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Abstract—The possible states of a system, be it a spacecraft, 
rover or ground station, are what system engineers identify 
and specify, what software engineers design for, and what 
operators monitor and control. Many activities inside 
mission software are directly concerned with state, whether 
planning it, estimating it, controlling it, reporting it or 
simulating it. The cause of several mission failures can be 
traced to inadequate or inconsistent representations of state. 
Consequently, the concept of ‘state’ and its representation 
occupy a prominent role in mission software architecture. 
The Mission Data System (MDS), presently under 
development by NASA to provide multi-mission flight and 
ground software for the next generation of deep space 
systems, addresses this fundamental need. This paper 
describes the MDS approach to state knowledge 
representation, covering state variables, state functions, 
state estimates and state constraints, emphasizing design 
patterns that reduce sources of human error. 
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 1. INTRODUCTION 
Mistakes and design errors are a natural part of engineering 
efforts, including software engineering for space missions. 
Fortunately, most serious errors are caught before 
deployment through a series of quality assurance gates that 
include reviews and testing. Some bugs still slip through but 

their effects are usually minor and manageable. Once in a 
while, though, an error goes through undetected until it 
causes a mission-ending failure. In such a case, a team of 
senior engineers and managers conduct a post mortem 
analysis to identify the most probable root cause(s) and 
examine how such an error slipped through various quality 
assurance gates. 
 
Rather than placing blame on back-end practices that 
allowed an error to go undetected, it’s just as important to 
look at front-end practices that allow such errors to be born. 
In software architecture and design there are many different 
crosscutting concerns that must be properly addressed to 
achieve a robust system. These concerns include design 
patterns, error-checking strategies, synchronization policies, 
resource sharing, distribution, performance and others [1]. 
This paper focuses on one very fundamental crosscutting 
concern—representation of state knowledge—because 
errors in this area have been implicated in more than one 
post mortem analysis [2].  
 
Briefly, state knowledge concerns the representation of 
quantities such as camera temperature, switch position, 
gimbal angle, sensor health, and vehicle position. In 
designing software for holding such information, a natural 
tendency is to declare simple variables that use a 
programming language’s built-in data types. As this paper 
will describe, this and other seemingly innocent decisions 
introduce dangers that can occasionally lead to a mission-
ending failure. Consequently, the Mission Data System 
(MDS) project elevates state knowledge representation to an 
architectural concern whose design is shaped by two main 
objectives: (1) a more faithful reflection in software of 
‘state’ in the physical world, and (2) a reduction in sources 
of human error in dealing with state information. 
 

2. THE MISSION DATA SYSTEM PROJECT 
In order to use software-engineering resources more 
effectively and to sustain a quickened pace of missions, 
while supporting the steady advances required by new 



missions, JPL initiated a project in April 1998 to define and 
develop an advanced multi-mission architecture for an end-
to-end information system for deep-space missions. The 
system, named “Mission Data System” (MDS), addresses 
several institutional objectives: earlier collaboration of 
mission, system and software design; simpler, lower cost 
design, test, and operation; customer-controlled complexity; 
and evolution to in situ exploration and other autonomous 
applications. JPL’s Inter-Planetary Network and 
Information Systems Directorate manages the MDS project. 
  

3. THE MDS VISION 
Software development for space missions is obviously part 
of a much larger endeavor, but software plays a central and 
increasingly important system role that must be reconciled 
with the overall systems engineering approach adopted by a 
project. 
 
Software and systems engineering are highly interdependent 
for two reasons. First, software needs systems engineering 
products. It must know how things work. It needs to 
understand interfaces. And it has to honor the system 
engineer’s intentions. Second, software is essential to 
systems engineering. It largely determines the behavior and 
performance of a system. It manages the capabilities and 
resources of a system. And it presents one’s operational 
view of a system. 
 
To put it in another way, both systems engineering and 
software deal in the more abstract aspects of a system. 
These are issues that apply from the earliest conception of a 

mission until the last day of flight operation. They apply 
across all constituents of a project and to all elements of the 
environment affecting the system. Therefore, it is essential 
that systems and software share a common approach to 
defining, describing, developing, understanding, testing, 
operating, and visualizing what systems do. This is the 
fundamental vision and philosophy behind the MDS design: 
that software is part of and contributes substantially to a 
new systems engineering approach that seamlessly spans the 
entire project breadth and life cycle. 
 
It is in this context that state knowledge representation is 
treated as both a systems engineering concern and a 
software engineering concern. 
 

4. MOTIVATIONS 
To motivate the MDS design for state knowledge 
representation, it’s instructive to look at a couple code 
examples that illustrate problems in conventional software. 
In these examples the point is not that conventional code 
can’t be made to work, for clearly it can, as evidenced by 
many successful missions. Rather, the point is that the code 
is vulnerable to certain kinds of errors that can be greatly 
reduced by providing more structure, encouraging a more 
disciplined approach. 
 
The first example, shown in Figure 1, contains code to take 
some action when a pressure becomes too high. This code 
illustrates a common problem: lack of explicit 
representation of the state being estimated and controlled. A 
pressure is being monitored and controlled, but nowhere in 

get pressure sensor data 
if data is not credible
then

if persistence count is too high
then

set sensor failure indication
else

increment persistence count
else

if data is below a threshold
then

take action
reset persistence count

//  State Control
if pressure is known and too high
then

take action

Conventional State Based
Get and publish pressure sensor data 

// State Determination
if subscribed sensor data is credible
then

decrease suspicion of sensor health
else 

increase suspicion of sensor health

if sensor health is good enough
then

convert subscribed sensor data
set pressure to converted data

else if sensor health is bad enough
then

set pressure to unknown

Figure 1. This figure compares two approaches to implementing a control system that performs an action when 
a pressure is too high. The conventional approach, though shorter, lacks an explicit representation of the states 
being estimated (sensor health and pressure) and the state being controlled (pressure). The state-based approach 
is easier to validate because it converts evidence to states and separates state determination from state control.



the code is there a state variable representing pressure in 
Pascals (or any other suitable unit). Instead, a sensor’s raw 
measurement in ‘data number’ form is used, provided that 
the data number passes some credibility test, and action is 
taken if the number is below a threshold. Why below? 
Because this sensor produces lower numbers for higher 
pressures. Other pitfalls exist: sensor data must be 
reinterpreted on the ground; ground must reset the failure 
indicator; and the action threshold is likely to be wrong if 
the sensor is recalibrated. In contrast, a state-based approach 
explicitly represents pressure in a state variable and includes 
‘unknown’ as a possible value. It also treats sensor health as 
a separate state, as indeed it is. Finally, it keeps state 
determination logic separated from control logic, making 
the code easier to understand and reuse. 
 
The second example, shown in Figure 2, contains code to 
estimate and control camera temperature. The simple 
representation of temperature state in a floating-point 
variable is a common approach, with direct unregulated 
access by all clients. This approach holds several 
shortcomings and dangers: (1) units are not explicitly 
represented, so we can’t tell if the designer intended Kelvin 
or Celsius or Fahrenheit; (2) such variables are often 
declared as global, later requiring addition of some form of 
thread-safe access; (3) there is no representation of 
uncertainty, so a controller may be unknowingly making 
control decisions using highly uncertain information; (4) 
there is no associated timestamp indicating how long ago 
the variable was updated; (5) there is no provision for 
extrapolation in time, except for the de facto notion of 
constant-until-updated, which is often wrong; (6) such 
variables’ values are often meaningful only under certain 
circumstances, which users must deduce from context; (7) 
predictions of future values and archives of past values must 
be handled elsewhere; (8) there is no general discipline to 
avoid “delta” representations (e.g., delta-V), which must be 
used with caution and which often create issues with when 
and how to reset their values; (9) telemetry and its controls 
must be provided elsewhere; (10) check-pointing and reboot 

initialization from persistent storage must be provided; and 
(11) a naming mechanism must be provided for supporting 
operational queries. 
 
All of these shortcomings and dangers beg for uniform 
mechanisms for all state variables. Without an architecture 
for state knowledge representation, two undesirable things 
can happen. First, and most importantly, inadequate 
representations will appear and will make control logic and 
estimation logic error prone and hard to understand. 
Second, different subsystem teams will create their own 
solutions for the needed capabilities, leading to the all-too-
common difficulties of subsystem integration. 
 

5. STATE ARCHITECTURE 
MDS is founded upon a state-based architecture, where 
state is a representation of the momentary condition of an 
evolving system and models describe how state evolves. 
Together, state and models supply what is needed to operate 
a system, predict future state, control toward a desired state, 
and assess performance (see Figure 3). 
 
System states include device operating modes, device 
health, resource levels, attitude and trajectory, temperatures, 
pressures, etc, as well as environmental states such as the 
motions of celestial bodies and solar flux. Some aspects of 
system state are best described as functions of other states; 
e.g., pointing can be derived from attitude and trajectory.  
 
The totality of state representations, largely organized 
hierarchically within control systems, should provide a 

...
// camera temperature state var 
double cam_temp;
...
// update temperature value
cam_temp = function1();
...
// use temperature value
function2(cam_temp);
...

...
// camera temperature state var 
double cam_temp;
...
// update temperature value
cam_temp = function1();
...
// use temperature value
function2(cam_temp);
...

Figure 2. The use of a built-in primitive data type 
is a common approach for state variables, but it 
lacks representation of units, uncertainty and age, 
and lacks mechanisms for extrapolation in time, 
telemetry, naming and check-pointing. 
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condition of an evolving system. System state is the 
architectural centerpiece for information processing 
because many activities are involved with state. 



complete representation of the total system (“complete” in 
the sense of providing adequate knowledge of state for all 
control purposes). While there may be elements of a project 
outside the MDS purview, the external elements are 
described at least by their visible behavior. In all cases, state 
is accessible in a uniform way through state variables, as 
opposed to a program’s global and local variables.  
 
State evolution is described on state timelines, which are a 
complete record of a system’s history (“complete” to the 
extent that the state representations are adequate, and 
subject to storage limitations). State timelines capture 
current and past estimates, future predictions and plans, and 
past experience. State timelines provide the fundamental 
coordinating mechanism since they describe both 
knowledge and intent. This information, together with 
models of state behavior, provides everything needed to 
predict and plan, and it is available in an internally 
consistent form, via state variables. 
 
State timelines are also the objects of a uniform mechanism 
of information exchange between Flight and Ground, 
largely supplanting conventional engineering data traffic in 
both directions. For instance, telemetry can be accomplished 
by relaying state histories to the ground, and 
communication schedules can be relayed as state histories to 
the spacecraft. Timelines are relatively compact 
representation of state history, because states evolve only in 
particular and generally predictable ways. That is, they can 
be modeled. Therefore, timelines can be transported much 
more compactly than conventional time-sampled data. 
 

6. STATE KNOWLEDGE OVERVIEW 
All of these needs have shaped the architecture of state 
knowledge representation in MDS. The next three sections 
will describe that architecture in terms of three simple 
concepts: state values, state functions, and state variables. 
The concepts are illustrated with concrete examples of 
classes described in the Unified Modeling Language (UML) 
[3]. 
 

7. STATE VALUE 
Timestamp 

A “state value” is the value of a state variable at an instant 
in time. A state value contains a timestamp and a value. The 
timestamp is represented in a uniform way using a 
framework class RTEpoch (run-time epoch). Timestamps 
(objects of type RTEpoch) have value semantics in that they 
can appear in equations of time and can be compared to 
other timestamps. “Run-time” refers to the fact that a 
timestamp’s time frame is part of the object and is used in 
time calculations and comparisons. Time frames include 
International Atomic Time (TAI), Ephemeris Time (ET), 
Coordinated Universal Time (UTC) and others. 
 
Value and Uncertainty 

In deployments other than simulation, where state 
knowledge is always uncertain, a state value is termed an 
estimate. The “value” part of an estimate has no standard 
form since there are many ways to represent state 
knowledge, including its uncertainty. In an example of 
camera temperature estimates (see Figure 4) detailed 
temperature state is represented as a normal distribution in 
degrees Kelvin (the base unit for temperature in SI), and a 
compressed temperature state is represented as a uniform 
distribution in degrees Kelvin. These are just two of many 
possible representations. Another possible representation is 
the qualitative values ‘cold’, ‘nominal’ and ‘hot’ paired 
with qualitative certainties such as ‘possibly’, ‘probably’ 
and ‘certainly’. The choice here, as in other variation points, 
should be driven by need; choose a representation that is 
adequate for the task without introducing unnecessary 
complexity. 
 
In designing a value representation it’s helpful to think of 
values as objects that can answer questions about 
themselves, particularly questions that a controller might 
ask, rather than as publicly visible data attributes. For 
example, regardless of the particular representation chosen 
for camera temperature, a camera temperature controller 
will need to make decisions about turning a heater on or off, 
so it will need to ask questions of the form “is the 

Figure 4. A state value is a time-stamped object that represents the value of a state variable at an instant of time. 
State values in deployments other than simulation deployments are called “estimates” because they represent 
uncertainty in some form. The three leaf classes above describe three kinds of state values for a hypothetical 
temperature state variable, reflecting different levels of detail that may exist in different parts of its state timeline. 

StateValueBase
- timestamp : RTEpoch

UnknownStateValue
- reasonCode : enum

DetailedTemperatureState
- mean : Si::Temperature
- stdDev : Si::Temperature

CompressedTemperatureState
- lowerBound : Si::Temperature
- upperBound : Si::Temperature



temperature within range r with certainty ≥ c?” and “is the 
temperature below value v with certainty ≥ c?” Neither 
question dictates a particular internal representation. 
 
Unknown Estimate 

The most extreme form of uncertainty in a state estimate is 
“unknown”. This value can arise in an estimate for several 
reasons: complete lack of evidence (such as due to sensor 
failure), deeply conflicting evidence, query at a time in 
distant past or future, query during system startup, and 
query for a time in the past after that portion of history has 
been deleted. As such, MDS requires that the state value 
design for every state variable include a way to represent 
“unknown”. 
 
One possible way to represent ‘unknown’ is to include a 
flag in an otherwise ordinary estimate class. However, this 
approach is vulnerable to a simple programming error 
where some code fails to check the flag, and therefore uses 
the estimate as a known quantity. Another way to represent 
‘unknown’ is through a reserved value that should never 
occur in normal operation, such as a variance of infinity. 
Again, this approach is vulnerable to programming error 
where the code fails to check for the reserved value and 
then blindly uses the estimate in the ordinary way. To avoid 
these errors MDS requires that ‘unknown’ be represented 
using a distinct data type, ensuring that client code cannot 
accidentally treat an unknown estimate as a known estimate. 
 
Unit Safety 

Many states in the physical world are described as scalars or 
composites of scalars. A scalar is a quantity such as mass, 
length, time or temperature, completely specified by a 
number on an appropriate scale. Unfortunately, mainstream 
programming languages offer no built-in support for 
scalars, so programmers typically use “naked” numeric 
types such as ‘float’ and ‘double’. The problem with this 
approach is that there is no protection against three kinds of 
errors: interface errors (e.g. force passed to an interface 
where mass was expected, or voltage and current arguments 
transposed in an interface), scale errors (e.g. length given in 
feet where meters was expected, or length given in 
kilometers where meters was expected), and expression 
errors (e.g. a formula that adds velocity and acceleration, or 
a conditional that compares power level to energy level). 
 
Through suitable class design it is possible to protect 
against such errors with detection at compile time 
(preferred) or run time. By taking advantage of templates as 
specified in the international standard for C++ [5], it is 
possible to support scalars such that all errors are detected at 
compile time. Such a package for supporting the SI system 
of units (Le Système International d’Unités) is available 
from the Fermilab Physics Class Library Task Force [6]. 
Interestingly, good optimizing compilers can eliminate all 
runtime overhead associated with this design such that unit-
safe expressions can be evaluated with the same 

performance as unsafe expressions that use built-in numeric 
data types. 
 
Ideally, unit safety should be practiced in all software, but 
in reality there is a lot of legacy software (including math 
packages) that is widely used and well tested, though unsafe 
in the sense of using ‘naked’ numeric data types. A 
pragmatic approach in such cases is to protect critical 
interfaces—particularly subsystem interfaces where 
different teams work on different sides of the interface—
and still capitalize on the internal legacy code. 
 
Similar arguments can be made for coordinate frame safety; 
units are just one-dimensional coordinate frames and 
physical type rolled into one concept. Frame-tagged vectors 
(and other quantities) are in design. 
 
Simulation States 

State values that appear inside simulators differ from state 
estimates that appear inside flight/ground deployments in 
one aspect: they contain no uncertainty. Physical quantities 
in a simulated world are true, just as they are in the physical 
world. Aside from this difference, the same state-based 
architecture applies equally to flight, ground, and simulation 
deployments in MDS. This commonality contributes to 
system verification in a significant way because it facilitates 
direct comparison of simulated state and estimated state. 
 

8. TIMELINE & STATE FUNCTION 
State knowledge is represented on timelines that span past, 
present and future (Figure 5). A timeline expresses two 
aspects of state knowledge: knowledge of what has been 
estimated from observations and models, and knowledge of 
what has been planned from operational goals and models.  
 
Estimated States 

As a matter of architectural principle, MDS specifies that 
estimated states be defined for all instants of time, from the 
beginning of a timeline (termed “distant past”) to its end 
(termed “distant future”). Naturally, for some state 
variables, there will be regions on the timeline where 
estimated states are unknown, such as camera temperature a 
year before mission start. That’s OK since ‘unknown’ is 
always a possible state estimate, as described earlier. 
 
Estimated states on a timeline are represented through a 
series of “state functions” that, collectively, cover all time 
continuously from distant past to distant future. The term 
“state function” indicates that these are functions of time 
that can return a state estimate given a time. There are many 
ways of expressing a function of time, and MDS does not 
limit a user’s choices. For example, constant functions, 
linear functions, and higher-order polynomial functions are 
all candidates. Likewise, discontinuous functions that 
describe abrupt state transitions (such as closing a switch) 
are candidates. In all cases the choice of function should be 



driven by need, as influenced by system dynamics and 
estimation rate. 
 
The principle of a continuously defined timeline may seem 
unusual in the context of conventional practice where 
histories consist of time-stamped samples, but there are 
three important motivations for it. First, MDS strives to 
reflect the underlying physics. States in the physical world 
are defined at all instants, and the role of state knowledge 
representation in MDS is to represent that reality. Second, 
cyclic real-time applications become less sensitive to jitter 
and cycle-slip since they can obtain estimates for 
synchronous instants in time, as opposed to whenever the 
data happened to be sampled. For example, the Cassini 
attitude and articulation control system (AACS) uses 
interpolation functions for exactly this purpose [13]. Third, 
functions of time can be compressed in a variety of 
memory-saving ways while preserving much of the 
information. For example, a series of piecewise linear 
functions of time can be replaced by a curve fit to a 
polynomial function. 
 
Time Derivatives 

In physics the concept of “state” refers to physical 
quantities whose values, collectively, provide an 
instantaneous description of a system. Position and velocity 
are considered separate states, but not all time derivatives 
are states in the physics sense. 
 
MDS, in contrast, keeps all time derivatives of x in the state 
variable for x. This difference is a natural consequence of 
the fact that state knowledge is represented in functions of 
time (state functions). A state variable for spacecraft 
position implicitly contains knowledge about spacecraft 
velocity since its state functions contain position versus 
time. If there were separate state variables for position and 
velocity then not only would there be redundant information 
but also their respective values would have to be kept 

consistent at all times. As a matter of simplicity and safety, 
then, MDS keeps all time derivatives of a quantity together 
in the same state variable. 
 

Planned States 

The MDS architecture is designed for goal-driven 
operation. By definition, an MDS goal is a constraint on the 
value of a state variable over a time interval. A constraint 
defines a set of state histories that satisfy a goal. 
Accordingly, a state timeline contains a series of goals that 
represent the current plan. The plan part of a timeline, then, 
differs from the estimated part in two ways. First, the value 
of a plan at an instant of time is a set of states rather than a 
single state, reflecting the fact that any state in that set is 
compatible with the goal. Second, a goal’s time interval is 
bounded by two “time points” whereas, on the estimated 
part of the timeline, state functions are bounded by two 
absolute times. A time point is different in that it represents 
a time range resulting from temporal constraints among 
goals. 
 
This paper focuses primarily on the estimated part of a 
timeline. For a description of the interfaces and operations 
on the plan part of a timeline, see [9].  
 

9. STATE VARIABLE 
The role of state variables is to provide access to state 
knowledge. State variables are like “Grand Central Station” 
in the MDS architecture since every component that needs 
to obtain or update state information goes to the appropriate 
state variables. State variables serve not only real-time 
clients such as estimators and controllers but also 
deliberative clients for goal elaboration and scheduling. 
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Figure 5. A timeline represents a state variable’s value as a function of time spanning the past, present, 
and future. A timeline holds two kinds of state knowledge: estimated states based on interpretation of 
observations, and planned states based on operational goals. As shown, the future part of a timeline 
contains planned states while the past part contains both planned and estimated states. Estimated state is 
represented in a series of state functions and planned state is represented in a series of goals. 



Kinds of State Variables 

There are three kinds of state variables, as shown in 
Figure 6. A “basis state variable” has a local estimator that 
updates its state timeline as needed. Such variables are 
typically located near sources of evidence and the ability to 
interpret that evidence. For example, a planetary lander 
having a battery temperature sensor would have a basis state 
variable for battery temperature. A “proxy state variable” 
provides remote, read-only, time-delayed access to the state 
timeline of a corresponding basis state variable. For 
example, since battery temperature would be of interest to 
earth-based engineers, there would be a proxy state variable 
for battery temperature in a ground deployment. The 
locations of basis state variable and its proxy can occur in 
the opposite order as well. For example, sensor calibration 
is often estimated on the ground by humans or ground-
based software and then up-linked. In such a case the 
ground deployment would have the basis state variable and 
the flight deployment would have the proxy state variable. 
 
The third kind of state variable is a “derived state variable”, 
so named because any value that it returns is derived from 
two or more other state variables. For example, the total 
power consumed by three instruments could be made 
available in a derived state variable that has access to the 
three individual instrument power state variables. 
 
In addition to ordinary state variables whose values are 
implicitly defined with respect to some standard reference, 

there is another category of state variable whose values 
always represent a relation between two entities. One 
example of the latter is spacecraft position relative to 
celestial bodies. In a space mission the most ‘interesting’ 
view of spacecraft position changes, depending on planned 
activities. In a mission such as Cassini, with multiple 
gravity assists, the view has changed over time among Earth 
and Venus and Jupiter and Saturn and the Sun. This 
category of state variables that represents relational states is 
termed “graph state variables” because state knowledge is 
represented in the edges of a graph that are traversed from 
one node to another when answering a query about the 
value of one node relative to another. For more details, see 
Bennett [4]. 
 

State Variable Interfaces 

State variables in MDS reflect the union of its state-based 
architecture and its component-based architecture. The 
state-based architecture covers the concepts described 
earlier, namely, state estimates, timelines, and state 
functions. The component-based architecture covers 
software engineering issues such as interfaces, ports, 
components, connections, and synchronization [8]. This 
section focuses on interface descriptions for state variables. 
 
As the name suggests, an interface represents an agreement 
between two parties regarding how they will interact with 
each other. In order for two components to interact, they 
must do so through a connection between a port on one 

Figure 6. The state architecture defines what interfaces—and thus operations—are valid for a state variable, depending 
on its type. At the top of the hierarchy a “derived” state variable has no value history of its own but can derive a state 
value by combining values from other state variables. A “proxy” state variable has a value history and therefore 
supports primitive query operations and policy control of that history, but provides no update operation since a proxy 
provides read-only access. A “basis” state variable is locally estimated so it adds a state update interface. 
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component and a port on the other component. Both ports 
must be defined in terms of the same interface. One 
component “provides” the interface while the other 
component “requires” it. Very simply, this is the distinction 
between the called party (the provider of a service) and the 
calling party (the user who requires the service). For 
example, a state variable provides a state query interface for 
use by other clients, such as controllers, that need to query a 
state variable. 
 
A state variable has several interfaces, depending on the 
kind of state variable, as shown in Figure 5. Broadly, there 
are five kinds of interfaces for state update, state query, 
notification upon change, data management control, and 
constraint execution. The following subsections describe the 
purpose of each interface and the operations that it supports. 
Interface declarations are detailed in Figure 7. 
 
State Query Interface—The purpose of the state query 
interface is to provide an operation for obtaining a state 
value at an instant in time. As such, the ‘getState’ operation 
takes a single time argument and returns a smart pointer to a 
state value object. The data type of that object can vary 
depending on whether the data has been compressed and 
whether the value is unknown. This interface currently 
defines only a single operation that returns a smart pointer 
to a state value object. Such an operation is general, safe, 
and efficient for large objects, but involves a fair amount of 
overhead for small objects. Other query operations 
involving return-by-value may be added to support different 
tradeoffs among speed, memory, and safety. 
 
During state variable initialization the state query interface 
is locked in such a way that all queries return ‘unknown’ 
(by returning the UnknownStateValue object shown in 
Figure 4). This prevents controllers and other clients from 
taking inappropriate actions based on garbage values that 
could be present during startup. 

 
State Update Interface—The purpose of the state update 
interface is to provide operations for timeline updates: 
routine updates as well as startup initialization. This 
interface exists for the exclusive use of a single state 
estimator / generator, an architectural rule that is enforced 
by the component manager. As noted earlier, a state variable 
begins life in a locked state, and any queries to the state 
query interface are rebuffed with a returned value of 
‘unknown’. The first duty of a state estimator / generator 
upon startup is to initialize the timeline and then unlock the 
state variable. Initialization can include selective recovery 
of state from persistent storage (if desired), repairing 
erroneous areas of history, and obtaining new evidence 
from sensors. The fact that a system reset has occurred is 
itself evidence that may influence the updated value of state. 
 
State Notification Interface—The purpose of the state 
notification interface is to notify interested listeners when a 
state variable’s timeline has been updated. This interface 
supports the Observer design pattern for data-driven 
reactions [7]. Note that this is an interface that a state 
variable requires, rather than one it provides, since this is an 
interface that it calls. The trigger for notification depends on 
the type of state variable. A basis state variable calls the 
‘changed’ operation when its own ‘updateState’ operation 
has been called. However, a proxy state variable calls 
‘changed’ upon receipt of new data from the data transport 
service. Notification always includes the identity of the 
notifying state variable plus a vector of changed items in the 
timeline. 
 
Policy Control Interface—Internally, a state variable’s 
estimated state timeline is managed by a data management 
service. This service is managed by policies that specify 
when to checkpoint, what to transport, when to compress, 
how much to recover upon startup, and other management 
functions. The policy control interface exists for the purpose 

StateQueryInterface

+ getState (const RTEpoch&): AutoPtr<const StateValueBase>

StateQueryInterface

+ getState (const RTEpoch&): AutoPtr<const StateValueBase>

StateUpdateInterface

+ recoverState (const RTEpoch&, const RTEpoch&): void
+ getStateNL (const RTEpoch&): AutoPtr<const StateValueBase>
+ getStateFunctionNL (const RTEpoch&): 

RefCountP<const StateFunctionBase>
+ updateState (const StateFunctionBase&): void
+ unlockState (): void

StateUpdateInterface

+ recoverState (const RTEpoch&, const RTEpoch&): void
+ getStateNL (const RTEpoch&): AutoPtr<const StateValueBase>
+ getStateFunctionNL (const RTEpoch&): 

RefCountP<const StateFunctionBase>
+ updateState (const StateFunctionBase&): void
+ unlockState (): void

StateNotificationInterface

+ changed (const RefCountComponentInstance monitoredStateVar, 
Dm::Vhis::ValueHistory::ItemVectorRef changedItems) : void

StateNotificationInterface

+ changed (const RefCountComponentInstance monitoredStateVar, 
Dm::Vhis::ValueHistory::ItemVectorRef changedItems) : void

PolicyControllerInterface

+ setPolicy (const HistoryPolicy& policy) : void
+ replacePolicy (const HistoryPolicy& policy) : void
+ revokePolicy (const PolicyIDType& policyID) : void
+ getPolicy (const PolicyIDType& policyID) : const HistoryPolicy&

PolicyControllerInterface

+ setPolicy (const HistoryPolicy& policy) : void
+ replacePolicy (const HistoryPolicy& policy) : void
+ revokePolicy (const PolicyIDType& policyID) : void
+ getPolicy (const PolicyIDType& policyID) : const HistoryPolicy&

MultiQueryInterface

+ getStateFunction (const RTEpoch& time) : 
RefCountP<const StateFunctionBase>

+ getItemsInRange (const RTEpoch& start, const RTEpoch& stop) : 
RefCountP<const RefCountAdapter<const std::vector<ItemRef>>>

MultiQueryInterface

+ getStateFunction (const RTEpoch& time) : 
RefCountP<const StateFunctionBase>

+ getItemsInRange (const RTEpoch& start, const RTEpoch& stop) : 
RefCountP<const RefCountAdapter<const std::vector<ItemRef>>>

ConstraintExecutionInterface

+ isReadyToStart (RefCountP<const StateConstraint>) : bool
+ startConstraint (RefCountP<const StateConstraint>) : void

ConstraintExecutionInterface

+ isReadyToStart (RefCountP<const StateConstraint>) : bool
+ startConstraint (RefCountP<const StateConstraint>) : void

Figure 7. State variable interface declarations. 



of adjusting these data management policies. 
 
Multi Query Interface—Ordinarily a state variable exposes 
only its state values to clients, not its state functions. This 
deliberately hides the form of its state functions as an 
implementation detail that can be changed without affecting 
clients. However, there are some situations where a client 
needs access to state functions in order to compute a value 
that depends on the shape of one or more state functions 
(such as to compute the area under a curve). To minimize 
unnecessary dependencies upon implementation details, use 
of this interface is restricted to special cases and is treated as 
an automatic inspection item. 
 
Constraint Execution Interface—In addition to its role as the 
access point for state knowledge, state variables also act as 
intermediary for clients that need to talk to each other 
concerning their mutual interest in a state variable (see 
Figure 8). In this respect the component for dispatching 
executable goals for state variable x needs to talk to the goal 
achievers for x (its controller and/or estimator). The 
constraint execution interface makes this possible. The 
interface is both provided and required by the state variable; 
it is provided so that the goal dispatcher can call it, and it is 
required so that the state variable can relay the calls to 
associated goal achievers. Note that using the state variable 
as an intermediary has the desirable property of decoupling 
the estimator, controller, and goal dispatcher that would 
otherwise have to know of each other’s existence. 
 

10. RELATED WORK 
Software architectures vary significantly in the stature given 
to state knowledge versus other architectural elements. 
Some architectures that elevate state knowledge to an 
important role, though not precisely in the same way as 
MDS, include PRS-CL3 [10], Altairis MCS [11], and the 

Deep Space One Remote Agent [12]. 
 

11. SUMMARY 
 “State knowledge” is what you know and how well you 
know it. State knowledge encompasses the many states that 
a system must know about, such as vehicle position, device 
temperature, sensor calibration values, power usage, terrain 
topology, and many others. Inadequate or inconsistent state 
representations can and have caused mission-ending 
failures. Common representational deficiencies include 
indirect or hidden representations, multiple private and 
potentially inconsistent estimations of the same state, lack 
of units of measurement, lack of or hidden expressions of 
uncertainty, lack of timestamps, and “algorithm state” as a 
substitute for published readable state information. 
 
As a state-based architecture, MDS elevates state 
knowledge representation to an architectural concern that 
begins with systems engineering in identifying important 
states and continues through to software engineering, 
verification & validation, and operation. The MDS state 
architecture and associated framework software design 
support state knowledge representation through four 
architectural elements: state variables, timelines and state 
functions, state estimates, and state constraints. This 
architecture has been shaped by two main objectives: a 
closer reflection in software of the physical states that are 
being monitored and controlled, and a desire to reduce 
sources of human error in using and updating state 
information in mission software. 
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