
 
  

1

IAC-04-IAF-U.3.A.05 
 

GENERATING REQUIREMENTS FOR COMPLEX 
EMBEDDED SYSTEMS USING STATE ANALYSIS  

 
Michel D. Ingham, Robert D. Rasmussen,  

Matthew B. Bennett, Alex C. Moncada 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA  

{michel.d.ingham, robert.d.rasmussen, matthew.b.bennett, alex.c.moncada}@jpl.nasa.gov 
 

ABSTRACT 
 

It has become clear that spacecraft system complexity is reaching a threshold where customary 
methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the 
conventional approaches to systems and software engineering based on subsystem-level functional 
decomposition, which fail to scale in the tangled web of interactions typically encountered in complex 
spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software 
specified by systems engineers and the implementation of these requirements by software engineers. 
Software engineers must perform the translation of requirements into software code, hoping to 
accurately capture the systems engineer’s understanding of the system behavior, which is not always 
explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer’s 
intent, potentially leading to software errors. This problem is addressed by a systems engineering 
methodology called State Analysis, which provides a process for capturing system and software 
requirements in the form of explicit models. This paper describes how requirements for complex 
aerospace systems can be developed using State Analysis, using representative spacecraft 
examples. 
  

1. INTRODUCTION 

As the challenges of space missions have grown 
over time, we have seen a steady trend toward 
greater automation, with a growing portion 
assumed by the spacecraft. This trend is 
accelerating rapidly, spurred by mounting 
complexity in mission objectives and the systems 
required to achieve them. In fact, the advent of 
truly self-directed space robots is not just an 
imminent possibility, but an economic necessity, if 
we are to continue our progress into space.  

What is clear now, however, is that spacecraft 
design is reaching a threshold of complexity 
where customary methods of control are no longer 
affordable or sufficiently reliable. At the heart of 
this problem are the conventional approaches to 
systems and software engineering based on 
subsystem-level functional decomposition, which 
fail to scale in the tangled web of interactions 
typically encountered in complex spacecraft 
designs. A straightforward extrapolation of past 
methods has neither the conceptual reach nor the 
analytical depth to address the challenges 
associated with future space exploration 
objectives. 

Furthermore, there is a fundamental gap between 
the requirements on software specified by 
systems engineers and the implementation of 
these requirements by software engineers. 
Software engineers must perform the translation 
of requirements into software code, hoping to 
accurately capture the systems engineer’s 
understanding of the system behavior, which is 
not always explicitly specified. This gap opens up 
the possibility for misinterpretation of the systems 
engineer’s intent, potentially leading to software 
errors.  

In this paper, we describe a novel systems 
engineering methodology, called State Analysis, 
which addresses these challenges by asserting 
the following basic principles: 
- Control subsumes all aspects of system 

operation. It can be understood and exercised 
intelligently only through models of the system 
under control. Therefore, a clear distinction 
must be made between the control system and 
the system under control. 

- Models of the system under control must be 
explicitly identified and used in a way that 
assures consensus among systems engineers. 
Understanding state is fundamental to success-
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ful modeling. Everything we need to know and 
everything we want to do can be expressed in 
terms of the state of the system under control. 

- The manner in which models inform software 
design and operation should be direct, requiring 
minimal translation.  

State Analysis improves on the current state-of-
the-practice by producing requirements on system 
and software design in the form of explicit models 
of system behavior, and by defining a state-based 
architecture for the control system. It provides a 
common language for systems and software 
engineers to communicate, and thus bridges the 
traditional gap between software requirements 
and software implementation. The State Analysis 
methodology is complemented by a database tool 
that facilitates model-based software require-
ments capture. 

Paper Outline 

In this paper, we discuss the state-based control 
architecture that provides the framework for State 
Analysis (Section 2), we emphasize the central 
notion of state, which lies at the core of the 
architecture (Section 3), we present the process 
of capturing requirements on the system under 
control in the form of models (Section 4), and we 
illustrate how these models are used in the design 
of a control system (Section 5). We then discuss 
the database tool used for documenting the 
models and requirements (Section 6). Finally, we 
describe the Mission Data System (MDS), a 
modular multi-mission software framework that 
leverages the State Analysis methodology 
(Section 7). 

2. STATE-BASED CONTROL ARCHITECTURE 

State Analysis provides a uniform, methodical, 
and rigorous approach for: 
- discovering, characterizing, representing, and 

documenting the states of a system; 
- modeling the behavior of states and relation-

ships among them, including information about 
hardware interfaces and operation; 

- capturing the mission objectives in detailed 
scenarios motivated by operator intent; 

- keeping track of system constraints and 
operating rules; and 

- describing the methods by which objectives will 
be achieved. 

For each of these design aspects, there is a 
simple but strict structure within which it is 
defined: the state-based control architecture (also 
known as the “Control Diamond”, see Figure 1).  

The architecture has the following key features:1 
- State is explicit: The full knowledge of the state 

of the system under control is represented in a 
collection of state variables. We discuss the 
representation of state in more detail in 
Section 3. 

- State estimation is separate from state control: 
Estimation and control are coupled only through 
state variables. Keeping these two tasks 
separate promotes objective assessment of 
system state, ensures consistent use of state 
across the system, simplifies the design, 
promotes modularity, and facilitates implemen-
tation in software. 

- Hardware adapters provide the sole interface 
between the system under control and the 
control system: They form the boundary of our 
state architecture, provide all the measurement 
and command abstractions used for control and 
estimation, and are responsible for translating 
and managing raw hardware input and output.  

- Models are ubiquitous throughout the 
architecture: Models are used both for execution 
(estimating and controlling state) and higher-
level planning (e.g., resource management). 
State Analysis requires that the models be 
documented explicitly, in whatever form is most 
convenient for the given application. In 
Section 4, we describe our process for capturing 
these models. 

- The architecture emphasizes goal-directed 
closed-loop operation: Instead of specifying 
desired behavior in terms of low-level open-loop 
commands, State Analysis uses goals, which 
are constraints on state variables over a time 
interval. In Section 5, we discuss goals and their 
use in high-level system coordination. 

- The architecture provides a straightforward 
mapping into software: The control diamond 
elements can be mapped directly into compo-
nents in a modular software architecture, such 
as MDS,1 which is described in Section 7.  

In summary, the State Analysis methodology is 
based on a control architecture that has the notion 
of state at its core. In the following section, we 
describe our representation of state, and how we 
capture the evolution of state knowledge over 
time. 
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Figure 1: The state-based control architecture.
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3. STATE KNOWLEDGE REPRESENTATION 

As discussed in the previous section, State 
Analysis is founded upon a state-based control 
architecture, where state is a representation of the 
momentary condition of an evolving system and 
models describe how state evolves. The state of a 
system and our knowledge of that state are not 
the same thing. The real state may be arbitrarily 
complex, but our knowledge of it is generally 
captured in simpler abstractions that we find 
useful and sufficient to characterize the system 
state for our purposes. We call these abstractions 
“state variables”. The known state of a system is 
the value of its state variables at the time of 
interest.  

Together, state and models supply what is 
needed to operate a system, predict future state, 
control toward a desired state, and assess 
performance. In this section, we focus on 
clarifying what we mean by “state,” and describing 
how we represent state in state variables. More 
detail on our representation of state knowledge 
has been previously published.2 

Defining “State” 

A control system has cognizance over the system 
under control. This means that the control system 
is aware of the state of the system under control, 
and it has a model of how the system under 
control behaves. The premise of State Analysis is 
that this knowledge of state and its behavior is 
complete – that no other information is required to 
control a system. Consequently, State Analysis 
adopts a broader definition of state than traditional 
control theory, for example: in addition to 
considering the position and attitude (and 
corresponding rates) of a spacecraft to be defined 
as state, we would also include any other aspects 
of the system that we care about for the purposes 
of control, and that might need to be estimated, 
such as: 
- device operating modes and health; 
- resource levels (e.g., propellant; volatile and 

non-volatile memory);  
- temperatures and pressures; 
- environmental states (e.g., motions of celestial 

bodies and solar flux); 
- static states about which we may want to refine 

our knowledge (e.g., dry mass of a spacecraft); 
- parameters (e.g., instrument scale factors and 

biases, structural alignments, and sensor noise 
levels); and 

- states of data collections, including the 
conditions under which the data was collected, 
the subject of the data, or any other information 
pertinent to decisions about its treatment.  

We note, however, that the internal state of the 
control system is not represented by state 
variables. A control system may indeed have 

internal state; in fact, it usually does. These might 
include control modes, records of past operation, 
and so on. But this state is not maintained in state 
variables. This is in keeping with a basic principle 
of State Analysis that distinguishes clearly 
between the control system and the system under 
control (recall Section 1). 

Representing State 

Now that we have defined what “state” means, we 
consider how to represent it. An important part of 
the State Analysis process is to select and 
document an appropriate representation for each 
state variable in the system. State variables can 
have discrete values (e.g., a camera’s operational 
mode can be “off”, “initializing”, “idle”, or “taking-
picture”) or continuous values (e.g., a camera’s 
temperature might be represented as a real value 
in degrees Celsius). Whether continuous- or 
discrete-valued, all state variables represent state 
as a piece-wise continuous function of time, rather 
than as a history of time-stamped samples. This 
representation is true to the underlying physics, 
where state is defined at every instant in time. Our 
architectural decision to update state in the form 
of temporally-continuous State Functions (see 
Figure 1) has important implications on the form of 
the software requirements produced through State 
Analysis. It is therefore worthwhile to introduce the 
notion of state timelines as the conceptual 
repositories for state knowledge, which also map 
into state value containers in the MDS software 
architecture. 

State Analysis assumes that state evolution is 
described on state timelines (see Figure 2), which 
are a complete record of a system’s history 
(“complete” to the extent that they capture 
everything the control system has chosen to 
remember about the state, subject to storage 
limitations). State timelines provide the 
fundamental coordinating mechanism for any 
control system developed using State Analysis, 
since they describe both knowledge and intent. 
This information, together with models of state 
behavior, provides everything the control system 
needs to predict and plan, and it is available in an 
internally consistent form, via state variables.  

State timelines also provide a control system with 
an efficient mechanism for transporting data 
between the ground system and the spacecraft. 
For instance, telemetry can be accomplished by 
relaying state histories to the ground, and 
communication schedules can be relayed as state 
histories to the spacecraft. Timelines are a 
relatively compact representation of state history, 
because states evolve only in particular and 
generally predictable ways. That is, they can be 
modeled. Therefore, timelines can be transported 
much more compactly than conventional time-
sampled data. 
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Because of our adoption of a temporally-
continuous representation of state in the form of 
State Functions on a timeline, a state and all of its 
derivatives can and should be modeled using a 
single state variable, to ensure consistency of 
representation (thus avoiding the possibility of 
returning inconsistent values for a state and its 
derivative). 

Representing Uncertainty 

In a real system, we never really know states with 
complete accuracy or certainty – only a simulator 
“knows” state values precisely. The best we can 
do is to estimate the value of the state as it 
evolves over time. These estimates constitute 
state knowledge; it is what we know, and, equally 
important, how well we know it. That is, it makes 
no sense to represent the estimated value of a 
state without also representing the level of 
certainty of the estimate. Although State Analysis 
asserts that uncertainty must be explicitly 
represented along with the state value, it imposes 
no restriction on how uncertainty should be 
represented. It can be represented in many ways, 
e.g., enumerated confidence tags, variance in a 
Gaussian estimate, probability mass distribution 
over discrete states, etc.  

There are multiple benefits to explicitly 
representing uncertainty. First, it leads to a more 
robust software design, in which estimators can 
be honest about the evidence, increasing the 
uncertainty in their estimates for conflicting 
evidence, missing evidence, and ‘old’ evidence 
(see Figure 3). Furthermore, it enables controllers 
to exercise caution, and modify their actions 
during periods of high uncertainty. Finally, it 
allows human operators to be better informed 
about the quality of knowledge of the state. 

Now that we have defined our notion of state and 
described our representation of it, we next turn to 
the issue of modeling the behavior of the system 
under control. 

 

4. MODELING THE SYSTEM  
UNDER CONTROL 

State Analysis provides a methodology that allows 
us to develop a model of the system under 
control. This model represents everything we 
need to know for controlling and estimating the 
state of the system under control. We note that 
traditional systems engineering approaches 
capture most of this information in multiple 
disparate artifacts (if at all), allowing for potential 
inconsistencies. By making the model explicit, the 
State Analysis approach consolidates all this 
information rigorously in a consistent unambigu-
ous form. 

Our model of the system under control is 
composed of:  
- State Models describing how each state in the 

system under control evolves over time and 
under the influence of other states; 

- Measurement Models describing how each 
measurement is affected by various states in 
the system under control; and 

- Command Models describing how states are 
affected by each command (possibly under the 
influence of other states). 

This model describes the behavior of all hardware 
and any software elements in the system under 
control, as well as the behavior of any external 
systems that affect the state of the system under 
control (e.g., environmental effects). It is important 
to note that these models are expressed in terms 
of true state, and that consideration of uncertainty 
in the state estimates is only folded into the 
estimation and control algorithms that are 
informed by the model. This will be discussed 
further in Section 5. 

The Modeling Process 

State Analysis provides an iterative process for 
discovering state variables of the system under 
control and for incrementally constructing the 
model. The steps in this process are as follows: 
1) Identify needs – define the high-level 

objectives for controlling the system. 
2) Identify state variables that capture what 

needs to be controlled to meet the objectives, 
and define their representation. 

Figure 2: Timelines are used to capture state 
knowledge (past estimates and future predic-
tions) and intent (past and future constraints on 
state). 
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3) Define state models for the identified state 
variables – these may uncover additional 
state variables that affect the identified state 
variables. 

4) Identify measurements needed to estimate 
the state variables, and define their represen-
tation. 

5) Define measurement models for the identified 
measurements – these may uncover addi-
tional state variables. 

6) Identify commands needed to control the state 
variables, and define their representation. 

7) Define command models for the identified 
commands – these may uncover additional 
state variables. 

8) Repeat steps 2-7 on all newly discovered 
state variables, until every state variable and 
effect we care about is accounted for. 

9) Return to step 1, this time to identify 
supporting objectives suggested by affecting 
states (a process called ‘goal elaboration’, 
described later), and proceed with additional 
iterations of the process until the scope of the 
mission has been covered. 

This modeling process can be used as part of a 
broader iterative incremental software develop-
ment process, in which cycles of the modeling 
process can be interwoven with concurrent cycles 
of software implementation. 

It should be noted that State Analysis provides a 
methodology for documenting significant states 
and effects as well as the rationale for dismissing 
others. If a state or effect is purposely omitted 
because it is insignificant, the reason should be 
documented. 

Example 

We now present a simple example to illustrate this 
iterative process. Consider the problem of 
preparing a rover’s navigation camera to take 
picture (step 1). One of the key state variables 
associated with this activity is the Camera Power 
State (step 2). We select an appropriate state 
representation for the Camera Power State: real-
number values in Watts for mean and standard 
deviation. For the purposes of this example, we 
choose a simple state model for the behavior of 
this state variable (step 3): the Camera Power 
State = 0 Watt if the Camera Power Switch 
Position is Open (or Tripped-Open) or if the Power 
Bus Voltage is less than threshold; otherwise, 
Camera Power State = 10 Watts if Camera Health 
= Healthy, or greater if Camera Health = Short-
Circuit. Note that this model is highly simplified for 
the purposes of illustrating the modeling process; 
a real model for Camera Power State would 
undoubtedly be more complex. As far as model 
representation is concerned, State Analysis is 
flexible. We provide systems engineers with broad 

latitude to capture models in a form that is most 
convenient for their specific application. 

This state model makes reference to three other 
states of the system under control: ‘Camera 
Power Switch Position’, ‘Power Bus Voltage’ and 
‘Camera Health’. In this example, we assume 
there are no direct measurements or commands 
associated with Camera Power State (steps 4-7). 
This completes our first iteration of the modeling 
process.  

Let us consider a second iteration, focusing on the 
Camera Power Switch Position state variable 
(step 2). The representation for this state variable 
is discrete, where the switch can be Open, 
Closed, or Tripped-Open. We may choose to 
specify the state model for this state variable in 
the form of a StateChart3 (step 3), which is a 
convenient representation for discrete state 
models that are fairly commonly used by systems 
engineers. This StateChart would show all 
nominal and off-nominal transitions between 
values of this state variable. The behavior in this 
state model would be affected by two other state 
variables, ‘Camera Power State’ (a load 
overcurrent condition can cause the switch to trip 
open) and ‘Camera Power Switch Health’ 
(nominal transitions between switch states require 
that the switch be healthy, i.e., not stuck).  

We assume that the power switch has an 
associated sensor that provides a measurement 
of the switch position, either “open”, “tripped-
open”, or “closed” (step 4). We define the 
measurement model (measurement expressed as 
a function of its affecting states), as follows 
(step 5): if the switch sensor health is Healthy, the 
measurement returns the true switch position; 
otherwise (i.e., switch sensor health is Stuck-
Reading-Open, Stuck-Reading-Closed, or Stuck-
Reading-Tripped-Open), the measurement returns 
the stuck reading, independent of the true switch 
position. 

This measurement model specifies the 
dependence of the measurement not only on the 
Camera Power Switch Position state variable, but 
also on another as-yet-unspecified state variable: 
the ‘Camera Power Switch Position Sensor 
Health’. This simple model assumes three 
different possible failure modes for the sensor, 
corresponding to the sensor readings being 
“stuck” at one of the three possible outputs. In a 
real model, we would also allow for the possibility 
that the sensor could exhibit other failure modes, 
such as intermittent random readings. Clearly, 
State Analysis promotes early consideration of 
component health states and fault modes. This is 
in contrast with traditional systems engineering 
practice, where consideration of off-nominal 
behavior is commonly postponed until later in the 
spacecraft design process, and can lead to ad-
hoc fault protection implementation. In State 
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Analysis, fault behaviors are included in the state 
models and are treated just like any nominal state; 
as a result, fault detection, diagnosis, and 
recovery become integral aspects of the design of 
the system architecture. 

The camera power switch is, by definition, an 
actuator. We therefore specify a command that 
will allow us to affect a change in the camera 
switch position state. We define this command to 
include a parameter, to be set by the appropriate 
controller, which indicates the desired operation: 
“Open-cmd” or “Close-cmd” (step 6). Associated 
with this command we define a command model, 
which specifies how the Camera Power Switch 
Position state variable changes in response to the 
command (step 7): if the current switch position is 
Open [Closed] and the power switch health is 
Healthy, a Close-cmd [Open-cmd] results in the 
switch position transitioning to Closed [Open]; if 
the current switch position is Tripped-Open and 
the power switch health is Healthy, an Open-cmd 
results in the switch position transitioning to Open, 
whereas a Close-cmd results in no change in the 
switch position. Command models are used to 
describe instantaneous changes of state; we 
ascribe cascading effects and delayed behavior to 
the state model.  

Figure 4 shows a graphical representation of the 
states and effects we have documented thus far. 
This representation, which we call a State Effects 
Diagram, provides a convenient view of the state 
variables in the system under control, and the 
physical effects between these state variables. 
Measurements are depicted on the State Effects 
Diagram as triangles, with incoming effect arrows 
from all state variables that appear in the 
measurement model. Commands are depicted as 
inverted triangles, with an outgoing arrow pointing 
to the commanded state variable (Camera Power 
Switch Position, in this case), and incoming 
arrows from the state variables that have an 
impact on the effects of the command (Camera 
Power Switch Position and Camera Power Switch 
Health, in this case).  

We have just stepped through two iterations of the 
modeling process. There are state variables in 
Figure 4 that require further modeling, so this is 
not the end of the process. As we have illustrated, 
our modeling approach can lead us a long way 
from the states we started from, but this is a good 
thing: it allows us to quickly ascertain the scope of 
the problem. In the following section, we discuss 
how the models are used to design software. 

5. USING THE MODEL TO DESIGN  
THE CONTROL SYSTEM 

The state, measurement and command models 
defined as part of the State Analysis process 
(described in the previous section) are used 
throughout the design of the control system. In 

this section, we outline how state, measurement 
and command models are used to inform the 
design of the control system. In particular, we 
discuss the design of the Mission Planning and 
Execution functions, and the Estimation and 
Control algorithms (recall Figure 1). 

Mission Planning and Execution: 

As mentioned in Section 2, one of the key 
features of State Analysis is that it emphasizes 
goal-directed closed-loop operation. The control 
architecture in Figure 1 includes a Mission 
Planning and Execution function whose role is to 
produce and execute plans for accomplishing 
high-level mission objectives. Unlike the traditional 
“open-loop” approach to space mission planning 
and operation, where spacecraft operator intent is 
translated into sequences of low-level commands, 
we specify plans as temporally-constrained 
networks of goals. Goal-directed operation 
represents a logical evolution of the spacecraft 
control paradigm, allowing operators to generate 
closed-loop sequences that implicitly account for 
system interactions. It enables (but does not 
impose) flexible autonomous operations, by 
freeing the ground controllers from having to 
worry about the exact state of the spacecraft. It 
empowers the spacecraft to accommodate most 
surprises without the need for ground intervention 
and demonstrates reliability, independent of our 
knowledge of the environment. Recent space 
missions, including the Cassini and Mars 
Exploration Rover spacecraft, have demonstrated 
a fair amount of goal-directed behavior. However, 
this powerful control paradigm has not yet been 
consistently applied across a mission in a way 
that allows it to be fully exploited by an onboard or 
ground-based reasoning system.  

In order to enable goal-directed operation, 
systems engineers must define the types of goals 
that can be issued, the groups of goals that 
achieve higher-level goals (traditionally referred to 
as “blocks” or “macros”), and the system-specific 
logic needed to correctly plan and execute goals. 
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In this subsection, we first define our notion of 
goal; we then show how the model of the system 
under control is used to elaborate goals into the 
fundamental building blocks of goal networks; and 
finally, we briefly address how these building 
blocks can be assembled and scheduled into goal 
networks for onboard execution.  

Goals: 

In State Analysis, a goal is defined as a constraint 
on the value history of a state variable over a time 
interval. As part of the State Analysis process, a 
systems engineer specifies a dictionary of goal 
types, each with parametric state constraints and 
unspecified temporal constraints (see Figure 5). 
Spacecraft operators specify instantiations of the 
goal types in the goal dictionary to construct 
activity plans for accomplishing mission 
objectives.  

A goal is expressed as an assertion whose 
success/failure can be evaluated with respect to 
its state variable’s value history (state timeline). It 
is important to distinguish between goals and 
commands. For example, “At 2:00pm, issue the 
close-switch command to the camera heater 
power switch” would not be a valid goal; what if 
we were to issue the close-switch command, 
immediately followed by an open-switch 
command? Clearly, we would not have achieved 
our underlying objective of initiating the heating of 
the camera, even though we did issue the close-
switch command as specified. Goals specify what 
to achieve within the system under control, not 
how to achieve it within the control system; they 
express conditions that should persist over some 
time interval, and provide a statement of 
operational intent.  

Here are some examples of valid goals: 
1. “Camera Temperature is between 10 and 20 

degrees Celsius from 2:00pm to 3:00pm” 
(control goal that specifies a constraint on state 
value, to be maintained by controller).  

2. “Camera Temperature is transitioning to be 
between 10 and 20 degrees Celsius by 2:00 
pm” (transitional control goal that achieves the 
appropriate precondition for goal #1). 

3. “Camera Temperature standard deviation is less 
than 0.5 degree Celsius from 1:00 pm until 5:00 
pm” (knowledge goal that specifies a constraint 
on quality of state knowledge, to be maintained 
by estimator). 

4. “Camera Temperature mean value, plus or 
minus 3-sigma, is in the range 10-20 degrees 
Celsius [10 ≤ mean – 3σ ≤ mean + 3σ ≤ 20], 
from 2:00 pm to 3:00 pm” (inseparably-
combined control and knowledge goal, 
specifying constraints on both state value and 
quality of knowledge). 

5. “Camera Temperature measurement data 
collection state contains at least one measure-

ment less than 10 seconds old, from 1:00 pm 
until 5:00 pm” (data goal, specifying a constraint 
on the state of a data collection). 

Goal Elaborations: 

As we discussed in Section 4, our model of the 
system under control captures the physical cause-
and-effect relationships between state variables. 
Because of these interactions between state 
variables, it is clear that there is more to control 
than simply asserting a goal on a state variable of 
interest, and expecting it to be achieved in stand-
alone fashion, without considering its implications  
on other related states in the system. Further-
more, many goals simply cannot be achieved 
without also asserting supporting goals on other 
state variables that impact our state variables of 
interest.  

Part of the State Analysis methodology is the 
specification of fundamental “blocks” of goals, 
which can be assembled into plans and which 
account for the causality between state variables 
in the system under control. We call these 
fundamental blocks goal elaborations. A goal’s 
elaboration specifies supporting goals on related 
states that may need to be satisfied in order to 
achieve the original goal, or alternatively, may 
simply make the original goal more likely to 
succeed. 

Goal elaborations are defined based on 
engineering judgment, our model of the system 
under control, and the following four rules: 
1. A goal on a state variable may elaborate into 

concurrent control goals on directly affecting 
state variables. 

2. A control goal on a state variable elaborates to 
a concurrent knowledge goal on the same state 

Figure 5: The anatomy of a goal type and an 
instantiated goal. Every goal has a starting 
timepoint and an ending timepoint. A goal can 
be instantiated with a flexible temporal 
constraint on its duration, indicated by an 
arrow from its starting to its ending timepoint, 
labeled with a [min, max] duration window. 
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variable (or they may be specified jointly in a 
single control and knowledge goal). 

3. A knowledge goal on a state variable may 
elaborate to concurrent knowledge goals on its 
affecting and affected state variables. 

4. Any goal can elaborate into preceding goals 
(typically on the same state variable). For 
example, a “maintenance” goal on a state 
variable may elaborate to a preceding transi-
tional goal on the same state variable. 

We note that goal elaborations are defined locally 
for each goal by considering only direct effects, 
that is, effects of state variables that are only a 
single step away in the State Effects Diagram.  

Let us consider the simple camera power example 
to illustrate how to apply the above rules in the 
elaboration of goals. We assume for our purposes 
that the scope of the simple model is as shown in 
Figure 4. Consider the following goal on the 
Camera Power State: “Camera Power State is 
equal to 10 ± 1 Watts”. Applying the elaboration 
rules, our models of the system under control, and 
some reasonable engineering judgment, this goal 
can be elaborated as shown in Figure 6.  

Goal elaboration is an iterative process, so 
supporting goals that appear in an elaboration 
are, in turn, elaborated. The elaborations chain 
together to encompass the full set of relevant 
state variable interactions. We can manage the 
complexity and scale of the iterative elaboration 
process by making judicious engineering 
decisions to identify “terminal” goals that require 
no further elaboration. Loops in the elaboration 
chain are addressed by either engineering the 
elaborations to explicitly avoid loops or adopting 
an iterative elaboration algorithm that converges 
to the final elaborated goal network. We can also 
leverage automated algorithms to assemble goal 
networks from the individual elaborations and 
schedule them; this is the subject of the next 
subsection. 

Currently, systems engineers produce goal 
elaborations by hand, using the aforementioned 
elaboration rules. We note that the existence of an 
explicit model opens up the possibility of 
automatic generation of goal elaborations from the 
state models. Further work is needed in the areas 
of model representation and model-based 
reasoning before such a capability can be 
implemented. We see recent progress in the 
compilation of model-based programs4 as a 
potential solution to this problem.  

Before we move on to address the topic of goal 
networks, we introduce a mechanism that enables 
“reactive” coordination of activity, as opposed to 
the more “deliberative” (pre-planned) coordination 
we have introduced via elaboration of goals into 
supporting goals with explicit constraints. Reactive 
execution-time coordination is needed during 

activities like rover driving and steering, or attitude 
control thrusting, for which it would not be 
appropriate to specify explicit goals on individual 
rover wheels or thrusters, at plan-time. In State 
Analysis, the mechanism we use is called 
delegation, because it involves one state variable 
delegating the authority over its controller to 
another state variable’s controller or estimator. 
Not surprisingly, we specify delegation 
relationships in terms of our model of the system 
under control: an affecting state variable (e.g., 
wheel rotation) can delegate to an affected state 
variable (e.g., rover position and heading). Run-
time delegation is enabled via elaboration, where 
the affecting state variable authorizes the affected 
state variable to send it reactive goals “on-the-fly,” 
within allocations established at elaboration time. 

Goal Network Scheduling & Execution: 

Once the necessary set of goal elaborations has 
been defined, they can be encoded into the 
ground and flight software, enabling ground 
operators to simply specify desired behavior in 
terms of high-level goals on the state variables of 
interest, and allowing the Mission Planning and 
Execution system to automatically: 
- elaborate these goals into the set of appropriate 

supporting goals;  
- merge these elaborated goals into the current 

goal network, which includes all background 
goals (capturing flight rules and constraints) and 
previously-scheduled activities; 

- schedule the augmented goal network to satisfy 
any specified temporal constraints and to 
eliminate any conflicts that arise; and 

- verify the consistency of the full goal network 
that results. 

Figure 6: The elaboration for the “Camera Power 
State equals 10 ± 1 Watts” goal. Per Rule #1, 
our control goal elaborates into concurrent 
supporting control goals on the affecting state 
variables. Per Rule #2, it elaborates into a 
knowledge goal that asserts that the uncertainty 
must be limited to σ ≤ 0.2 Watts. Per Rule #4, 
our goal must be immediately preceded by a 
goal that results in Camera Power reaching the 
10 Watt level. Since our goal is a control goal, 
Rule #3 does not apply. 
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This is an automated, iterative search process 
that may require backtracking, and heuristics are 
used for efficiency to guide the search (details on 
this process have been previously published5). 
This process must be informed by the models of 
the system under control provided by systems 
engineers. The means by which the models 
inform the scheduling is through a handful of logic 
functions specified during State Analysis. For 
instance, we must specify the logic associated 
with merging multiple concurrent goals on a given 
state variable. This corresponds to an intersection 
operation performed on the goals’ state 
constraints. The result of this merging of 
constraints is called an executable goal, or x-goal. 
X-goals reside on state timelines, and capture 
intent on state (recall Figure 2).  

State Analysis also specifies the logic used to 
propagate state effects across the system and 
project state into the future. This logic is derived 
directly from the state models described in 
Section 4. This projection logic provides a 
mechanism for generalized resource management 
for the system under control.  

Finally, we must also specify the logic associated 
with checking the consistency of the resulting x-
goal timelines. This involves checking each x-goal 
for achievability, and checking that each 
consecutive pair of x-goals is compatible (i.e., that 
the transition between x-goals is achievable).  

Scheduling is finished when all the goals in all the 
timelines have been scheduled, all the effects of 
all the x-goals have been combined and merged 
with the affected timeline, and all the x-goals are 
consistent and their transitions are consistent. 

Once the goal network has been fully elaborated 
and scheduled, it is ready to be executed.5 Just as 
in goal elaboration and scheduling, the execution 
of a goal network is informed by the models of the 
system under control provided by systems 
engineers. We must specify the logic functions 
that dictate execution as part of the State Analysis 
process. The two primary execution-related 
functions that need to be specified are the logic 
associated with checking that it is appropriate to 
transition from executing one x-goal to the next x-
goal on the timeline, and the logic associated with 
checking for violation of a goal’s state constraint 
(“goal failure”).  

In summary, the products of State Analysis are 
used to inform the Mission Planning and 
Execution functions of the control system. This 
pays off by producing sequences that are 
verifiably executable, self-monitoring, robust 
during nominal operations, and reactive during off-
nominal circumstances. 

Estimation and Control: 

In the description of the State Analysis control 
architecture (Section 2), we emphasized the 

importance of making a clear distinction between 
estimation and control, and we introduced 
estimators and controllers as the achievers of 
desired state. In this section we will briefly discuss 
how the model of the system under control is used 
to inform the algorithm development of the 
estimators and controllers.  

The use of models for estimation and control is 
not new – estimation and control theory is 
founded on the notion of using models of the 
system’s state dynamics, measurements and 
command effects to compute estimates of current 
state and decide on appropriate control actions. 
This principle is commonly applied to the 
estimation and control of spacecraft position and 
attitude, structural dynamics, and temperature 
states, to name a few examples. In State 
Analysis, we simply demand that state models for 
all state variables of interest be documented, 
extending this paradigm across the whole 
spacecraft system.  

As discussed previously, state estimation is a 
process of interpreting information to achieve a 
requested quality of state knowledge, expressed 
in the form of a knowledge goal. Estimators 
update a state variable's value as well as its level 
of certainty. State control is a process of reacting 
to state information to generate commands that 
affect the state of the system under control in 
such a way as to satisfy a specified control goal. 
Controllers may react to the value of a state 
variable, or its level of certainty. Estimators and 
controllers may be invoked periodically, or in an 
event-driven fashion (e.g., conditioned on the 
arrival of new data or a change of estimated 
state), depending on the specific application.  

State Analysis adopts the following architectural 
rules relating to estimators and controllers: 
- Estimators are the only architectural compo-

nents that can update state variables.  
- Every state variable is updated by one (and only 

one) estimator, and controlled by at most one 
controller (some state variables are not 
controllable). 

- An estimator can update multiple state 
variables. 

- Estimators are the only components that can 
process hardware measurements. 

- Controllers are the only components that can 
issue commands to hardware adapters. 

- A controller can control multiple state variables. 
- A controller can issue commands to one or 

more hardware adapters. 
- A hardware adapter can receive commands 

from at most one controller. 
- An estimator or a controller can issue state 

constraints to one or more controllers (of other 
state variables) that have been delegated to it. 

- Estimators and controllers can retrieve state 
information from state variables. 
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An important part of the State Analysis process is 
the specification of estimator and controller 
algorithms. These algorithms may be modal (e.g., 
state machines), continuous (e.g., Kalman filter 
estimators, linear controllers), or any other design 
that is consistent with the model-based nature of 
State Analysis. We encourage, but do not require, 
that estimators and controllers make explicit use 
of the models we introduced in Section 4, but we 
presume that their translation into software will be 
as direct as possible (recall the basic principle 
from Section 1). State Analysis imposes no 
additional estimation or control issues beyond 
those driven by the problem itself, though it 
demands that estimators and controllers consider 
both nominal and off-nominal behavior of the 
system under control, and support degraded 
operations where possible.  

Figure 7 shows a UML (Unified Modeling 
Language6) collaboration diagram excerpt for our 
Camera Power Switch example from Section 4 
(the term collaboration diagram reflects the fact 
that a control system is a collection of software 
components “collaborating” to achieve a common 
purpose). These diagrams provide a map of the 
software component interconnections and 
information flow. They show how State Analysis 
produces requirements on the software, which 
can be mapped directly into software components 
of a modular state-based architecture, such as 
MDS (see Section 7). 

The construction of collaboration diagrams is 
informed by our state, measurement and 
command models. For example, our Camera 
Power Switch Position estimator can access: 
- measurements that are affected by the Camera 

Power Switch Position (in this case, the Camera 
Power Switch Sensor measurement); 

- other state variables that affect the Camera 
Power Switch Sensor measurement (i.e., inputs 
to the measurement model; in this case,  
Camera Power Switch Sensor Health); and 

- other state variables that affect the Camera 
Power Switch Position (in this case, our 
estimator uses knowledge of Camera Power 
Switch Health, but not Camera Power State). 

Similarly, our Camera Power Switch Position 
controller needs information on other state 
variables that affect the results of the switch 
command (i.e., inputs to the command model; in 
this case, Camera Power Switch Health). 

Executable Models 

State Analysis makes models available for all 
state variables in the system under control. This 
opens up the possibility of using the state models 
explicitly during estimation and control. This 
powerful idea, commonly referred to as 
“executable models”, is being leveraged in the 
field of model-based autonomy. Model-based 
executives, like Livingstone7 (which was flight-

validated on the Deep Space 1 spacecraft), 
Livingstone28 and Titan9, have been developed 
and demonstrated on a variety of mission 
scenarios and spacecraft designs. 

We have begun to investigate how to leverage the 
principles of model-based autonomy in the context 
of the State Analysis. Our work to date in this area 
has shown significant promise, and we are 
pursuing ongoing work in integrating model-based 
execution capability into MDS. 

6. DOCUMENTING THE MODELS AND 
SOFTWARE REQUIREMENTS 

The model of the system under control that we 
produce during State Analysis compiles 
information traditionally documented in a variety of 
systems engineering artifacts, including the 
Hardware Functional Requirements, the Failure 
Modes and Effects Analysis, the Command 
Dictionary, the Telemetry Dictionary and the 
Hardware-Software Interface Control Document. 
Rather than break this information up into 
disparate artifacts, we capture all our model 
information in a State Database, which has been 
structured to prompt the State Analysis process. 
We use the same State Database to document 
the requirements on the control system that are 
produced by State Analysis, including goal 
specifications and elaborations, estimator and 
controller algorithms, and software component 
connectivity information (as depicted in 
collaboration diagrams).  

The State Database is shared, central, and 
globally accessible to promote consistency. It is 
accessible by a variety of tools, including a 
graphical client tool that provides multiple 
interfaces for access to State Analysis data, 
including a text-based record editor and a diagram 
editor. It is designed to be capable of generating a 
variety of reports from the information it contains, 
including the set of documents described above. 
The State Database thus provides systems 
engineers with a tool that consolidates their 
system and software requirements in a single 

Figure 7: Collaboration diagram showing the 
estimation and control pattern for the Camera 
Power Switch Position state variable. [SV: 
state variable; HA: hardware adapter] 
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place, and allows them to inspect and review this 
information in whatever form is most appropriate. 

7. THE MISSION DATA SYSTEM 
SOFTWARE ARCHITECTURE 

MDS is an embedded software architecture, 
currently under development at the Jet Propulsion 
Laboratory (JPL). Its overarching goal is to 
provide a multi-mission information and control 
architecture for robotic exploration spacecraft, that 
will be used in all aspects of a mission: from 
development and testing to flight and ground 
operations. The regular structure of State Analysis 
is replicated in the MDS architecture, with every 
State Analysis product having a direct counterpart 
in the software implementation. This mapping is 
accomplished via a component architecture. Each 
state variable, estimator, controller, and hardware 
adapter is embodied as a component. State 
Analysis defines the interconnection topology 
among these components according to the 
canonical patterns and standard interfaces 
described in this paper; it provides the required 
interface details through the definition of state 
functions, measurements, commands, goals; it 
provides the methods needed for planning, 
scheduling and execution; and it defines the 
functionality of each component to accomplish the 
desired intent. The component architecture 
supports modular reuse, and helps to assure that 
the system is constructed in accordance with the 
State Analysis requirements. 

A C++ implementation of MDS has been 
demonstrated on multiple hardware platforms, 
including the Rocky7 and Rocky8 rovers at JPL. 
In addition, an MDS adaptation is currently being 
developed for the Entry, Descent and Landing 
(EDL) stage of the Mars Science Laboratory 
spacecraft, scheduled for launch in 2009. This 
flight software prototype currently runs in a 
workstation environment, against a simulation of 
the EDL scenario. A simpler Java implementation 
of the MDS architecture, called GoldenGate,10 has 
also been demonstrated on the Rocky7 rover. 

8. CONCLUSION 

State Analysis is a Systems Engineering 
methodology that improves on the current state-
of-the-practice.  It does so by leveraging a state-
based control architecture to produce require-
ments on system and software design in the form 
of explicit models of system behavior.  This 
provides a common language for systems and 
software engineers to communicate, and thus 
bridges the usual gap between software 
requirements and software implementation.  This 
provides a powerful framework for engineering 
robust embedded systems, and also promotes the 
infusion of advanced model-based autonomy 
technologies. Therefore, we believe State 
Analysis is a systems engineering methodology 

for today's complex systems that can carry us well 
into the future. 
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