

American Institute of Aeronautics and Astronautics

1

Achieving Control and Interoperability through Unified
Model-based Systems and Software Engineering

Robert Rasmussen,* Michel Ingham,† and Daniel Dvorak‡
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Control and interoperation of complex systems is one of the most difficult challenges
facing NASA’s Exploration Systems Mission Directorate. An integrated but diverse array of
vehicles, habitats, and supporting facilities, evolving over the long course of the enterprise,
must perform ever more complex tasks while moving steadily away from the sphere of
ground support and intervention. Interoperability needs will grow to unprecedented levels
as systems become more dependent on one another than on support from home.
Accomplishing this with consistent safety and reliability calls for a long-term strategy. This
paper describes the control challenge faced by future exploration systems and outlines a
realistic approach to solving it, based upon a unified, principled architectural approach to
both software and systems engineering. It concludes by suggesting the steps necessary to put
this capability in place for exploration systems.

Nomenclature
EDL = Entry, Descent, and Landing
ESMD = Exploration Systems Mission Directorate
JPL = Jet Propulsion Laboratory
MDS = Mission Data System
NASA = National Aeronautics and Space Administration
OI = Orbital Insertion
RV&D = Rendezvous and Docking

I. Introduction
ontrol and interoperation of complex systems is one of the most difficult challenges facing NASA’s Exploration
Systems Mission Directorate (ESMD), as it embarks on its quest to send robot and humans to the Moon, Mars

and beyond.1 An integrated but diverse array of vehicles, habitats and supporting facilities, evolving over the long
course of the enterprise, will need to perform ever more complex tasks while moving steadily away from the sphere
of ground support and intervention. Moreover, interoperability needs will grow to unprecedented levels as systems
become more dependent on one another than on support from home.

Controlling the types of complex systems that are needed to achieve the ambitious objectives of the ESMD will
require solutions to multiple problems:
• Managing a large collection of components that are tightly coupled through shared resources, operational

conflicts, and many other sources of interaction.
• Enabling operation in uncertain or remote environments, with no immediate appeal to ground support due to

long light time lags and irregular communication.
• Responding appropriately to anomalies, with the help of integrated diagnosis and recovery mechanisms that

may be fully automated or involve humans-in-the-loop.
• Realizing affordable operations cost by harnessing automation in such a way that it is considered an aid to

operations, not an obstacle.

* Chief Engineer, Systems and Software division, 4800 Oak Grove Dr., M/S 301-225.
† Senior Software Systems Engineer, Flight Software and Data Systems section, 4800 Oak Grove Dr., M/S 301-225,
AIAA Member.
‡ Principal Engineer, Systems and Software division, 4800 Oak Grove Dr., M/S 301-270.

C

American Institute of Aeronautics and Astronautics

2

• Assuring system correctness and reliability by closing the gap between how systems are specified and how they
are implemented.

Similarly, integration and interoperability of these complex systems will involve additional hurdles:
• Communicating effectively across a distributed system of systems.
• Collaborating with confidence, robustness, and flexibility based on shared intent.
• Coordinating human and robotic activities, safely and productively.
• Managing a large, distributed engineering effort involving NASA, industry, academia and international

partners.
While there is no single solution to all of these problems, it is possible to devise a unifying framework and long-

term strategy that can effectively guide the overall effort. We believe such a framework is crucial to the success of
ESMD’s undertaking, and involves the following essential elements:
• State- and model-based control architecture: Shared information about state and models of state should be the

basis for collaboration within and among systems to exchange knowledge, express intent, and accommodate
new capabilities.

• Unified systems and software engineering: With a unified approach, the functional requirements written by
systems engineers write can be translated more directly and unambiguously into implementation, which is in
turn more amenable to verification.

• Design for integration, reuse, and evolution: Software design should produce a set of control components that
promote easier reconfiguration and reuse by separating common capabilities within the architecture from those
specific to particular applications.

• Processes to assure quality and timely deliveries: The uniform structure afforded by the framework should lend
itself to spiral development and other process improvements that will be necessary to assure reliable and
affordable products.

Section II of this paper describes in greater detail the control challenge faced by future exploration systems.
Section III outlines a framework for solving this problem, based upon a unified, principled architectural approach to
both software and systems engineering. An implemented instance of this framework, the Mission Data System, is
presented in Section IV, and its relevance to the ESMD initiative is discussed in Section V. Finally, Section VI
suggests the next steps necessary to put this capability in place for NASA’s future exploration systems.

II. The Control Challenge Facing Exploration Systems
Controlling a system of systems that can carry people to the Moon, Mars, and beyond will be well beyond

present experience. The exploration initiative will impose significant demands on system capability, safety,
operability, and affordability.

Capability: Although robotic systems will continue to survey distant places on their own, with complex
automation to enable their tasks and preserve their safety, NASA’s new exploration systems will be asked to do far
more. These worlds are vast, so to study them well, our machines will need to be controlled ever more efficiently,
and to leverage new capabilities that have heretofore only existed in the realm of science-fiction.

Safety: Likewise, manned vehicles and habitats will still provide safe and productive homes for their crews, but
new exploration systems will need to do this in more remote dangerous environments beyond the easy reach of
ground operators. Given the unprecedented level of complexity of these exploration systems, the first line of defense
against hazards will have to be automated or semi-automated control functions.

Operability: We can also anticipate a continually growing dependency between astronauts and interactive robotic
systems, as they work together to build and explore. To be an astronaut’s dependable partner, automated systems
must be watchful, responsive, and reliable. Furthermore, they must present an interface that is amenable to human
interaction.

Affordability: Achieving the requisite advances in the above three areas will obviously impose a significant strain
on the resources available to the exploration initiative. Enabling these advances while staying on schedule and
within budget will require us to adopt streamlined processes and develop reusable and adaptable product lines.

We must ask ourselves whether present methods of system control can scale to meet these critical demands. This
is not a question answered simply by an appeal to advancing technology, because other critical factors also affect
how well a system works. Rather, the question requires penetrating examination of a variety of issues, and a
conviction to put in place the appropriate infrastructure, develop the requisite expertise, and set the stage for a
successful exploration enterprise.

American Institute of Aeronautics and Astronautics

3

A. Control of Complex Systems
As previously mentioned, the new systems required for this enterprise will be complex, many of them

extraordinarily so, compared to present day systems — they will adopt a wide array of forms and functions,
continually accommodating new requirements as the program develops. Time- and mission-critical control activities
like orbital insertion (OI), rendezvous & docking (RV&D), and entry, descent & landing (EDL) cannot be fully
scripted in advance, because of the high level of execution-time uncertainty. Things can go wrong under the best of
circumstances, especially during surface and atmospheric operations. Relying on time-sequenced or human-in-the-
loop control will be impractical for many situations and impossible for others. Yet reliability must not be
compromised. Automated functions that step in to make critical decisions must consistently do the right things right.
This is complicated by a number of difficulties.
1. Managing large numbers of tightly coupled elements

The control of complex systems would be easier if it were possible to simply divide the problem into many small
independent pieces. However, space systems have never enjoyed this indulgence. Every last resource that might ever
be needed must be brought along or manufactured in situ, yet designs are inevitably constrained to be highly
compact and efficient. The result is a large collection of components that are tightly coupled through shared
resources, operational conflicts, interference, fault propagation, environmental effects, and many other sources of
interaction.2

We know already that classic methods of managing such complexity are likely to break down. For instance,
conventional hierarchies can actually become an obstacle to successful control since coupling has an unruly
tendency to defy normal lines of authority. System integration is largely an exercise in managing the coupling that
functional decomposition fails to eliminate, and this is notoriously error prone.
2. Enabling operation in uncertain or remote environments

In one way or another, active control of most systems exploits a dependable characterization of their
environment. Whenever possible, a comparatively simple and static environment is created for them, the exceptions
generally requiring human intervention. Most space systems exploit these characteristics as well; otherwise
proceeding only with extreme caution. For example, whereas a Mars orbiter can map the surface continuously with
little intervention, a relatively straightforward Mars rover activity will often take days to unfold, as ground operators
ponder each step.

New exploration systems will push the envelope of this notion to its extreme. Elaborate crewed systems will be
required to operate in strange, complex environments, but with no immediate appeal to ground support due to long
light time delays and irregular communication. Operation of such complex systems will be beyond what the crew
alone can manage. Robotic systems will likewise be pressed to accelerate their activities, whether for more efficient
independent operations, or in support of human operations, where unhurried action may be inappropriate.

When neither prescribed environments nor human involvement are options, new methods of control must be
devised. It will take time for this capability to mature. Yet serious excursions into such an operational model have
been studiously avoided in most programs to date.
3. Responding appropriately to anomalies

In many respects managing the behavior of a system when something goes wrong is like operating in an
uncertain environment. There is a long history of fault protection in space systems, especially in launch and
interplanetary vehicles where required reaction times necessitate automation. An understanding has developed over
the years of how important it is to consider fault protection as an integral part of the design process.3,4 Nevertheless,
fault protection is still considered for the most part to be a separable design activity, and typical fault protection
designs reflect this division, often being implemented as adjuncts to separate base systems.

When potential anomalies and uncertain environments must be dealt with together, this separation becomes, not
just unsuitable, but downright dangerous. Failing to unmask the effects of a fault or other unexpected behavior
within an obfuscating environmental context has already led to mission losses.
4. Realizing affordable operations cost

Automation will be a necessity of new exploration systems, not just to address the control issues cited thus far,
but to contain the cost of operations, as well. Nevertheless, designing highly automated systems without strong input
from their operators has historically been a recipe for expensive and potentially unsafe operations. A common
complaint is the operational complexity of systems, and ironically, operators frequently cite automation as an
obstacle to success, not an aid. The essence of this criticism is that poorly executed automation can be unreliable or
can rigidly obstruct activities. Unless automation is applied in a principled, reasoned fashion, it runs a high risk of
reducing complexity in one area only by introducing self-defeating complexity of its own.

American Institute of Aeronautics and Astronautics

4

5. Assuring system safety and reliability
Safety and reliability are defining characteristics of a well-engineered system. Whether to preserve mission

assets or avoid costly setbacks, safety must be a central consideration — and of course, there is no excuse for failure
when human safety is involved. Automated control will be an enabling capability for exploration systems, especially
in service of their safe operation, but if executed poorly it merely offers new ways for systems to fail.

Success depends on correctly specifying, implementing, verifying, and operating these control functions.
Glitches in this flow of development have compounded small issues into mission-ending failures. The gap between
how systems are specified and how they are implemented has historically been wide, and much of what transpires in
software development remains opaque.5 Verification and operation both fall victim to this gulf. Prevalent techniques
today are already strained and certainly no match to the challenges of new exploration systems. Marked
improvement in this area is called for if we are to avoid a potentially bottomless investment sinkhole.

B. Integration and Interoperation of a System of Systems
The number and variety of systems contemplated for the exploration enterprise is very large. This will not be a

scattered fleet of individual vehicles, operating in near independence. Rather, each system will work in close
harmony with several others, as configurations are assembled and deployed in space and on planetary surfaces, as
they communicate, rendezvous, exchange samples and crew, perform collaborative surface exploration, and so on.

Therefore, in addition to managing the complexity of individual systems, control must also deal with how
systems interoperate, working together as an integrated whole. This is not merely a replay of the issues above at a
larger scale. For very practical reasons, one can expect within any single system a degree of cohesion and design
uniformity that will not necessarily exist within the larger system of systems. Reliable interoperation of diverse
automated systems adds another layer of issues.
1. Communicating effectively

In a distributed system of systems, the nature of the dialogue among system elements is paramount.
Communication is not merely a medium established by data links and protocols. Rather, it is a conversation,
informed by mutual knowledge, motivated by mutual interests, guided by mutual conventions of interaction, and
resulting in mutual understanding. Fundamentally, it is what the participants have to say and their ability to
comprehend one another that really matters.

Despite the transcendence of dialogue over mere data exchange, this level of communication rarely gets the
attention it deserves. The consensus required for genuine dialogue often goes unwritten and unverified. Moreover,
establishing this understanding in the first place is generally viewed as something to be accomplished entirely during
system design. Complex systems, cooperating in complex environments and needing to arrive at a safety-critical
consensus, may not have this luxury. Thus, the ability to communicate, not just knowledge, but also the means to
interpret this knowledge must be considered.
2. Collaborating with confidence, robustness, and flexibility

Control decisions within a system of systems cannot be purely hierarchical. There must be a shared sense of
purpose. But an appeal to central authority is simply too brittle — especially when control is distributed across the
solar system. For robustness, each system must be capable of making proper local decisions, informed by the intent
of their principals, but with the flexibility to accomplish this intent as circumstances allow, and to choose
intelligently among the objectives when not all are workable. Furthermore, systems should be able to shift
responsibilities to others, as efficiency or operational exigencies demand.

As with effective communication, the key to robust collaboration is sharing. In this case it is shared intent: the
ability not just to respond to direction, but to appreciate the ultimate objective and importance of that direction, in
order to act on it effectively and to make correct judgments about problems in accomplishing it.

There is little experience with direction of this sort in current systems, where blind obedience is the general rule.
Systems are expected either to do as they are told, or to resort to safe operation while their operators figure out how
to recover. Critical scenarios (like OI, RV&D, and EDL), where this is not an option, have generally been handled
by highly tailored programmed behaviors, usually unique to the situation. This has been expensive and troublesome
to engineer. Extrapolated to the scope of new exploration systems, compounded by the degree of collaboration
involved, and extended to continual critical operation without ground support, the approach of the past is simply not
an option.
3. Coordinating human and robotic activities

We tend to see the relationship between robotic systems and humans in an essentially one-sided manner:
machines operated by people. In certain important ways though, the interaction between them is similar to what we
imagine among collaborating robotic systems themselves. Communication must be effective, exploiting mutual
understanding in order to avoid a flood of data. Direction must be flexible, disencumbering the “directing” agents

American Institute of Aeronautics and Astronautics

5

from the chore of saying how a job is to be done, letting them concentrate instead on what needs to be done. In
complex situations, therefore, it is best to view the relationship between robotic systems and humans, whether
ground operators or astronauts, as collaboration.

To date, human and robotic activities have not generally shared this sort of relationship. The association has been
more in the nature of remote control than collaboration. Changing the nature of this relationship isn’t simply a
matter of efficiency or comfort. Automation serves best when it relieves humans from the tasks for which they are
least suited — where they are most likely to make errors in perception or judgment — but honors the human’s
superior command of the big picture and of complex relationships. Each should rely on the other in a
complementary fashion. Thus for true collaboration, the nature of interaction between humans and the system of
systems must be a dialogue too.
4. Managing a large, distributed engineering effort

Perhaps the most daunting aspect of the new exploration system of systems is its extent in so many directions.
Development will be distributed across NASA, industry, and academia, as well as around the world. Operation will
be distributed across the Solar System. Design evolution and extension will be distributed across several decades.
And yet system elements must be integrated in a manner that spans all of these dimensions.

Whenever an engineering effort extends so far, there are bound to fundamental competing considerations. There
will be competition between practicality of independent development and the need for deft interoperability. There
will be competition among a broad mix of operating models in ever-changing control realms. There will be
competition between permitting the graceful replacement of obsolete legacy capability and enabling the potential to
adapt and evolve easily.

A reasonable solution to this predicament will not emerge on its own, even from a wisely chosen collection of
virtuoso contributions. To meet this challenge, new exploration systems will need:
• a mandate for shared technical foundations that can stand the test of time,
• flexibility to grow and support continuous upgrade,
• versatility to accommodate the inevitable surprises and changes in direction along the way, and
• sustained compatibility with commercial and industrial capabilities over the course of the enterprise.
These have often been lacking in space projects, even on a smaller scale.

III. A Framework for Solutions
In order to address these challenges, it necessary to devise a unifying framework for solution that can effectively

guide the overall effort. We believe such a framework is crucial to the success of ESMD’s undertaking. In this
section, we identify a number of essential elements of this framework, providing the necessary structure to shape
solutions in an organized and disciplined manner.

Achieving the ambitious objectives of the space exploration enterprise will require more than just a technological
framework. Technical aspects of the structure are important, but the framework must also address the context around
the effort: in management, systems engineering, software engineering, operations, and so on. The key to any
framework, therefore, is a guiding principle that unites all aspects of the problem at hand.

The issue of concern addressed here is control, but control is an overarching concept that subsumes all other
aspects of automation. Other functions are not useful unless they can be operated in the manner desired, i.e., unless
they can be controlled. Appropriately specifying the control functions requires an understanding, not just of what all
the other functions do, but also of how those functions interact with one another, how they interact with the
environment of the system, and how the environment itself can be expected to behave. Remarkably then, in the
business of control lies the whole problem of system understanding. This suggests the principle we need.

System understanding involves knowing how a system changes from moment to moment, knowing why these
changes have occurred, anticipating changes in the future, and knowing how to influence those changes. The
fundamental way this sort of thing has been handled since the time of Newton is through the notions of state and
models of state. We can apply these notions to define a multifaceted approach to the required framework.

A. State- and Model-based Control Architecture
An architecture that elevates state to a central role is key to control. More specifically, it is the state of the system

under control (and models of this state) that deserves attention. And yet despite the longstanding importance of state
and models to engineering, their use in systems has for decades been a fairly parochial affair within disciplines,
unevenly applied in general, and often exercised without mindful regard. Many architectures fail to see it as
anything but a local concern within algorithms or at ad hoc interfaces. It is given the same architectural stature as
measurements, directives, computational modes, and so on. Models of system state are given even less stature, often

American Institute of Aeronautics and Astronautics

6

totally obscured within a design, if present at all. Such informality in implementation has been somewhat
compensated by traditional formality in systems engineering methodology which captures notions of state and
models (among other things) in the indirect style of requirements hierarchies.

An architecture that emphasizes system state corrects this oversight. The idea is to make shared information
about state and models of state the lingua franca for collaboration within and among systems. State would be used to
exchange knowledge, express intent, and accommodate new or altered capabilities. A few simple architectural rules
can then be imposed to assure the consistency of this shared understanding. Such an architecture can:
• Give control software a more verifiable structure, informed by system models;
• Better assure that automated systems are fully cognizant of the systems they control, including all their internal

couplings, their fault behaviors, and their environment;
• Express all operational intent in a form (constraints on state) that greatly improves system operability, enables

continual objective assessment of all performance, and facilitates automated reasoning across the whole system;
and

• Promise a more coherent response to situations within and among systems, according to the expressed intent.

B. Unified Systems and Software Engineering
State and models of state have long been a dominant concern of systems engineers. This information reflects

everything the engineers understand about how the system works, the conditions under which it operates, what it is
supposed to do, and how it can fail. Therefore, a central role for state and models of state in control software
architecture parallels a virtually identical set of concerns in systems engineering. This provides a golden opportunity
to unify these disciplines as never before. By adopting a state- and model-based control architecture, we inherit a
common language for systems and software engineers to communicate, and bridge the gap between what systems
engineers say they want and what software engineers try to deliver. We will finally be able to close the book on a
long history of miscommunication in this area, and thus reduce the number of software errors resulting from
misinterpretation of the systems engineer’s intent. With a unified approach to systems and software engineering, the
functional requirements that systems engineers write can be translated far more directly and unambiguously into
implementation, which is in turn far more amenable to objective verification.

Furthermore, since operational intent is expressed overtly and objectively in this architectural model as
constraints on state, operational requirements from the highest to the lowest levels may also be treated more directly
by implementers, and the resulting system may be largely self-monitoring in its operation.

C. Design for Integration, Reuse, and Evolution
In a state- and model-based design, the structure of the software is directly informed by models of the system

under control. This structure suggests the natural decomposition of control software into units of functionality that
are individually specifiable by virtue of their focus on a particular aspect of system behavior (i.e., on particular
states), as opposed to the traditional lines of compartmentalization (e.g., flight vs. ground vs. test, or power vs.
thermal vs. propulsion, etc.). Most notably, however, the resulting arrangement goes well beyond mere functional
partitioning. Exclusive responsibilities can be assigned and all relevant interactions identified according to simple
rules guided by the system model. In consequence (and in contrast with the typical improvised boxes-and-lines
approach to architecture), the product is a crisply defined, formal composition. This is a boon to complex system
development because complex interactions are acknowledged in the decomposition and managed directly at an
architectural level rather than treated as special cases.

This natural makeup also results in a set of control components that promote easier reconfiguration and reuse.
Such structure is highly amenable to a design approach (commonly known as component-oriented design) that
facilitates the construction, analysis, instrumentation, and execution of software by making all interactions among
components overtly manageable.

Another benefit achieved by this structure is to help separate common capabilities within the architecture from
those specific to the system at hand. These common capabilities (planning, scheduling, data management and
transport, sequencing, time-keeping, and so on) can all be swept into generic framework components to serve as a
common foundation for many applications.

The same state- and model-based architecture at work within each system can also be applied among systems.
The exchange of state knowledge and intent from one system to another can be defined independent of the particular
implementations within each system, thus addressing one of the major concerns of integrated development among
an array of partners. Uniformity of semantics among systems can significantly ease peer-to-peer interoperation
issues. Such interfaces also allow for the superposition of layered but dynamically reconfigurable control contexts,
as appropriate, truly realizing the potential of controlling a system of systems.

American Institute of Aeronautics and Astronautics

7

D. Processes to Assure Quality and Timely Deliveries
The uniform structure afforded by this state- and model-based architecture lends itself well to many process

improvements that will be necessary to assure excellent but affordable products. To begin with, it enables a more
formal application of principles for reliable design at all levels: what can be daunting in a more ad hoc approach
becomes methodical and rigorous within a highly regular organization. Moreover, in the approach outlined here the
underlying model of the system under control directly informs the design process, and the models themselves are
subject to straightforward comparison to reality, thus exploiting the relationships among system and control
elements.

Regular structure also aids the overall management of software development. In this approach, there is an easily
traceable flow from system and operational plans, to control software requirements, to software modularity and
design, to component implementation, and finally to verification and validation, where results map easily back to
system objectives. Thus, the whole method easily accommodates an iterative incremental process of both software
and systems development, while fostering continual integration, which is essential for managing complexity.6 The
same regular structure makes it straightforward to overlay rigorous but responsive workflow management
throughout the entire life cycle, and to extract dependable performance and cost metrics that can be applied directly
to subsequent iterations at all levels.

Now that we have described a framework for addressing the challenges of controlling complex systems and
integrating systems of systems, we describe a specific systems and software architecture that has resulted from our
efforts to instantiate such a framework and put it into practical use.

IV. The Mission Data System
In recent times there has been a substantial growth in interest in a more formal and direct introduction of state

and models into system implementations. This has been largely motivated by the advantages cited in the framework
for solution above, but the advances have been primarily at the component level. To realize their full promise, these
developments must mature in the context of an overarching framework of the sort described above — one spanning
the spectrum of needs from architecture to process, systems engineering to software engineering, design to
operation, and so on.

A prototype of such a state- and model-based architecture, including associated systems engineering processes
and development tools, is available today. It has been in development for several years as part of the Mission Data
System (MDS) project at JPL, having been refined and demonstrated on test systems that include physical research
rovers (Rocky 7 and Rocky 8) and a simulated EDL system for the Mars Science Laboratory mission, all built from
a common software framework embodying the principles advocated here.

In this section, we present a brief overview of the model-based systems engineering methodology used by MDS,
called “State Analysis”, followed by an introduction to the MDS software architecture.

A. State Analysis
State Analysis is a systems engineering process that improves on the current state-of-the-practice by producing
requirements on system and software design in the form of explicit models of system behavior. A more complete
description of State Analysis is presented in reference 5. Specifically, it provides a uniform, methodical, and
rigorous approach for:
• discovering, characterizing, representing, and documenting the states of a system;
• modeling the behavior of states and relationships among them, including information about hardware

interfaces and operation;
• capturing the mission objectives in detailed scenarios motivated by operator intent;
• keeping track of system constraints and operating rules; and
• describing the methods by which objectives will be achieved.
For each of these design aspects, there is a simple but strict structure within which it is defined: the state-based
control architecture (also known as the “control diamond,” shown in Fig. 1). The architecture has the following key
features:7
• State is explicit: The full knowledge of the state of the system under control is represented in a collection of

state variables. State knowledge is updated in the form of continuous-time State Functions, to accurately reflect
the fact that the system’s true state is defined at any point in time.

• State estimation is separate from state control: Estimation and control are coupled only through state variables.
State estimation is a process of interpreting measurements and monitored commands to generate state
knowledge; this process may combine multiple sources of evidence into a determination of state, supplied to a

American Institute of Aeronautics and Astronautics

8

state variable as an estimate. Control, in contrast, attempts to achieve objectives by issuing commands that
should drive estimated state toward desired state. Keeping these two tasks separate promotes objective
assessment of system state, ensures consistent use of state across the system, simplifies the design, promotes
modularity, and facilitates implementation in software.

• Hardware adapters and data collections provide the sole interfaces between the system under control and the
control system: They form the boundary of our control architecture. Hardware adapters provide all the
measurement and command abstractions used for control and estimation of physical states, and are responsible
for translating and managing raw hardware input and output. Measurements can be used both as evidence for
estimating the state of the hardware in the system under control (e.g., accelerometer, switch position, and
temperature sensor measurements), and for holding science observations (e.g., camera images and spectrometer
readings). The control system can directly inspect the data collections to determine the state of the system data.
Commands are directives that change the state of the system under control; these can be hardware commands
(e.g., switch open/close and device operating mode commands) or data commands that are used for managing
the data collections (e.g., data compression and data transport commands).

• Models are ubiquitous throughout the architecture: Models are used both for execution (estimating and
controlling state) and higher-level planning (e.g., resource management). Whether overt and explicit, or hidden
quietly in the minds of the engineers, models have always existed, since understanding and modeling are
essentially the same thing. The key is that State Analysis requires that the models be documented explicitly, in
whatever form is most convenient for the given application.

• The architecture emphasizes goal-directed closed-loop operation: Instead of specifying desired behavior in
terms of low-level open-loop commands, State Analysis uses goals, which are constraints on state variables
over a time interval. Goals are easier to specify than the actions needed to achieve them, and result in more
compact specifications of desired behavior. Furthermore, goal-directed operation goes hand-in-hand with
closed-loop control, because goals can be thought of as set points for onboard controllers, which are then given
the latitude to decide how best to achieve the goals. In our architecture, goals are also used to specify the

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Figure 1. MDS State-based Control Architecture

American Institute of Aeronautics and Astronautics

9

desired quality of state knowledge to be achieved by estimators, and to express operating constraints (such as
resource and safety margins) and monitored conditions (such as failure modes and external events).

• The architecture provides a straightforward mapping into software: The control diamond elements can be
mapped directly into components in a modular embedded software architecture, such as MDS. The MDS
software architecture is described below.

B. The Mission Data System Software Architecture
The overarching goal of MDS is to provide a multi-mission information and control architecture for robotic

exploration spacecraft, that will be used in all aspects of a mission: from development and testing to flight and
ground operations. In the process of achieving this ambitious goal, the MDS team has rethought the traditional
mission software lifecycle. MDS acknowledges the intimate coupling between software and systems engineering by
leveraging the State Analysis methodology. The regular structure of State Analysis is replicated in the MDS
architecture, with every State Analysis product having a direct counterpart in the software implementation.

The mapping of State Analysis products to software is accomplished via a component architecture. Each state
variable, estimator, controller, and hardware adapter is embodied as a component. State Analysis defines the
interconnection topology among these components according to the canonical patterns and standard interfaces
described in this paper; it provides the required interface details through the definition of state functions,
measurements, commands, and goals; it provides the methods needed for planning, scheduling and execution; and it
defines the functionality of each component to accomplish the desired intent. The component architecture helps to
assure that the system is constructed in accordance with the State Analysis requirements, it aids modular reuse, and
it provides support for a variety of software engineering and analysis issues.

The component architecture is part of a much larger framework of MDS software (Fig. 2), wherein each of the
concepts in State Analysis is endowed with a core implementation that provides common features, interfaces, and so
on. These are further constructed upon an in depth support structure of additional layered, modular frameworks
supporting low-level services, extensive libraries in math and physics (e.g., units), data management and transport
functions, high-level automated planning and scheduling engines, and so on. There are nearly thirty distinct core
framework packages. Moreover, as various adaptations of these frameworks for particular projects occur, it is our
intent to factor common elements into an additional set of engineering and science discipline framework packages
for even greater reuse among projects.

OS Services
Level 0

Embedded Web
Server & Client

Data
Serialization

Adaptive Communication
Environment

C++ Standard
Library

Unit Testing Real Time
Operating System

Application Services
Level 5

State Services
Level 4

Complex Services
Level 3

Simple Services
Level 2

Primitive Services
Level 1

Naming
Services

Time
Mgmt

Data Management Policies

CCSDS File
Delivery Protocol

Event Log
Facility

Math Library
-6-DOF classes

Sequential
Estimation

MDS Standard
Utility classes
- Exceptions

Initialization
Finalization

Data Management and TransportValue History

State
-state variable -goal, xgoal
-state function -goal
-achiever network
-goal scheduler -elaborator

Hardware Adapter
-command
-measurement

Graph State Variable

State
Query

Data
Visualization

SimulationTask
Scheduler

Graph
Library

Physics Library:
-SI Units

Images

Goal Elaboration
Language

MPE Coordination
-goal execution
-elaboration management

Perf

Assigned
IDs

OS Services
Level 0

Embedded Web
Server & Client

Data
Serialization

Adaptive Communication
Environment

C++ Standard
Library

Unit Testing Real Time
Operating System

Application Services
Level 5

State Services
Level 4

Complex Services
Level 3

Simple Services
Level 2

Primitive Services
Level 1

Naming
Services

Time
Mgmt

Data Management Policies

CCSDS File
Delivery Protocol

Event Log
Facility

Math Library
-6-DOF classes

Sequential
Estimation

MDS Standard
Utility classes
- Exceptions

Initialization
Finalization

Data Management and TransportValue History

State
-state variable -goal, xgoal
-state function -goal
-achiever network
-goal scheduler -elaborator

Hardware Adapter
-command
-measurement

Graph State Variable

State
Query

Data
Visualization

SimulationTask
Scheduler

Graph
Library

Physics Library:
-SI Units

Images

Goal Elaboration
Language

MPE Coordination
-goal execution
-elaboration management

Perf

Assigned
IDs

Figure 2. The MDS software framework packages.

American Institute of Aeronautics and Astronautics

10

The formally coherent structure shared by State Analysis and the MDS architecture has enabled an
unprecedented level of coordination and control of the development process. Requirements are cleanly partitioned
and traceable directly to implementation, making it easy to track and manage each step in the development process.
Verification and validation exploits the same explicit structure, as well as the objective specification of each system
element and the overt declaration of success criteria at all levels of operation.

We have also taken advantage of this structure in an iterative incremental development process with workflow
and configuration management tools specifically built around State Analysis elements and spanning the entire
development life cycle. Metrics gathered from this process are detailed and directly attributable to particular design
elements, enabling far better feed-forward to future development efforts.

A C++ implementation of MDS has been demonstrated on multiple hardware platforms, including the Rocky7
and Rocky8 rovers at JPL. In addition, an MDS adaptation has been developed for the EDL stage of the Mars
Science Laboratory spacecraft, scheduled for launch in 2009. This flight software prototype currently runs in a
workstation environment, against a simulation of the EDL scenario. A Java implementation of MDS, called Golden
Gate,8 has been demonstrated on the Rocky7 rover and a simulation of NASA’s proposed Deep Space Network
Array.9

MDS has already proven itself to be a versatile and amenable platform for investigation. Chosen for its regular
structure and highly disciplined processes, this architecture has been the basis of a number of research efforts in the
High-Dependability Computing Program sponsored by the National Science Foundation, with efforts extended
across NASA, academia, and other participants. It has also been validated as a platform for infusion of state-of-the-
art autonomy capabilities, such as the Titan Model-based Executive,10 which performs estimation and control via on-
line reasoning through a probabilistic model of system behavior. These and other collaborations have resulted from
widely held attraction to a well-structured framework within which investigators can build systems and evaluate new
technologies in autonomy, verification and validation, model-based programming, real-time execution, architectural
analysis, and other areas.

V. MDS in Support of NASA’s Exploration Initiative
Given its wide appeal, we believe the MDS prototype framework and development processes can serve as a

springboard for development of the architecture required for new exploration systems. With this in mind, we offer
the following approach for establishing this framework and these processes in support of NASA’s exploration
program. The end objective would be twofold: (1) to establish an interoperability standard among systems, and (2)
to establish examples of corresponding design frameworks for systems and software engineering, each realizing the
great potential of state- and model-based architecture.

The objectives outlined here would be accomplished in a phased development approach designed to complement
the larger exploration system development stages.1 In particular, it is essential that the objectives presented here be
largely in place before stage two, which culminates in human and robotic exploration on the lunar surface, and at
least to some extent midway through stage one, which culminates in orbital flights of the Crew Exploration Vehicle
(CEV). Otherwise, the opportunity will be lost as different systems by different vendors solidify, leaving the job of
“interoperability” to be dealt with in an ad hoc fashion.

Initial phases would be concerned with the formation of an interoperability standards group, and the fielding of
prototypes for demonstration and evaluation. Later phases would be concerned with narrowing the standard to a
formal specification and bringing candidate technologies conforming to this standard to the level of maturity
required to support wide deployment by no later than the start of stage two.

To be effective, given the expansive scope of this undertaking, products must be available early and often, with
substantial feed-forward from one phase to the next, and there must also be a strong collaborative component to the
effort. This suggests a parallel effort among assorted NASA, industry, and academia partners specifically
demonstrating key aspects of state- and model-based architecture and interoperability conventions across a variety
of system types. These efforts would be punctuated regularly (e.g., at four to six month intervals) by interim
realignment exercises involving all participants to achieve convergence within two years from initiation on the
formal specification. Subsequent efforts would overtly engage interoperation among elements targeted to later stage
two developments.

The systems selected for early demonstration should cover the essential areas of concern. One such area is the
accommodation of legacy systems. Thus, the ability to wrap existing systems for integration into a larger state- and
model-based organization should be established. It will also be important to show that both flight- and ground-based
assets can be addressed effectively with this approach, demonstrating reliability, operability, and cost effectiveness
across a spectrum of real systems, operating in realistic circumstances. In addition, this effort should strive to

American Institute of Aeronautics and Astronautics

11

display full end-to-end life cycle development on each of the participating systems, as well as significant reuse
among subsequent systems.

The nature of the tasks performed by these systems must also be compelling with regard to the issue of system
complexity. Initial efforts should focus primarily on establishing fundamental principles. By 2008, however,
demonstrations should be specifically targeted to the most challenging of control and interoperability examples.
Specifically, in order to mature this capability in the most realistic manner available, targets from this point forward
should include missions within the ESMD suite. This should include autonomous robotic systems in complex
environments, human-robotic collaborations, highly interoperating systems (such as those involving RV&D), and
eventually safety-critical systems.

The notion here is to prove the approach in successively more challenging steps, deliberately creating
opportunities to learn from experience, rather than waiting for the ultimate challenge that forces all issues to be
resolved at once. In other words, demonstrating progress in the control and interoperation of complex systems
should be made an explicitly accountable obligation of ESMD projects throughout the stages of evolution.

VI. Next steps and near term opportunities
In keeping with this conviction, it is worth noting a number of near term opportunities for embarking on this

agenda. For example, promising prospects may be found in extending the life of existing spacecraft, which might
otherwise be abandoned after their primary missions. These could include Deep Impact, Stardust, and the Mars
Exploration Rovers — each provides a platform for demonstrating some capability of direct interest to ESMD (e.g.,
low energy trajectory orbit transfer and maintenance at Lagrange points, robust critical sequence execution,
planetary surface operations, etc.), while also addressing complex control issues.

These flight demonstrations could be a part of a broader set of analog mission testbeds, to be established at
various NASA Centers, contractor facilities and academic institutions across the country (see Fig. 3). The primary
objective of these testbeds would be to mitigate “tall tent pole” risk areas for ESMD (e.g., in the areas of distributed
operations, mission-critical software, telecommunications, human-robotic interaction, etc.), mature and validate
essential capabilities, and develop experience in operating these complex systems of systems.

These testbeds should be made accessible to ESMD researchers and infrastructure developers from remote sites,
encouraging broader hands-on participation and engagement from the aerospace community, while further enabling
the development and validation of effective distributed operations concepts. The analog mission testbed

Legacy mission control
software deployment

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Ground software
deployment (e.g.,
simulated lunar base)

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Flight software
deployment onboard
s/c or in high-fidelity
flight testbed

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Legacy flight software
on Shuttle or ISS

Flight software on
rover testbed or
simulation

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Flight software
deployment on
CEV testbed

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Ground software for launch
support (e.g., autonomous
propellant servicing)

Legacy mission control
software deployment

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Ground software
deployment (e.g.,
simulated lunar base)

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Flight software
deployment onboard
s/c or in high-fidelity
flight testbed

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Legacy flight software
on Shuttle or ISS

Flight software on
rover testbed or
simulation

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Flight software
deployment on
CEV testbed

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Ground software for launch
support (e.g., autonomous
propellant servicing)

Figure 3. Analog Mission Testbed Concept

American Institute of Aeronautics and Astronautics

12

environment would provide an excellent proving ground for validating the adequacy and completeness of the
interoperability specification described in the previous section, with respect to requirements for the envisioned suite
of exploration missions. This validation should encompass interoperability amongst new elements, as well as
compatibility with any legacy systems.

The analog mission testbed concept illustrated in Fig. 3 is obviously very broad in scope. As discussed in the
previous section, implementation of an effective analog mission program should be performed incrementally,
perhaps starting with a single ground deployment (either a legacy or newly architected ground system) and a single
flight deployment (e.g., CEV simulation testbed), then adding additional elements when successful validation of an
increment’s capabilities has been achieved. Each increment should have crisply-defined objectives tied to mitigation
of a subset of the identified “tall tent pole” risks, and should follow a realistic (albeit perhaps accelerated) lifecycle
process, from requirements definition through formal capability validation.

The great potential of state- and model-based architectures, the prospects for broad collaboration within the
larger space community on interoperability and control of complex systems, and the inviting opportunities to
explore these issues soon in a manner likely to have abiding consequences for the long-term capabilities of the
exploration system enterprise all point to the need for a roadmap of development in this area. An outline for such a
plan has been offered here. However, it will require concerted effort to adequately explore the opportunities
suggested (or others), to set a detailed plan in place, and to begin the task of forming broad consensus on these
issues. We eagerly recommend action to bring these ideas to fruition, while the time is ripe.

Acknowledgments

The work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration. We wish to thank the rest of
the Mission Data System development team, for their participation in the maturation of the MDS architecture and
software frameworks, as well as the State Analysis methodology and tools.

References

1The White House, Office of the President, “A Renewed Spirit of Discovery: The President’s Vision for U.S. Space
Exploration,” URL: http://www.nasa.gov/pdf/55583main_vision_space_exploration2.pdf, Released to accompany the President’s
NASA FY 2005 Budget, January 2004.

2Dvorak, D., “Challenging encapsulation in the design of high-risk control systems,” Proceedings of the 17th ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'02), 2002.

3Ong, E. and Leveson, N., “Fault Protection in a Component-Based Spacecraft Architecture,” Proceedings of the
International Conference on Space Mission Challenges for Information Technology, Pasadena, CA, July 2003.

4Rasmussen, R.D., “Goal-based fault tolerance for space systems using the Mission Data System,” Proceedings of the IEEE
Aerospace Conference, 2001.

5Ingham, M., Rasmussen, R., Bennett, M., and Moncada, A., “Engineering Complex Embedded Systems with State Analysis
and the Mission Data System,” Proceedings of the 1st AIAA Intelligent Systems Technical Conference, AIAA paper #2004-
6518, 2004.

6Boehm, B., Spiral Development: Experience, Principles, and Refinements, edited by Wilfred J. Hansen, Special Report
CMU/SEI-00-SR-08, June 2000.

7Dvorak, D., Rasmussen, R., Reeves, G., and Sacks, A., “Software Architecture Themes in JPL's Mission Data System,”
Proceedings of the AIAA Guidance, Navigation, and Control Conference, number AIAA-99-4553, 1999.

8Dvorak, D., et al., “Project Golden Gate: Towards Real-Time Java in Space Missions,” Proceedings of the 7th IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2004), 2004.

9Dvorak, D.L., Indictor, M.B., Ingham, M.D., Rasmussen, R.D., and Stringfellow, M.V., “A Unifying Framework for
Systems Modeling, Control Systems Design, and System Operation,” to be presented at the IEEE Conference on Systems, Man,
and Cybernetics 2005, Waikoloa, HI, October 2005.

10Williams, B., Ingham, M., Chung, S., and Elliott, P., “Model-based programming of intelligent embedded systems and
robotic space explorers,” Proceedings of the IEEE, 91(1):212-237, 2003.

