
consistent. Moreover, it will be easy to see what to fix.

Another concern one hears is that all this modeling will be
expensive. But compared to what? Given the high cost of
conventional fault tolerance (not even counting critical
sequences), reduced operability from inflexible and
complicated sequencing, lower reliability from lack of full
conflict and resource management, lost data from canceled
sequences, engineering crises from poorly understood
designs, and so on, models evidently have a lot to offer.

6. CONCLUSIONS
The Mission Data System offers a 21st century approach to
fault tolerance in space systems. By adopting states and
models as its core concepts, incorporating these directly into
key architectural frameworks, applying this architecture
uniformly across flight and ground systems, and wrapping
the result in closed-loop, goal-based control, MDS hopes to
achieve unprecedented reliability and ease of use.

The system engineering methods that support this
architecture also promise a new era for the design of space
systems. If this proves to be the case, there will be no
turning back.

7. ACKNOWLEDGEMENTS
The research and design described in this paper was carried
out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

Many of the ideas described in this paper first began to take
shape during the development of fault protection for the
Cassini spacecraft [2]. The fault protection ideas in MDS
owe much to the hard work of this fine team.

A major refinement of these concepts was tested as part of
the New Millennium Autonomy Architecture Prototype
(NewMAAP) and its follow-on flight demonstration, which
flew successfully on NASA’s Deep Space 1 mission as the
Remote Agent eXperiment (RAX) [3].

Finally, the work reported here would not be possible
without be the collective effort of the entire MDS team to
whom the author is intensely grateful.

REFERENCES
[1] D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks,
“Software Architecture Themes in JPL’s Mission Data
System,” Proceedings of 2000 IEEE Aerospace Conference,
March 2000.

[2] G. M. Brown, D. Bernard, R. Rasmussen, “Attitude and
Articulation Control for the Cassini Spacecraft: A Fault
Tolerant Overview, ” Proceedings of the 14th AIAA/IEEE
Digital Avionics System Conference, November 1995

[3] B. Pell, D. Bernard, S. Chien, E. Gat, N Muscettola, P.
Nayak, M. Wagner, B. Williams, “An Autonomous
Spacecraft Agent Prototype,” Proceedings of the First
Annual Workshop on Intelligent Agents, Marina Del Rey,
CA, 1997.

Robert Rasmussen is a principal
engineer in the Information Tech-
nologies and Software Systems
division of the Jet Propulsion
Laboratory, California Institute of
Technology, where he is the
Division Technologist and the
Mission Data System architect. He
holds a BS, MS, and Ph.D. in
Electrical Engineering from Iowa
State University. He has extensive experience in spacecraft
attitude control and computer systems, test and flight
operations, and automation and autonomy — particularly in
the area of spacecraft fault tolerance. Most recently, he was
cognizant engineer for the Attitude and Articulation Control
Subsystem on the Cassini mission to Saturn.

