MDS Adapters Guide MDS V6.1 Release Rev 2

MDS
Adapter’s Guide

MDS V6.1 Release
December 16, 2005

JPL D-33982

The information contained in this document has been designated by the California Institute of

Technology (Caltech) as Technology and Software Publicly Available (TSPA). Copyright 2005.
The copyrights and patents related to this technology are owned by Caltech. United States
Government sponsorship acknowledged.

Page 1 of 91



MDS Adapters Guide MDS V6.1 Release Rev 2

Table of Contents

1 INETOAUCTION. ...ttt e e e e e e e e ettt e e e e e e e e e e e e nntasaeeeaeaeeeeeeannssssrenaeens 5
1.1 The Control DiamoOnd.............ccceiiiiiiiiiiiiiiiieiiee e eeececciree e ee e e e e e e e e eeeeeararaeeeeeeeeas 5
1.1.1 State Variable........uvueeeeeeiiiiiieiieiieiieeeeeeeeeeeeeeeeee e 6
1.1.2 Estimator.......oeeeeeeeeiieieeieeieiee e 6
1.1.3 CONrONEr . e ieiiiieeeeee ettt 6
1.1.4 Hardware Adapter........ccooeeieeeeeieiiiieieeiieeeeieee e, 6

1.2 Mission Planning and Execution (MPE)...........ccocoiiiiiiiiiiiiiiceeeeeee e 6
1.2.1 Time Points and Temporal ConstraintS............ceeeeeeeeeeeeeieeeiiiiiiienn, 7
1.2.2 GOAIS. ciiieeeeeeee et 7

1.2.3 State CONSITAINTS. .....uvuviiiiiiieieeeeeee et eee e e e e eeeeeseecarrrerreeeeeeaaeeeeeeeesenassssssseereeeeeas 7
1.2.4 GOAL NEEWOTK.....uvvieiiiiiiieciiitiee ettt e e et e e e e e e e e s etrareeeeeseeeeeennssesraneaens 7
1.2.5 Elaborators and EIabOration................ccooviiiiiiiiiiiiie e 8
1.2.6 Scheduling and PromotioN...........ccueeeiuieeeiiieeiieeesiee et ee e e steeeeeaeeeseveeeenns 8
1.2 7 EXCCULION. ....uiiiieeiiiiie e et e ettt e e e e ettt e e e et e e e e e eetaeeeeeeeaaaaeeeeeeesassseeaeeennssanaeeeannns 10
L.2.8 SATINE..eiiieiiiieeie et ettt e e et e et e e e abe e e e be e e etaaeenabaeens 11
1.2.9 Responsibilities of Planning and Execution Methods..............ccocceiiniiiniiiinncen. 12
2 Before YOu Start COAING.......oeevvuieeiiiieiiiee ettt ettt eetee sttt et eessaee e s e e eneaee e 15
2.1 Prerequisites — State Analysis ATtifactS.........cceevvveeriiieieiiieiiiie e 15
2.2 Package Structure and NamMeESPACES. .....cuueerurierrieeriiieeniiieenniteeenireessseeesiseeesnaneennns 15
2.3 Make Rules and the MDS Build SyStem.........cceevviiiiiiiiiieiiiiieeeieee e 16
2.3.1 How Metamake Works and What it Does............ccceccviiiiiiiiiiiiiiiiieeeecieeeee e 17
2.4 Using the System ID Database...........cceeruiiieriiiiiiiiiieeriieeeeiiee e eivee e 20

3 Derive a Software Component Architecture from State Analysis Artifacts.................. 22
3.1 MEASUICIMENLS. ...ccceviiiieeeeiiieieeeeiieeeeeetteeeeeeateeeeeeataeeeeeesssaesaeansssseeaesessssseaeeennnnns 25
3.2 COMMANAS......coeeiiiiiiiiieeeee e e ettt e e e e e e e eeeee ettt aerreeeeeeaeeeeeeeeesaesssssssanereeeeens 26
3.3 State Values and State FUNCHONS..........cccouiiiiiiiiiiiie et 26
3.3.1 Value HIistori€S. .....couueeeeeeieiiiiiieiiieeeee e 28
3.3.2 History FUNCLOrS.....ocevieieeiiieiieeeeiiiiieee et 29

3.4 State CONSIIAINTS. ....eeiieiiuriieeeeeeiieeeeesiiteeeeeeeitteeeeeessebrreeeeesaraeeseeassssseaessssssseeeeesnnnns 29
3.5 State Variables.........uveiiiieiiiiic e e e e aa e e e e 31

Page 2 of 91



MDS Adapters Guide MDS V6.1 Release Rev 2

3.6 Implementing Planning and Execution Methods..........c.ccccoevviiiiiniiiiiiiiiecnieeeee, 32
Order of Implementation............eeeeiseisisiiie e 34

3.7 Estimators and COntrollers..........c.eorieriiiriiiienieeieeie et 36
3.8 Hardware AdAPLerS........ccecuveeeriieiiiiieeiiieeeiieeeeireeeeitteeeeteeeesreeeeabeessseeeessneesnsnns 37
3.9 Goals, Elaborators, and TaCtiCS....uuu et iermueeeeeiiieeeeeeeeeieeeeeeteeeeeeeeeanreeeeeesanaaesees 37
3.10 Data State Variables and Data Controllers..........cccceeeueeinieiniiiniieinieenieeeeeeee 39

4 Instantiation and System Encapsulation.............cc.eeeviiiiiiiiiieeniieeiiiieeeiiee e 40
5 Runtime Scheduling and EXECUtION.............cooiiiiiiiiiiiiiiiiiieecce e 41
6 AddINg EIf EVENLS....coiiiiiiiiiiiiieieeeeeet ettt sttt e s 43
T INIEAIZATION. ...ceeeiiiiiiiieeee ettt st ettt ettt e e 45
8 USET INTEITACE. ... vviieeeiiiee ettt e e e e e e e e e e eerae e e e e e nnsaaeeeennnraeas 45
9 Data Management and TTanSPOTt..........ceeevuieeriiieiniieiiiee ettt 45
10 Porting to Physical Hardware............ccccooiiiiiiiiiiiniiieicceteee e 46
11T OptimIZAtION NOTES......eeiiiiiiiiiiieiit ettt et et e e st e e st e e e st e e eabbeeenabeeens 46
11.1 MemoOry ManagemeNnt.........ccovuueeruiieiiiieeiiieeeitee ettt ettt e et e st e s st e e eeeeeenaeeeens 47
11.2 Optimization Strategies and Considerations.........c.c.cevveereeriieenieeenieeenieeeneeeneenneenne 48
T2 T@STIIIE e veeeeette ettt ettt ettt ettt et e et e ettt e et e e s st e e e eab e e e esteeebte e s bt e e sbaeesabaeens 48
12,1 WITHINE TESTS.c.eeentieiieeieeeie ettt s ene e 49
12.1.1 Unit Tests and System TestS......oeeeeeeeennneeeeeiiees 49

12.2 MDS Test Harness and Test Frameworks............ccooveeiiiiiiiiiiiiiiiiiieeieeiieeeee e 50
12.2.1 Test Code Organization..........eeeeeiiseeeneiniiiiiiiiie, 51
12.2.2 CppUnit Unit Test Framework...........eeueieeeeeiiiiiieiiiiiiiiieeiii 51
12.2.3 Test Scripts and Script Helpers..........eeeeeeeeeieeeeiiiiiiiiiiieeeeene 51
12.2.4 Testing MDS AdaptationsS.........coeeeeeiieeiieniineniiiiiieiiieeee 53
12.2.4.1 Class API Unit TestS.....uueeeeeeeneneeiiiiiiiiiiiiiiieeeeeeeeeeeeee 53
12.2.4.2 Planning and Scheduling TestS......o.oeeuieeeniiiiiiiiiiieeeen, 54
12.2.4.3 Execution TeStS.....coovvveeeeeeiiiiiieneeeiiiiiiieeeiiiieieeieeee 54

12.3 DEDUZZING...ccuuvieiiiieiiieeeit ettt ettt ettt e st e et e et eesnbeeesasbeesnaees 55
12.4 STMUIALION. ....eeiiiiiiiiee et e e e e e et e e e e eeeeeneabeeesesssseeeeeennsneeaeens 55
13 AdVANCEA TOPICS. ..eeeeuniiieiiiiieeiite ettt ettt ettt et e ettt e et e e st e e sabbeesebeeeeebreeens 56
13.1 MUlt-TRIEAdING. ... .eeeiiieiiiiie ettt e 56
Appendix A. Open-Loop Temperature Controller Adaptation Example...............cc....... 57
GettiNG STATTEA......coutiiiiiiiiiie ettt et 57
A Tour of the Software Adaptation...........c.cceeeueeriieriiiniieieeeee e 59

Page 3 of 91



MDS Adapters Guide MDS V6.1 Release Rev 2

Examining the Adapted Classes in More Detail

............................................................ 62
State VariaD e . .ttt ittt ittt et e ittt iietiiiiiitiiteeseestesseestesiesseesteeseesces 63
Estimators and CoNtrolerS . .. ..ttt ettt ettt st sttt teteeseeateateasenstestenceeeerenss 64

Page 4 of 91



MDS Adapters Guide MDS V6.1 Release Rev 2

1 Introduction

This section provides a brief overview of the MDS control architecture as it applies to the
software implementation of a control system. More information about how the
architecture works, and how to use the features of the architecture to design a control
system can be found in state analysis course material, packaged separately on the
distribution CD, and in the papers described in references
[11,[2],[3].[4].[5],[6],[7],[8],[9],[10], and [11]. These papers are also provided separately
on the distribution CD.

1.1 The Control Diamond

The adapted parts of a control system that uses MDS are the elements that make up
individual control loops: estimators, controllers, state variables, and hardware adapters.
These are all described in detail in the state analysis course, and briefly repeated here for
review, or for software developers who may not have been trained in state analysis.

f State GOD

State Knowledgo State

Estimate  State State Elaborate
Determination Control

pagate

Vieasurements

Hardware
Proxies

Sense

Act

lllustration 1: MDS Control Diamond
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1.1.1 State Variable

State variables represent the external physical states of the system to be controlled. They
are containers for the state knowledge, in the form of state values or value functions, that
explicitly describe the system states over time. State variables also provide standard
methods that support the planning and execution of goals.

1.1.2 Estimator

Estimators are responsible for determining state knowledge from available evidence (in
the form of measurements, or state values) and using that knowledge to update the state
variable. The state variable is the sole repository for all state knowledge.

1.1.3 Controller

Controllers are responsible for performing any control actions needed to achieve physical
control goals. These actions are usually in the form of issuing commands to an actuator
through a hardware interface of some kind.

Estimators and controllers are collectively referred to as Achievers, because they
cooperate to achieve all of the goals associated with their state variable.

1.1.4 Hardware Adapter

Hardware device command and measurement interfaces are abstracted through the use of
hardware adapters. The primary responsibility of a hardware adapter is to provide some
persistence for measurement and command values that pass through it so that these
values can be queried asynchronously after having been produced or issued. In
particular, it provides a history of commands so that estimators can use this as evidence
in state determination.

1.2 Mission Planning and Execution (MPE)

This section describes the general theory behind the goal network and the interactions
between the network and its elements. In particular, it describes how the internal
functions interact with adapted classes such as state constraints and elaborators to realize
a desired system control behavior.
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1.2.1 Time Points and Temporal Constraints

A Time Point represents an event. A Temporal Constraint expresses a range of allowable
durations between two Time Points. Temporal Constraints are the edges in the Temporal
Constraint Network, where Time Points are the nodes. The specification of a Temporal
Constraint includes a minimum duration, a maximum duration, a start Time Point, and an
end Time Point. The event represented by a Time Point is said to occur when the Time
Point “fires”. A Time Window is a range representing when a Time Point may fire.
Temporal Propagation is the process by which a Time Window for each Time Point is
derived from the Temporal Constraints in the Network.

1.2.2 Goals

A Goal 1s a constraint on state over a temporal interval. Goals express operator intent by
specifying a State Variable, a State Constraint, a start Time Point, and an end Time Point.
The duration of a Goal is determined by the Temporal Constraints relating its start and
end Time Points.

1.2.3 State Constraints

A State Constraint expresses a set of allowable State Values. A Goal is said to have
failed when the Value History of its specified State Variable fails to intersect the set
expressed by the State Constraint.

The MDS 6.1 release implements state constraints as a distinct class from goals, although
this is not an architectural requirement or mentioned in most of the state analysis process.

1.2.4 Goal Network

The data structure containing all of the goals, time points, and temporal constraints, is
called a goal network, or network for short. A proposed network is constructed by
making a copy of the currently executing network, and through the process of
Elaboration, goals, temporal constraints, and time points may be added or removed, and
the new network may be scheduled as described below.

Goal networks are portable data structures that can be exported through the process of
serialization, and subsequently imported into the same or another deployment for use,
thus allowing goal networks to be planned in one deployment and then shipped to another
for execution.
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1.2.5 Elaborators and Elaboration

Elaboration is the process by which a Goal is expanded into supporting sub-Goals.

These sub-Goals or “child” Goals may themselves expand into other Goals thus creating a
Goal hierarchy. The hierarchy is complete when all related state effects are represented.
Goal Elaboration hierarchies are derived directly from the State Effects Diagram
according to the guidelines specified in the State Analysis documentation.

An Elaborator is a supporting element of a Goal that is responsible for ensuring the
success if its Goal by modifying the network, adding and/or removing sub-Goals, Time
Points and Temporal Constraints, and providing a failure response when any of these sub-
goals fails during execution.

Elaborators may have a set of one or more Tactics, which express alternate sets of
subgoals that achieve equivalent results. When a goal network is being elaborated by the
Elaboration Manager, it will try each tactic in turn until it finds a plan that is achievable,
or it exhausts all possible combinations of tactics for all the given goals.

1.2.6 Scheduling and Promotion

Scheduling is the process by which a Goal Network is translated into executable time
lines. An executable time line is made up of executable Goals, or XGoals An XGoal is
the product of merging one or more regular Goals. The Scheduler creates one XGoal
time line for each State Variable. The container of all XGoal time lines is referred to as
the goal network, or network. An overview of the Scheduling algorithm follows:

1) Order/sort the State Variables according to the State Effects Diagram, affecting State
Variables before their affected State Variables. (see SV::affectingStates method,
Projection)

2) For each State Variable, merge and order the Goals as described below to create an
ordered time line of XGoals (see Constraint::mergeFrom method).

When Goals overlap temporally, and if they are compatible, the Scheduler will merge
them into a single XGoal. If they are incompatible, the Scheduler will add Temporal
Constraints which require the Goals to execute in series rather than in parallel. However,
if these Scheduler-added Temporal Constraints are inconsistent with previously existing
user-added Temporal Constraints, the scheduling process will fail (see Goal Scheduler
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methods). The combined or merged constituent goals become the ordinary constraint of
the XGoal.

3) Perform Projection.

Projection is the process by which State Effects are computed, recorded, and validated.
An instance of a State Effect is called a projection. The projection effectively represents
the sets of future state values in the form of state constraints. Representing projections as
state constraints (also called the projected constraint) enables a direct comparison of the
two, for the purpose of validating the plan against its predicted result. Specifically, if the
state constraint specified by the Goal is a subset of (see isSubsetOf) the state constraint
representing the projection, the plan is valid. The Scheduler performs Projection by
querying adapter-implemented methods in State Variables and Achievers (see projection
methods). The algorithms implemented by these methods are defined during State
Analysis. The implementation of Projection methods should be straight-forward. If it is
not, the State Analysis artifacts and/or process should be revisited.

Promotion is the process by which the currently executing network is replaced with a
newly elaborated and scheduled network, called the proposed network. Any elaborator
can request a proposed network at any time. A proposed network is essentially a scratch
pad an elaborator can modify while the executing network continues to execute.

An overview of the proposal process follows:
a) An elaborator “decides” (see Elaboration) it wants to modify the network.
b) The elaborator requests a new proposed network.

¢) The proposed network is allocated and returned to the elaborator. The elaborator
which initiates the proposal process is called the proposer.

d) The proposer modifies the proposed network (see Elaboration) and instructs its
children to do the same.

e) When the proposer is satisfied with the proposed network it requests promotion.
An overview of the promotion process follows:
a) If the proposed network has not been scheduled, schedule it.

b) Verify no new Time Points in the proposed network are constrained to be in the past.
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c¢) Verify the achievability of transitioning from the XGoals in the old (executing)
network to the XGoals in the new (proposed) network.

d) Stop execution of the old (executing) network.
e) Stop monitoring the XGoals in the old (executing) network for failure.

f) Fire the promotion time point in the new network (thus, any goals that used this as their
starting time point will become the current goals on their time lines).

g) Dispatch the XGoals in the new (proposed) network to their State Variables.
h) Start monitoring the XGoals in the new (proposed) network for failure.

1) Start execution of the new network. (the proposed network becomes the executing
network)

j) Delete the old network.

1.2.7 Execution

This section describes the process by which an executable goal network is executed.
Execution includes three distinct cooperating elements: time point firing, achiever
behavior, and goal failure detection.

First, the Executive component in the MDS framework is responsible for propagating the
temporal constraint network and evaluating goal transition conditions in order to fire time
points.

A time point will fire when either:

a) All of its outgoing XGoals are “ready to transition”. (see isReadyToTransition)
or

b) Its Time Window expires (that is, its latest possible end time has passed)
whichever comes first.

When a Time Point fires:

a) All of its outgoing XGoals are dispatched to their specified State Variables (see
SV:startXGoal and Achiever::startXGoal methods).
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b) The XGoals Checker begins monitoring the XGoals for failure (see
SV::isStillSatisfiable and Achiever::isStillSatisfiable methods).

¢) The XGoals Checker ceases to monitor the Time Point’s incoming XGoals.

d) The Temporal Constraint Network is re-propagated.

XGoals that are dispatched to their associated state variables are then delivered to each
associated Achiever. It is the responsibility of those estimators and controllers to perform
actions needed to achieve the given goals. Achievers can be periodic components that
will continually operate to achieve their given goals. Different achievers can run at
different rates, or even be passive — only performing actions when new goals arrive.
Low-level active control loops live at this level.

The third part of the execution architecture is the executable goal checker, or
XGoalChecker. It’s job is to monitor the set of active executable goals (the ones
currently in effect, and last delivered to each state variable) and to notice when goals fail.
Checking is done first on the merged executable goals on each state time line by calling
isStillSatisfiable periodically, or when the associated state variable reports a change in
state. When this call returns false, the XGoalChecker calls isStillSatisfiable on each
constituent goal of the failing merged executable goal. For each constituent goal where
this returns false, a goal failure response begins, and proceeds as follows:

a) its getFailureResponse method will be called. This in turn will call
getReElaboratableGoals method on its parent Goal.

b) the parent goal will call the getReElaboratableGoals method on its Elaborator to
determine a response.

c) the Elaborator may choose to respond in one of four ways. It can invoke a safing
response by throwing an exception; it can cause the re-elaboration of its host Goal by
placing that Goal in the list of Goals passed as an argument; it can propagate the failure
upward to its parent Goal by calling getFailureResponse on its host Goal; or it can do
nothing and effectively ignore the failure.

1.2.8 Safing

The MDS goal execution framework includes a mechanism for verifying that all goals
continue to be satisfied over time. When something happens to cause a goal to no longer
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be satisfiable a goal failure response is initiated as described in the previous section. The
failure response allows the goal network, through its elaborators, to attempt recovery
through the elaboration of alternate tactics. However, in the end, if no recovery is
possible, the system provides a mechanism to promote a “safe” network that is supposed
to constrain the system into a benign configuration that would allow for external
diagnosis and recovery.

The planning and execution frameworks will automatically provide a default safe
network, or you may install a custom network. The default safe network will place
unconstrained goals on all state time lines. If controllers are designed to respond
appropriately to unconstrained goals by placing the system in a benign state, then this
response will be sufficient for most cases. For cases where a different response might be
required for different situations (over time), the system allows a different safe network to
be elaborated and installed in mostly the same way that ordinary goal networks are
elaborated and scheduled, but with a few key differences.

A safe goal network must contain a sequence of goals that can be promoted at any time,
and when the system is in any conceivable state. Since it will only be promoted when the
system is in an unexpected failure state, it must be able to transition the system from that
failure state into a safe state. And, since there can be only one safe network at a time, the
safe network must be designed so as to be highly tolerant of the sorts of failures that
would have caused the safe network to be promoted in the first place. Thus, the goals
must be carefully designed to ensure that they will not fail, and can begin executing at
any time and in any situation.

1.2.9 Responsibilities of Planning and Execution
Methods

Adapted control loop components interact with the MDS planning and execution
frameworks (also called the Mission Planning and Execution, or MPE components)
through a set of interface methods that the adapted classes implement. For the system to
work as intended, each state variable and its associated achievers must implement these
methods according to the rules given in this section.
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Table 1.: Responsibilities of Planning and Execution methods

method Implemented in Function

Goal Scheduling Methods

i sAchi evabl e SV Architecturally-defined method that would permit

(goal ) feasibility checking of individual goals. Not
implemented in this release.

i sAchi evabl e SV Responsible for determining if a given merged goal

(XGoal )

is achievable. Used by the goal scheduler to reject
schedules where the particular combination of goals
on a given time line are incompatible. The default
implementation returns true if the projected state
constraint is a subset of the merged ordinary
constraint (the merged goals).

This implementation should only be overridden to
add unusual other conditions.

| STL?nSi tionAchi | gv Achiever Used by the scheduler to determine the feasibility of
evapnl e

(XGoal , XGoal ) a transition between two goals.

mer geWt h Constraint Computes the intersection of the sets of values
allowed by two state constraints.

i sSubset Of Constraint Computes whether one constraint is a subset of the
other. I.e., whether the set of state values defined by
one constraint is a subset of the set of values defined
by the other.

get Proj ectionTyp |gy Used by the goal scheduler to determine which
€ projection method applies to the given state. Must
be one of the following:

LOCAL - for states whose goal achievability
depends only on the immediate goal

SERIAL - for states whose goal achievability
depends on the sequence of goals and an initial state.
GLOBAL - for states whose goal achievability may

depend on any other goals on its timeline.

proj ect Local l'y SV Models the predicted results of executing the given
XGoal
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method

Implemented in

Function

projectSerially |gy

Models the predicted results of executing the given
XGoal sequence. Note that there are two distinct
forms of this method, both of which must be
implemented. The first takes an initial state value
function and initial xgoal from which an initial
projection must be determined. The other just takes
subsequent xgoals, and projects state based on that
goal only.

projectdobally |gy

Project state based on the information available
from the entire timeline.

Goal Execution Methods

st ar t XGoal

SV, Achiever

Delivers a new xgoal for achievement to an achiever
by way of its SV.

i sSReadyToTr ansi t
i on

SV, Achiever

Given the current constraint and state value, and the
pending subsequent xgoal, determine whether the
system state would permit a transition to the new
xgoal.

isStill Satisfiab
l e

SV, Achiever

Assess whether the conditions needed to succeed in
achieving the goal continue to be met. A false result
initiates a fault handling process.
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2 Before You Start Coding

In many systems the software developer role is distinct from the system engineering role.
Developing requirements through the state analysis process is a system engineering task,
but it is important that the developer be sufficiently familiar with the process to know
how to interpret the resulting artifacts. The instructions provided in this section are
primarily aimed at the software developers who will be interpreting the state analysis
artifacts and translating them into executable code artifacts.

2.1 Prerequisites — State Analysis Artifacts

Before beginning any software development at least an initial state analysis of the target
system should have been completed and produced the following artifacts which define
the software requirements:
- List of states and state variables
- State effects diagram
State models and representation rules
«  Definition of goals and constraints
Physical system model
«  Measurement and Command interfaces and models
Estimation and control algorithms
Collaboration Diagrams
Specification of mission planning and execution (MPE) methods (spreadsheet)
Test case descriptions

2.2 Package Structure and Namespaces

MDS convention is to use package namespaces in C++ that reflect the directory structure
relative to the source directory, similar to the Java language convention. This helps to
make it easier to find the source code for a given class if you know its namespace. More
importantly, the dependency analyzer will assume this naming pattern at least with regard
to the location of header files in the export directory. You don’t have to actually follow
the convention in your adapted code, but you do have to define a package for each
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directory you create, and use include directives that will include package headers from a
directory path that is the same as the subdirectory path in the source directory tree.

2.3 Make Rules and the MDS Build System

The MDS build system is part of the MDS test harness. You don’t have to use the MDS
build system, but it probably provides the easiest way for you to build the MDS libraries,
and it is easily extensible to work with added source trees. Thus, it should provide an
easy default if you don’t have some other system you need to use.

As part of the MDS test harness, the build system is invoked as one or more test scripts.
The test harness controls the build and test environment, making it possible to build and
test the system under multiple, parametrically-controlled configurations. The test harness
also allows all regression tests including unit tests and system tests to express build
prerequisites and to build their own executables as a prerequisite to execution. For
convenience, a root Makefile is provided in the MDS_ROOT directory that can invoke
the test harness to run named tests.

The delivery package includes two default test/build scripts which are invoked as the
metamake and core targets in the root Makefile. For convenience, we’ll use these make
target names to describe the functions. The metamake test runs the MDS makefile
generator and dependency checker. This tool is described in the next section. The core
test builds all of the non-test target libraries defined in the source directory tree.

The MDS build system uses metamake to create one big Makefile for the entire system
(the generated Makefile is the one written into the source directory — not the one in the
MDS_ROOT directory. The one in the MDS_ROOT directory simply provides shortcut
names for specific tests you run frequently). Metamake searches through the source tree
looking for make.cfg files that express simplified build dependencies for each
subdirectory. For example, it can define a target library, and which source files are
members of that library. It can also express access control rules about which headers are
intended to be public interfaces versus private implementation. Metamake uses this
information and the source files for further dependency analysis to ensure that the make
rules express a directed graph of dependencies between libraries and packages.
Subsequently, build tests can invoke these make targets under different build
configurations as defined by the test environment. This allows a library to be built using
different compilers, or on or for different platforms using the same makefile, but with
different test configurations.
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2.3.1 How Metamake Works and What it Does

Metamake’s make.cfg files follow the same syntax rules as the macro-definition portion
of ordinary Makefiles. Anything after a # character to the end of a line is ignored, as are
blank lines. Assignments are in the form of keyword = value <newline>, but only the
predefined set of keywords can be used as described in table 1. Lines can be extended by
escaping the newline with a backslash.

# Example make.cfg file
# comments start with #

# package name should match directory
relative to ‘source’

PACKAGE = Mds.Ra.Tc

# tell metamake to look in subdirs for more
make.cfg files

SUBDIRS = *
# Build sources into library MyLib.a or .so
TARGET_LIB = MyLib
PROJFLAGS = SHARED # make that .so
SRCS = Examplel.cpp Example2.cpp
GLOBAL_HDR = Examplel.h \

Example2.h

Example 1: make.cfg contents

Table 2: Directives used in make.cfq files

Keyword Value Definition

PACKAGE Name of the package namespace. This corresponds
exactly to the java definition of package name. This
defines where header files listed in GLOBAL_HDR
will be exported to in the delivery directory. Can be
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Keyword

Value Definition

expressed in java style as “Mds.Fw.Init” or C++
directory style as “Mds/Fw/Init” or C++ namespace
style as “Mds::Fw::Init”. Other code that includes
exported headers must use fully-qualified includes:
#include “Mds/Fw/Init/init.h”

TARGET_LIB or
TARGET_TEST_LIB

Name of the target library to be built from the list of
SRCS. None of the sources may contain a main
function. The value is just a character string that will
be used as the base name of the physical library file
(excluding platform-dependent prefix or suffix — those
will be added automatically by the build system).

TARGET_APP

Target executable application to be built from SRCS.
In this case one of the SRCS must include a main
function. A given make.cfg file may only define one
TARGET_APP -or- TARGET*_LIB

SRCS

List of source files to be built as members of the
named package and linked into the target library or
application.

GLOBAL_HDR

List of header files in this directory that express public
interfaces to the functions and classes defined in the
sources in SRCS. These headers are exported into a
subdirectory in the delivery directory where they can
be included by other packages. Metamake also
assumes that these headers express the interfaces to
the package and target library defined for this
subdirectory, so anything that includes these headers
is assumed to have a dependency on the package and
target library. Can include implementation files as
well as header files for template bodies.

PRIVATE_HDR

List of header files in this directory that are private to
the package and may only be included locally.
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Keyword

Value Definition

Metamake will not export these headers to where they
can be included by other packages, but it will still
compute dependencies on them.

PROJFLAGS

Override system defaults to declare build options for a
library. Currently, this only controls whether a library
will be built as an archive library or shared library.
The default is “shared”.

SUBDIRS

List of named subdirectories to recurse into. Can
include wildcards, or just * to recurse into all subdirs.
Note that directory recursion only happens when
Metamake runs — not when make actually runs.

UTESTSRCS

List of unit test sources. Each listed source file should
contain a main function that implicitly depends on the

TARGET_LIB. The main function performs some set
of unit tests on the target library functions and returns

the number of errors.

Table 3: Common metamake errors and corrective actions

Error

Description

Cyclic dependencies between target The metamake output will try to describe

libraries

the cyclic dependency as expressed by one
or more includes. You cannot define target
libraries with cyclic dependencies because
many linkers will have trouble with this.
You may need to refactor certain libraries
to restructure the dependencies.

Target library dependency on test code Metamake will allow code defined in a

TARGET_TEST_LIB to make calls into a
TARGET _LIB. Test code can do whatever
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Error Description

it needs to perform a given test. However,
core library code may not express
dependencies on anything but other target
library code in order to avoid uncontrolled
dependencies on code that is not part of the
target delivery.

Missing source files or headers Metamake verifies completeness and
consistency of includes. The most
common reason for it not being able to
resolve an include is that the target header
file was not exported in a GLOBAL_HDR
specification, or there is a mismatch
between the PACKAGE name under which
it was exported, and the path used to
include it. Metamake will also report as
errors files that are listed in make.cfg but
don’t exist in the directory.

2.4 Using the System ID Database

Some of the MDS frameworks depend on having assigned numerical identifiers. For
example, state constraints, measurements, and state values are all defined as subclasses of
polymorphic base classes. Instances of these classes will need to be identified when
passed through a base-class reference in certain cases. Although this is generally what
the C++ typeid system was designed for, the typeid system was not meant to be portable
across compilers and deployments. Since many of these data classes do need to be
transported (as telemetry and goal networks) between deployments, MDS provides its
own system for assigning numerical identifiers that can ensure consistency across
compilers, platforms, and deployments. It does this using an external database to manage
the numerical assignments and a software framework that allows the assigned values to
be imported as named enumerated values into the source code at compile time.
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The System ID Database framework (Mds::Fw::Sid) provides an interface between the

external configuration control database and the source code. You don’t have to have an

external database. If you did, you would set it up to export its contents in the form of a

table expressed as comma-separated text. However, a default version of this table is

provided in the framework and can be edited by hand to add new entries.

The database table defines five columns: instance name, assigned id number, namespace

or group name, polymorphic flag, and description.

Table 4: Sid Identifier Database Entry Description

Column Name

Description

Instance Name

Namespace-qualified name of the class or
object instance. In the generated
Database.h file that Sid will produce this
name will be converted into an enumerated
value name with all the periods converted
to underbars. For example,
“Mds.Fw.Elf.SimpleEvent” becomes
Mds::Fw::Sid::Database::Mds_Fw_EIf Sim
pleEvent.

Assigned numerical ID

Assigned id number (int). Must be unique
within namespace

Namespace or Group Name

Name of a namespace or group. This can be
the base class of a polymorphic type or a
type for which instances are to be assigned.

Polymorphic (boolean Y or N)

Not used in the code right now, but
intended to distinguish between
namespaces that assign values to object
instances versus subclass types.

Description

Quoted text description or notes associated
with the entry. Not used in the code.
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3 Derive a Software Component Architecture from State
Analysis Artifacts

« A reference adaptation is provided in the distribution source tree
that includes a working temperature controller. The process
described here will refer to these examples extensively. The
example source code can be found at
source/Mds/Ra/SimpleThermostat. The requirements developed for
this adaptation can be found at docs/example/tcanalysis.pdf and
docs/example/methods.xIs.

In the MDS source tree you can find some example adaptation
classes that can be used as adaptation templates. In
source/Mds/Ra/Example there are generic, unadapted, examples of
most of the classes you will need to adapt to implement a control
loop. These are heavily commented to explain the methods you
need to implement.

There is no single way to approach the task of translating the state analysis artifacts into
code. However, it seems reasonable to start with the simpler elements and work up to the
more complex ones. The following sections describe each of the adapted elements of a
control system starting with what are probably the simplest and most independent classes
and working up to the more complex, and more interdependent ones.

By way of advice, it is good practice to design an implementation plan based on an
increasingly-complex sequence of test cases that verify increasingly integrated
capabilities. Using this approach you will likely only implement some of the more
primitive methods in the first pass through this list, and add higher-level functionality in
subsequent iterations.

A simplified development and test plan might go something like this:
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1.

Define the classes you're SURE you’re going to need based on the state analysis
requirements. Determine dependencies on other packages and generally start
with leaf nodes in the dependency graph. Nail down package and class names
before you start. Create the new subdirectory in the source tree for your new
package (start a new project under source and sketch out the package/directory
organization to a first order before drilling down much farther). Populate the
directory tree with make.cfg files that simply declare the subdirectories
(SUBDIRS = *).

Start by implementing Measurement and Command classes as described in
sections 3.1 and 3.2, below, using the provided examples as templates. Use find
& replace to edit the class and namespace names, but don’t add any class
attributes yet. You will need to assign class ID values in the Sid database for
these classes.

Edit the make.cfg file in your code subdirectory to define the PACKAGE,
TARGET_LIB, SRCS, and GLOBAL_HDR entries. Run metamake (make
metamake in the root directory). Check the test output in results/tmp.metamake if
the test failed. Once metamake passes, build the new sources by running make
core in the root directory. Again, check for errors. Iterate until you get the
generic classes to compile. Now you can flesh them out to a first order and get
those changes to compile.

Next you should start thinking about unit tests. It is very useful to define unit
tests for individual data classes such as we have just defined. Unit tests can verify
that these classes implement their constructor and accessor methods correctly, and
will be very useful for testing constraint merge methods later on (these are rather
more difficult to test in operational system tests). You can write unit tests in the
form of source files with a main function that instantiates your Measurement class
and exercises its API. You can use CppUnit frameworks in these unit tests if you
like. CppUnit provides a nice way to account for test results, but using an
ordinary assert will also work to check test conditions. Add the unit test sources
to a UTESTSRCS assignment in the make.cfg file. Then write a little test script to
exercise these unit tests (see section 9 for more information about how to write
tests in the MDS test harness).
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10.

11.

Implement state values and state functions next. While you’re at it define the
state history type. [See 3.4.x, below]

Implement the SV next. [See 3.4, below]

Implement the hardware adapter next, as described in section 3.7. There isn’t a
prototype for this because every hardware adapter is going to have different
interfaces. Implement methods for commanding and querying measurements as
needed. If you need to implement a simulation model in the hardware adapter, do
it now, and write a unit test to verify the simulation.

Sketch out the Estimator and/or Controller as described in sections 3.5 and 3.6,
below, next.

Integrate the control loop. You may want to define container classes that
aggregate the whole control loop and hook up the components. Make sure the SV
gets an assigned instance ID. Write a unit test to run the control loop in its
unconstrained state. At this point you will need to implement a simple rate group
scheduler in your test to run the components. See sections 4 and 5 for more
details.

Sketch out the state constraint as described in section 3.8, below. You might want
to start out by just implementing a knowledge constraint. It is also recommended
that you implement a unit test for the constraint class that exercises its merge and
subset methods. This can save a lot of time later, because a lot of subsequent
functionality depends on these functions working correctly. Then update your
test to schedule and execute a knowledge goal. Make sure the estimator actually
updates the state variable’s history correctly. You’ll need to implement the goal
scheduling methods in your SV and (optionally) achievers. Once you get a basic
test working you can flesh out the constraint and the related scheduling and
execution methods in the SV and achievers. It is generally simpler to test at this
level using simple terminal goals containing no elaborators (you can just
construct these goals in the test) and manually constructed, simple goal networks.

If the package requires an Elaborator or a customized Goal you can start on that
after everything else is working. The details of this step are described in section
3.9, below. In general, you want to have some confidence that the subgoals you’re
going to schedule as Tactics have all been verified individually as much as
possible before you start combining them.
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12. Iterate steps 2 through 11 for state variables working up from the leaf nodes in the
state affects graph. Add new system tests as control loops are closed, state affects
are elaborated, or additional complexity is integrated.

3.1 Measurements

A Measurement is a portable time-tagged wrapper for a piece of evidence sampled from
hardware. The wrapper class provides a consistent polymorphic interface with
architecturally-defined semantics: mainly that measurements are consistently time-
tagged. The evidence contained within a measurement is a sample of data as defined by
the target hardware.

Adapting from the example: Most of the classes described here can be
adapted from the example prototypes provided in source/Mds/Ra/Example.
These examples are heavily commented to describe the methods and
attributes you need to adapt. In general, you can just copy the header (.h) and
body (.cpp) files into your source directory and make the following changes:

« Change the namespace. You may need to add contained namespace
declarations to do this.

Global find and replace to change the class name to your particular
class name (if necessary). Frequently it will be safe to use the
existing class name as long as it is unique in your namespace.

«  For PolySerializable classes you’ll need to register an assigned class
identifier in the Mds::Fw::Sid database. See section 2.5. Update your
cpp file to use the assigned ID enumerator.

The only thing you should need to add to the Measurement example class are as follows:

+ Value representation: This is the measurement’s actual payload data, and it is
usually defined by the underlying hardware from which it is obtained. Values as
small as a single bit (boolean) can be represented, though it is important to take
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into consideration the fact that compilers will normally use at least full word of
memory to store a given value. For most measurements, this footprint expansion
is acceptable as long as they remain in memory in small quantities. If you need to
have many instances of measurements that store boolean values you might want
to consider consolidating measurements or hardware adapters (arrays of switch
positions come to mind).

« Specialized constructors. Add one or more constructors that allow an instance of
your measurement class to be created given the payload data and a time value. Be
sure to call the appropriate base class constructors to pass the time tag.

+ Serialization methods. The writeObject method and its complementary
deserializing constructor must be implemented to enable these measurement
objects to be stored and transported as telemetry data. These methods can use
functions in the Mds::Fw::Ser::ObjectInputStream and
Mds::Fw::Ser::ObjectOutputStream classes to read and write the specialized
attributes.

«  Your measurement class should provide const accessor methods for any payload
data values it contains. Mutator methods are generally not provided, since
measurement objects should be immutable once constructed.

3.2 Commands

Commands are messages from a Controller to a Hardware Adapter directing some action.
Their content depends on the hardware. As with Measurements, the MDS class interface
provides a standardized wrapper that provides a time tag and some standard interface
methods. The steps involved in implementing a command are identical to those needed
to implement a measurement.

3.3 State Values and State Functions

State variables should be able to answer questions about their values continuously at any
required point in time, or over any required interval. The specific representation
requirement will derive from the estimation and control algorithms that derive from a
given state. Frequently, it is sufficient for a state variable to provide a simple constant
state function that is continuous in time, but possibly discontinuous in value. As long as
the values are updated frequently enough to keep the value deltas small,
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The state value representation(s) should generally be defined by the state analysis
requirements.

One implementation consideration is the representation of unknown values. All state
variables must be able reflect unknown state values. The simples way to do this is to use
a state value with a boolean “unknown” flag. Another way is to define a value domain
that is a subset of what the primitive value types can represent, and interpret any value
outside that limited domain as unknown. The boolean flag option uses more memory per
object instance, but the alternative requires more code to interpret unknown values. You
could also use an explicit “unknown” state value class. These optimization choices
should be driven by the system requirements for how these values will be used and
accumulated in the running control system — i.e., whether you have to optimize for size
or speed, or both.

For states that change slowly, or are estimated frequently enough, a constant state
function provides a state representation that is continuous over time, and sufficiently
continuous in the value domain for many closed-loop control problems. Constant state
functions also work well for enumerated states. Because this is a common design pattern,
the MDS state frameworks provide a template for it in the ConstantStateFunction.
ConstantStateFunction requires one template parameter that indirectly defines the class
traits. The traits template parameter names a class or struct that defines three types: first
a typedef alias that identifies the target StateValue class as StateValueType; second, a
typedef that identifies the numerical identifier type; and third an enum that assigns
m_class_id to the assigned class id value in the Sid database.

struct MyStateFunctionTraits ({
typedef MyStateVal StateValueType;
typedef Mds::Fw::Sa::State::StateValue::IdType IdType;
enum { m class id =
Mds::Fw::Sid::Database: :ASSIGNED VALUE };

}i

typedef ConstantstateFunction<MyStateFunctionTraits>

MyStateFunctionType;

Text 1: Example of ConstantStateFunction traits declaration
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For states that require more continuity in the value domain, other state functions such as
polynomials can be used for scalar states.

3.3.1 Value Histories

State Variables representing estimated states always have at least one value history.
Other components can also have value histories. Hardware Adapters can have histories
of their commands and measurements, for example, and other components can produce
sample histories for telemetry purposes. The basic process is the same in all cases except
that the state variable base class (SV) provides a container for its value histories, where
other base classes do not. If you want to use a value history in some other class you will
need to define it and instantiate in your adaptation.

A value history can be any container, including a primitive variable. In such a simple
example the history can only represent a history of one value, but that may be all you
need in some cases. State value histories need to meet the requirements for representing
state values, including the requirements for time labeling, so state value histories are
usually somewhat more complicated than just primitive values.

The depth of a value history and its semantics depend on the requirements of the control
loop in which it lives and the kinds of goals that will be applied. Certain goals or control
algorithms require more than just the last sample. For example, an algorithm may
depend on the rate of change of a state (which typically requires the last two values to
compute), or the state relative to an earlier state.

Value history containers can serve as synchronization points between different threads of
execution. In a state variable, for example, the actual state is in the value history. A state
variable will typically have an estimator calling to update its state, perhaps a controller
calling to get current state, and other estimators calling to get evidence for their
estimation. Plus, the XGoalChecker and ElaborationManager may be calling for queries
having to do with current execution and planning. Each of these calls could potentially
be done on a separate concurrent thread of execution, so the value history provides a
convenient place to synchronize them.

Synchronization is not automatically provided in the base class because some adaptations
may choose not to pay the overhead of using multiple threads. It’s also possible to
schedule all of these components to run on a single thread. The example value history
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containers provided in the framework demonstrate the use of atomic operations to
provide thread safe behavior instead of relying on a mutex or semaphore. This can be
significantly faster for simple histories. Note that if you need to define a deep history
container that supports any operation that needs to iterate the container, then you
probably cannot avoid using a mutex to prevent it from changing while you iterate.

3.3.2 History Functors

State variable value histories are initialized, queried, and updated through a set of base
class interfaces that use specialized function objects, or functors, to do the work. These
functors are typically customized for the particular value history container and content
value types.

Query Functors. Query functors can be adapted to provide different ways to access a
complex state history, and they can provide different accessor methods to manipulate the
returned values. They can also be optimized to take into account the behavior of the
value history they will associate with.

Update Functors provide methods to update the state and enforce the update rules and
semantics for the particular value history.

Init Functors are specialized update functors that assume the previous state is
uninitialized. These functors may actually be used to construct the value history.

3.4 State Constraints

First, a bit of translation. The state analysis course, and derived guidelines will generally
talk about goals and state constraints as synonymous, but the current set of MDS
frameworks provide distinct classes to represent these concepts. In the frameworks a
goal is a container that associates a state constraint with two bounding time points, so
Goal and state Constraint are two separate classes. When you see requirements referring
to merging and subsetting goals, interpret those as referring specifically to the state
constraints that implement those goals. When you see requirements related to the
elaboration of a goal, those will be implemented in the elaborators and tactics described
in a later section.

Think of state constraints as representing sets of possible state values. Though the name
may sound like an oxymoron, the “unconstrained” constraint simply represents the set of
all possible state values for a given state. Subsets of this set represent other possible
values or value ranges required of the given state. State constraints can also be
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“maintenance” or “transition” constraints for some states. That is, goals that require a
state to be held within a given range may require some additional work ahead of time to
transition the state into the required range. Not all states require transitions, so the
maintain/transition flag is generally something you have to implement in your adapted
constraint. However, the “unconstrained” constraint is implemented in the base class.

The most important methods in state constraints are the constructors, and the mergeFrom
and isSubsetOf methods. The constructors need to provide signatures that allow
Elaborators to efficiently construct the kinds of constraints needed to define required
goals. The mergeFrom and isSubsetOf methods implement simple mathematical set
operations. The mergeFrom method finds the intersection of the object constraint and the
argument constraint. That is, it finds the intersection of the two sets of allowable values
on the associated state. The isSubsetOf method determines whether the object constraint
set is a subset of the argument constraint set. Note that since the “unconstrained”
constraint is defined as the set of all possible states values, any physical constraint is
always going to be a subset of this set.

Knowledge constraints are usually implemented as additional attributes of a control
constraint. In general, some knowledge is required in order to achieve any control
constraint. The examples demonstrate a form of modal estimation where state estimates
are only updated when a knowledge constraint is being achieved. The state constraints
for these states define KNOWN as a subset of unconstrained, and all control constraints
are a subset of KNOWN. One way to do this is to implement a Constraint with an
enumerated mode, where the mode has enumerated values for KNOWN, and any other
kinds of physical constraints needed. All higher enumerations imply a knowledge
constraint, but the KNOWN value allows for a constraint that constrains knowledge, but
not the physical state. This is useful for cases where the state is required to estimate
another state. This pattern can work even when the constraint needs to have attributes
describing the quantity or quality of knowledge.

The implementations of the merge and subset methods for discrete states are usually
straightforward. Constraints on scalar states may be efficiently represented as ranges.
The example demonstrates the use of a math framework class to support range
operations.
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Constraints should provide a default constructor that creates an “unconstrained”
constraint. This is only a convention rather than a requirement, but all of the examples
assume this convention.

It is highly recommended that separate unit tests be written for each constraint class in
order to exercise and verify the merge and subset methods (particularly all combinations
that will show up in system tests). Testing these methods in a system test context with
other states can be very tricky because so many other things are happening at the same
time, and because it is often impossible to schedule individual goals by themselves
(because of state effects and dependencies). The canonical nature of these classes and
their key methods should make them amenable to automated test generation techniques
and automated coding techniques. This is a key objective of future work.

3.5 State Variables

For each State Variable, the process of state analysis should have determined the

following attributes:

- Is the state value to be estimated, or derived? Estimated states must have a value
history, and must support the update interface. Derived states require adapted query
methods that will synchronously query source state variables in order to derive a new
state value.

« If the state is estimated, what are the bounds of knowledge and data state
requirements that determine how deep or detailed the state value history must be?

« Is the state affected by other states, or does it affect other states? State effects are
configured at system construction time using the method SV::affects(SV* other).

- How is the state value projected into the future for planning purposes? The base class
default is to perform a LOCAL projection by simply projecting the ordinary
constraint forward. Override getProjectionType() and the appropriate projection
method (projectLocally, projectSerially, or projectGlobally) if the given state uses
SERIAL or GLOBAL projection, or if you need a special implementation of LOCAL
projection (unlikely). You only need to implement the one projection method
applicable to the form of projection getProjectionType returns.

«  Are there requirements or constraints on how the planning and execution methods
must be implemented? The SV base class provides default implementations of all of
the planning and execution methods. Most of these implementations attempt to call
methods with similar signatures on the associated Achievers. For example, the
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default implementation of isAchievable calls a method with the same signature on
each associated Achiever (associated by calling linkAchiever). This allows each
achiever to weigh in on the achievability of its particular part of each given goal.

«  Other methods like isStillSatisfiable only provide a trivial default implementation,
so should always be overridden in an adapted SV.

«  What are the concurrency requirements on this state variable, and on the architecture
in general? Implement synchronization in the value history as necessary.

+ State effects relationships are implemented using the SV::affects() method at the time
the system architecture is instantiated.

Notification: MPE depends on implementation of an abstract notification interface in the
SV framework. A fast and simple implementation of this notification interface is
provided in the Mds::Ra::Mpe package. This package implements a notifying SV and a
fast wait-free signaling queue in the form of a bit vector. If you choose to use this you
can simply derive your state variables from NotifyingSV rather than the SV base class,
and instantiate the BitQueue somewhere.

3.6 Implementing Planning and Execution Methods

The planning and execution methods refer to the set of methods on state variables, and
their achievers, by the MDS goal planning and execution frameworks to support their
runtime operations. The state analysis course describes the design and architectural
requirements of each of these methods, along with guidelines for establishing their
functional requirements. The specific state analysis of a given system should thus define
specific functional requirements for each of these methods. However, some translation
may be needed to get those functions efficiently into code.

General notes:

+ The goal network can represent unconstrained constraints in two distinct ways: either
as an actual instance of a constraint object whose i sUnconst r ai ned() method
returns true, or as a null pointer. Methods that extract constraints from Goals and
XGoals should take this into account.
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« Any method that uses state cosntraints will need to determine the type of constraint
and downcast the received object to its specific type for use. The simplest and most
common case is for a given state variable to recognize just a single type of constraint.
For this case the constraint base class provides a templated downcast method that will
perform a static cast to the given type (with an assertion for debugging). If this is not
the case, then you will need to use a switch statement whose conditional calls
get Type() on the constraint object, and whose cases downcast the object to the
particular constraint types.

« The goal Network class allows, as an optimization, XGoals to be constructed with
NULL constraints representing the unconstrained constraint. Thus, methods that
retrieve the ordinary or projected constraint from an XGoal should interpret a null
pointer as an unconstrained constraint. This test should be done prior to any attempt
to downcast the pointer, because the downcast will fail if the pointer is null.

+  The default base-class implementations of all of these methods will return true, which
will generally be the most optimistic and permissive case. One strategy for
implementing these methods is to start out with an adapted state variable (SV) that

« TheisTransi ti onAchi evabl e methods may assume that the constraints in each
of the given XGoals has already been tested for individual achievability, so it only
needs to verify whether or not the given transition is allowed.

+  When implementing projection rules from requirements specified in the spreadsheet
form, you should be aware that you have to combine the results of projected control
and knowledge goals to arrive at the actual constraint to be created (the requirements
may mention the need to perform a symbolic AND). For example, the projection for
a health state may specify a control part and a knowledge part separately. The control
part will likely say that when the state is unknown the projected constraint is
unconstrained. However, the projected knowledge goal may still be KNOWN. The
actual projected constraint in this case should be whatever form of the constraint
represents this combination.

«  Note that much of the logic needed to implement the state constraint mergeFrom
method will normally reside in its isSubset method. Consider implementing one in
terms of the other.
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Order of Implementation

To simplify testing, the following order of implementation is suggested. This procedure

assumes that you start out with default implementations of the SV and Achiever methods

that return true, and implement the methods one at a time in the following order:

.

State constraint methods mergeWith and isSubsetOf. If you implemented these
methods as part of the earlier procedure for implementing state constraints, and tested
them in a unit test, all of the subsequent steps will be greatly simplified. This is
because the planning and execution methods depend heavily on these supporting
methods, and errors in the supporting methods may be difficult to detect when
exercised in a much larger and more complex system test.

State variable projection methods

isAchievable and isTransitionAchievable (these depend on projections). Verify with
scheduling tests.

IsReadyToTransition. Verify with scheduling and execution tests.

IsStillSatisfiable. Verify with goal failure tests.

Table 5: Planning and execution method notes

Method Name Implemented In Description

get Proj ecti onType() SV Return LOCAL, SERIAL, or

GLOBAL to reflect which projection
method will be implemented.
Default: LOCAL

pr oj ect Local | y(xgoal ) SV

Default implementation of these

proj ect Seri al | y(xgoal) methods simply uses the ordinary

projectSerially
(xgoal , statefunction)

constraint as the projected constraint
on each XGoal in the timeline.

proj ect G obal | y(xgoal) Note that for SERIAL projection

there are two method signatures that

you should implement.
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Method Name

Implemented In

Description

i sAchi evabl e(xgoal )

SV

Default implementation in SV will
return the result of AND-ing the
results of calling the same signature
on each associated Achiever.
NOTE: the requirements derived
from state analysis assume that this
methods doesn’t even exist, and that
achievability will always be
determined by checking to see that
the xgoal’s projected constraint is a
subset of the ordinary constraint.
See example, below.

i sTransi ti onAchi evabl e

SV (or Achiever)

Default implementation in SV will
return the result of AND-ing the
results of calling the same signature
on each associated Achiever.

i sAchi evabl e(goal )

SV (or achiever) NOT IMPLEMENTED in this
release.
| sReadyToTransi ti on SV (or Achiever)
(xgoal , xgoal )
IsEri sl s sl SV (or Achiever) |Default SV implementation will call

(xgoal)

a similar signature on each achiever
and return the result of applying
logical AND to each of these results.
Default achiever result is true.

Page 35 of 91




MDS Adapters Guide MDS V6.1 Release Rev 2

Method Name Implemented In Description

l(ZcS)ta: l) | Sati sfiabl e SV (or Achiever) Default SV implementation will call
a similar signature on each achiever
and return the result of applying
logical AND to each of these results.
Default achiever result is true. The
logic for the two isStillSatisfiable
methods should always be the same,
so you should implement these using
a common method that takes a state

Constraint as argument.

start XGoal Achiever (or SV)  |Required by Achiever interface even
if the achiever does nothing. An SV
that has no achievers may need to
override this method in order to save
a reference to the currently
executing xgoal in order to

implement isReadyToTransition.

3.7 Estimators and Controllers

Estimators and Controllers are forms of Achievers associated with a state variable. The
MDS architecture stipulates that there can be no more than one estimator and one
controller for each state, but there can be fewer. Derived states might have no estimator,
and there can be cases where one estimator updates multiple state variables. Similarly,
there can be cases where states are not directly controllable, and so have no controller, or
where one controller controls multiple states.

The MDS framework for Achievers is very simple. The base class

Mds::Fw::Sa::State:: Achiever defines some virtual planning and execution methods that
state variables prefer to delegate to achievers. Logic related to the scheduling and
execution of knowledge goals is usually delegated to an estimator, while logic related to
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the scheduling and execution of control goals goes to a controller. Requirements defined
through the state analysis process should specify all this.

In addition, estimators are usually given the responsibility for initializing the state of the
state variable they update. This is because the state variable is a passive component,
while the estimator is likely to be scheduled for periodic execution.

3.8 Hardware Adapters

Unlike many of the other adaptation classes, there is no standard base class for hardware
adapters. A hardware adapter’s interface will depend on whether it is commandable (an
actuator of some kind), whether it produces measurements (a sensor of some kind), and
whether it needs its own cpu cycles to do work beyond what it can do on the command
and measurement interfaces.

Hardware adapters should generally be passive components (no run method), like device
drivers. However, it may be convenient to embed a simulation model in a hardware
adapter for testing purposes, and in that case it is often useful to do the simulation work
on a separate run call to keep that work distinct from the control and estimation work.

3.9 Goals, Elaborators, and Tactics

Ilustration 2 depicts the relationships between Goals, Elaborators, and Tactics. Adapted
goal classes serve to statically associate a particular constraint or kind of constraint with a
particular state variable (SV), and optionally, an Elaborator. Typically, a distinct
elaborator class is adapted for each unique Goal class. An ordinary goal will associate
with one state variable, one constraint, and one elaborator. A terminal goal will have no
elaborator, because it doesn't need to elaborate any subgoals to be achievable.

A macro goal is a goal that doesn't associate with a state variable, and thus cannot have a
state constraint either. A macro goal provides a mechanism by which entire activities can
be elaborated onto multiple states in a single coordinated operation. So, a macro goal
must always have an elaborator with at least one tactic.

Adapted Goal classes can be defined as long as they only specialize a constructor or
methods that will be called from the constructor, nor may they have any specialized
attributes. The current network serialization design only serializes the contents of the
base class.
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with one 5V is a macro goal

sV A goal that cloes not associate I\_\w
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Constraint
* 10.1
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elaborationFarent] +i55ubse o)
0..1 [+elaborate(
+etFailureResponse()
+getReElaboratableCoals) (1 0.1 | Elaborator Tactic
+incrementTacticlndexg oo
1 i +elaborate() +expand()
suloals 0..
ElaborationSpec
—=H
0=

lllustration 2.: Goal class relationships with other adapted classes

Elaborators may be fully polymorphic.

Every elaboratable Goal must have an Elaborator class defined for it. An Elaborator may
define its tactics as separate Tactic classes, but it doesn’t have to. If you choose to
implement the tactics inline in the Elaborator, be sure to also override the
getNumberOfTactics method to reflect the number of tactics available.

The main things the Elaborator needs to implement are the elaborate method, and the
getReElaboratableGoals method. The elaborate method is responsible for expanding the
requested tactic. This is done by constructing a new ElaborationSpec container, and
adding any new Goals, time points, or temporal constraints to this container, and
returning the container. Canonically, this is done in separate Tactic classes.

Implementation Notes:

« Elaborators and Tactics should not add any element to the ElaborationSpec container
that it doesn’t create internally. Specifically, it should not add the parent time points
or Goal (or itself) to its ElaborationSpec. During the process of re-elaboration, a
Goal’s previous elaboration as specified in its ElaborationSpec is removed (and
possibly deleted) before the next tactic is elaborated. If the Goal’s ElaborationSpec
contains itself or its bounding time points, then memory corruption will occur.
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+ Goals that have multiple tactics that can be re-elaborated as a fault response need to
avoid elaborating subgoals against the starting time point associated with the parent
goal. If these tactics had to be re-elaborated during execution it is likely that the
starting time point will have already fired, and it is not possible to schedule new goals
against a time point in the past (you can't change history). A recommended technique
is to create a new starting time point for the activity within the tactic expansion, or
use the promotion time point. Then, schedule new goals against the new time point,
and add a temporal constraint tying the new time point to the original starting time
point. This is an example of conditional elaboration.

3.10 Data State Variables and Data Controllers

The design intent is that each value history container type should also associate with a
data controller and data state which will manage the data in the history container, moving
older data to data products for persistent storage and transport. Controlling the
movement of data between the in-memory data cache and its extension in deep, persistent
storage is performed through the use of data goals, data states, and data controllers.

A data goal is like a knowledge goal except that it constrains the state of a value history’s
content after the fact. That is, an estimator is the achiever responsible for updating a state
variable’s value history, and so estimators are primarily responsible for creating the data
content in a value history. A data controller is an achiever responsible for what
subsequently happens to the data. A data controller is an achiever for a data state which
describes the condition of a value history. Since the value history is a part of the control
system itself, data states are defined as a special case of a derived state variable that can
have no value history or estimator of their own. Their state value is the physical state of
the value history.

The value history to data management interface is not implemented in the MDS 6.1
release, and the current examples do not include any examples of data states.
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4 Instantiation and System Encapsulation

This section talks about instantiating the components we’ve defined as classes in the
previous sections.

Every control system will need to have a place where the state variables, controllers,
estimators, and hardware adapters are all instantiated, connected, and initialized. This is
also referred to as the architecture instantiation. It is convenient to define one or more
container classes for this purpose. In a system consisting of more than a handful of
components it is often useful to organize the components into groups according to either
hardware relationships, or levels of interaction with one another, and to define separate
subsystem containers for each. This is particularly true for repeating subsystems where
there may be multiple instances of the same pattern of components.

The state effect relationships between state variables is expressed at this time through the
use of the SV::affects method. Call this method on the affecting SV passing as an
argument the pointer to the affected SV. The SV::isAffectedBy method provides a way
to query the state affects graph topology.

The MDS framework provides executable components for the planning and execution
functions in the Mds::Fw::Sa::Run package. As part of your system instantiation you
will need to create instances of these components and schedule them for execution.

Table 6: Planning and Execution Components

name requirements

Mds::Fw::Sa::Run::Executive Responsible for temporal constraint
network propagation and time point firing.
Run period should be determined by the
tradeoff between required time point firing
precision and available resources.

Mds::Fw::Sa::Run:: XGoalChecker Responsible for monitoring the status of

Goals and responding to Goal failure. Its
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name requirements

period defines the minimum response time
to a goal failure.

Mds::Fw::Sa::Run::ElaborationManager This should normally run at a lower rate
and priority compared to all other

components.

5 Runtime Scheduling and Execution

There are two distinct kinds of execution and scheduling that occur in an MDS runtime
system. The first is the goal network scheduling and execution that is handled by the
MDS state architecture and frameworks. The second is a lower-level CPU scheduler that
is responsible for doling out CPU cycles to various executable components. The MDS
architecture leverages the concept of a component software architecture[12 ] where
formal compositional rules are used to define where different threads of execution can
and cannot go. The component architecture frameworks used in this release of MDS are
very lightweight, and try to avoid making too many assumptions or placing too many
constraints on how components actually map to threads of execution in the deployed
system. The framework provides an interface (base class) for periodically-executed
components in the Mds::Fw::Run package as shown in Illustration 3. RateGroup
components can be scheduled to run on separate threads (one thread per group).
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lllustration 3.: Rategroup and Periodic Component Interface

Achievers (Controllers and Estimators), and Hardware Adapters that need to execute
periodically should implement the Periodic interface, and be scheduled as a member of a
RateGroup. State Variables are always passive components: that is, everything that is
done in a state variable is done via a function call on the thread of another component.
Not all Achievers will need periodic execution, but periodic execution is a typical case in
control systems. Achievers that are implemented as periodic components need to do a
limited amount of work on each run() call, and return. The amount of work they can do
is limited by the complexity of the system, the amount of processing power available, and
the realtime timing requirements on the control loop the component is a member of.

The MDS framework provides a couple of simple rate group schedulers in the
Mds::Fw::Run package. The simplest of these is a single-threaded virtual time scheduler
used in most of the example tests. The general design of the schedulers in this package
includes three types of components: a rate group container, a scheduler, and a time
driver.
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The rate group container is a simple container that works with any of the schedulers.
When its run method is called it calls run on each of its registered Periodic components in
the order in which they were registered. The rate group container is also responsible for
subdividing the call period in order that different rate groups run at different rates. At
construction time each rate group component takes an argument that defines its period.
The default value is 1. It subsequently will perform the iteration of run over its members
the first out of every period number of calls to its own run method.

The scheduler is a container for rate groups. Its job is to call each rate group once for
every time its clock input is called. A realtime scheduler would use a physical clock of
some kind as the timing source, while (as shown in the examples using SimpleTicker) a
virtual time scheduler would just trigger the clock input as fast as possible.

Mds::Fw::Run::Scheduler is an example of a more complex realtime scheduler that
provides a separate execution thread for each rate group, and uses an alarm signal from
the operating system (via SignalTicker) for the timing source.

Your particular system may require more advanced runtime schedulers than the simple
one provided in the framework.

6 Adding EIf Events

The MDS Event Logging Facility (ELF) provides a framework service for efficiently
reporting generic event messages via telemetry. It includes a front-end interface for use
in embedded system code, and a back-end message handling facility that can be
configured to direct and manage collected event data. It also provides a flow-control
mechanism that enables the suppression or filtering of events by severity or source.

Elf defines an event message class as a C++ class that encodes a message payload
(content type). Provides one or more constructors that accept content data in its original
form, serialization methods to write this data to a byte stream, deserialization constructor
to read it back, and print methods to convert the data to human-readable messages. An
event message class derives from a framework base class (Event). An event class defines
a particular format or structure of a message and can be used to describe different kinds
of events as long as they have the same physical structure.

An event generator is defined as a class specifically created for the purpose of reporting a
particular kind of event from a particular software package. It: conditionally constructs

Page 43 of 91



MDS Adapters Guide MDS V6.1 Release Rev 2

event messages and sends them to the event handling service for routing. Each generator
can be individually configured through the event logging service to suppress or filter
message generation. A generator class derives from the framework base class Generator,
which provides the hooks to the Elf event message collection and routing services.

For each event you want to report you should first define a new event class (or reuse an
existing one) that can efficiently store the given message content. Note that an event
class includes a separate method for converting the event instance into human-readable
(string) form. This makes it possible to create event classes with enumerated messages,
where only the enumerated value (int) is actually stored in the event object, but that can
automatically be converted into a human-readable form. Each new event class requires a
registered instance ID in the Mds::Fw::Sid database.

Next, you need to define a generator class whose instance will provide the interface
between your code and Elf for reporting events. A generator instance must be created
somewhere in your code in order for it to be used to create events. Usually, it is
convenient to create these instances within components where they will be accessible
only within the component, or in a subsystem container, where they would be accessible
from multiple components.

Each generator instance is required to have an instance ID assigned in the Mds::Fw::Sid
database to keep it distinct at runtime from all other generators interacting with the EIf
back-end.

Elf provides thread synchronization mechanisms between the generator and the Elf back-
end. This design assumes that each generator instance should only be accessible to a
single thread. If you create a generator that could be accessed by multiple threads then
you may need to add your own synchronization mechanism at the generator interface
(though this is not recommended).

The default back-end event handler is a simple in-memory container that is intended for
capturing events that might be reported prior to the formal initialization of an EIf back-
end. The MDS 2005 delivery package also includes an event handler intended for use in
test systems which will format event messages and write them to a file. This is what is
used in all of the example adaptations.

In a real embedded system you should plan to write a separate data handling component
to replace this test adapter.
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7 Initialization

Polyserializable classes need to be initialized. This includes Constraint, Measurement,
Command, StateValue, StateFunction, and Elaborator. Also, every class that derives
from these base classes needs to be registered with the base class deserializer before any
of the serialization methods will work properly.

8 User Interface

Some primitive user interface support is provided in MDS release 6.1. The goal network
provides a utility method Network::save XML which will produce an XML-formatted
description of the goal network. This method can be called at any time on any goal
network (proposed, scheduled, or executing), and the output will be written to an external
file. The XML file can then be used for analysis or to generate graphical depictions of the
goal network. An example graphical translator is provided in the test helper
MDS::GoalNet.pm, which can be found in the verification/Helpers/MDS directory in the
source tree. An example test that uses it is described in Appendix A.

9 Data Management and Transport

The MDS planning and execution frameworks don’t make any strong assumptions about
how data will be stored persistently or transported into and out of the control system.
However, frameworks are provided to support storing and transporting data in the form
of files or data products (abstract container classes that can be stored as files) containing
serialized data objects such as Measurements, Commands, Goals, or State Functions.
The intent of the design is that value history containers would provide an interface that
enables a data controller to move data between the in-memory container (the value
history container itself) and more efficient and persistent deep storage by storing them in
data products on some external media. This external data product format is also ideal for
use as a transport artifact. The serialization process can include various forms of data
compression.

The value history to data management interface is not implemented in the MDS 6.1
release, and the current examples do not include any examples of data states. A more
detailed description of the design can be found in [11].
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10 Porting to Physical Hardware

The software development process described here encourages you to develop the control
system logic in a workstation environment and verify it against simulations before
attempting to test it in-situ in an embedded system with physical hardware. This process
helps to ensure that many complex software coordination details that would be difficult to
diagnose in a system context have already been verified before they are brought into the
context of physical devices.

The interfaces between an MDS control system and physical hardware are primarily
contained in the hardware adapters or underlying device drivers. As described earlier,
you may wish to develop separate hardware adapters or device drivers to support
simulated devices and physical devices. When you do this, be sure to use a common
interface, and to develop interface tests that ensure that the two implementations are
interchangeable. It is also highly recommended that you develop thorough physical and
simulated device tests that can verify that the physical device actually works according to
its requirements and models, and that the simulation works the same as the physical
device. These two areas represent a common source of errors in embedded control
systems that can be exceedingly difficult to diagnose in a full-up system context.
Developing and verifying these low-level device interface tests will also require you to
configure the build system to support cross-compilation to the target platform, and to
develop or port any supporting services needed to execute the test system on the
embedded target. Most embedded operating systems support remote development and
testing interfaces that would allow you to load and execute your software on the target
via a network interface. The MDS test harness in this version provides vestiges of
mechanisms that were used to support remote testing on VxWorks and realtime Linux
embedded targets.

11 Optimization Notes

MDS philosophy is to first get it right functionally and then optimize from there.
Recognizing, however, that there will be strict limits on memory and processing
resources in an embedded control system, the state analysis process provides
opportunities for the system engineers to use simplified models, and less precise
representations as needed to make the system practical.
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Implementers should try to review requirements in order to have implementation
considerations reflected in the state analysis process as early as possible so that when
changes must be made, time remains to consider all of the effects of the change on the
rest of the system.

Implementers are free to consolidate logic within required methods as long as the
specified outcomes are achieved. For example, the state analysis specifications for goal
merge and subset rules will usually appear in the form of a cross-product table of inputs
and expected outcomes rather than as an algorithm. The implementer is free to find an
efficient algorithm to achieve the given outcomes.

11.1 Memory Management

Dynamic memory allocation, while a great convenience in the C and C++ programming
languages, can lead to problems if not used carefully in programs that have realtime
requirements, or use multiple threads. Many default heap managers are not thread safe,
and at best are unlikely to provide fast and deterministic timing when performing
arbitrary allocations. Furthermore, over time, a shared heap can become fragmented,
leading to degrading performance over time, and eventually a system fault.

A common strategy to address these problems is to divide and conquer. That is, to
preallocate pools of memory for use by separate components or threads so that thread
interactions in a common heap are avoided. In most cases the pool management can be
further simplified by keeping the size small and the pools used to allocate objects of fixed
size.

In the MDS software architecture value histories are defined largely to take responsibility
for these sorts of memory management issues. State variables act as synchronization
points between components that may be executing on different threads, and the value
histories within the state variables are intended to provide the required synchronization
capabilities. The architecture also stipulates that state variables (via their value histories)
are the only place where state information is allowed to reside.

The examples provided in the sample adaptation (appendix A) demonstrate the use of
small memory pools of one or two latest values. A larger (deeper) value history might
use a circular buffer, or least recently used algorithm to provide deterministic allocation.
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11.2 Optimization Strategies and Considerations

value class representations: float vs double, runtime value vs serialized value, cost of
conversions needed for algorithmic use, depth of history, compressability and
telemetry requirements

algorithmic costs (control and estimation): generally independent of any MDS
framework

pay most attention to logic in components that run at highest rates, or have shortest
deadlines; secondly to components that process large amounts of data (deep histories,
frequent i/0, large value types).

Use memory pools for value histories. The frameworks provide a couple of example
of pooled-memory value history containers in the Mds::Fw::Sa::Vh package. These
containers are also async-safe through the use of atomic methods.

Passing reference-counted pointers versus copy-by-value in value history queries:
Value history query interfaces are used frequently in the MDS architecture, and this
makes them an important target for performance tuning. Performance benchmarks
have shown that for small value classes containing no more than a few words of data,
it may be faster to copy results by value than it is to return a smart pointer. For states
that have large value representations, or that have polymorphic values, the return by
pointer may be the only option, and this is why the default SV interface requires a
return by reference-counted pointer interface. For states with small values, however,
the adapted state variable may implement additional query methods for use by its
achievers that can perform return by value.

Be careful of thread synchronization overhead.

12 Testing

Frequent and early verification is essential to an efficient development process. The

development procedures described in earlier sections include steps for unit testing and

system testing the adaptation. This section describes in more detail how to write those

tests.
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12.1 Writing Tests

Although you are free to develop tests that work outside of the MDS test harness, you
should be aware that the MDS test harness was developed to support fully-automated
distributed multi-platform system tests. The test frameworks included in the distribution
may not support your particular system test configuration, but it is usually worth the
effort to automate tests so that they can be run more often and produce more objective
results. Section 9.2 provides more details about how the test harness and included test
frameworks work to help you design and implement a system test configuration.

12.1.1 Unit Tests and System Tests

A unit test is defined as a test that is intended to test a particular piece of the system in
isolation. Usually, these tests are simple programs that exercise the API for a class or
subsystem, though they can be more complicated than that. The test harness considers a
unit test to be any test where it simply has to execute (and optionally build) one program
and then account for the results. System tests can involve launching and coordinating the
execution of multiple programs, potentially on multiple hosts. For example, remote
deployments can be launched via ssh or rsh, or an embedded system such as VxWorks
embedded host launcher’.

The test harness also supports build tests whose purpose is to construct the libraries or
executable targets that unit tests or system tests will invoke. Note that these types of tests
are merely ways of describing the purposes of various kinds of tests. To the test harness,
they are all just procedures for it to run, and in fact it is common practice to have system
and unit tests also build some of the artifacts that they need to execute, and express
dependencies on tests that build other common frameworks. The delivered system also
includes “tests” that perform various tasks such as extracting API documentation using
Doxygen, creating archive products, and installing external libraries.

All tests that run under the MDS test harness are expressed as a script in the verification
subdirectory. Test scripts are usually organized in subdirectories under the verification
directory that parallel target package directories in the source tree. For example, tests
that apply to code in the Mds/Fw/Time package will show up in
verification/Mds/Fw/Time. These scripts can be written in perl or any shell language (sh,

1 The examples provided in MDSV6.1 don’t exercise any of these system test frameworks, and some of
them may be obsolete.
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ksh, bash, csh), though perl is the language in which the test harness and most of its
helper modules is written, so perl should be considered a preferred test script language.

Test scripts invoke one or more executable programs from the delivery directory, which
are the result of invoking build rules for source code in the source directory. With the
help of test helper modules, test scripts can use the build rules to build the targets they
need to execute according to the particular test configuration in which the test harness is
currently running.

12.2 MDS Test Harness and Test Frameworks

Tests are invoked by calling the test harness script (verification/TestMaster/runtests.sh)
with the test scripts you want to run passed as arguments on the command line. The test
harness will determine dependencies between the given set of test scripts using any
dependency files it finds in the same directories as the scripts. The dependencies may
cause other dependent tests to be added to the list of tests to run, or determine a particular
order in which they must be run. If there are no dependencies, and the local system
configuration allows, some tests may be executed concurrently (see TestMaster reference
manual for details). What the test harness actually does is create a makefile expressing
each test script as a make rule, and then runs make.

The test harness will create a top-level output directory for all of the results. The name of
this directory can be specified through the -1 and -b command line options. Then, for each
test script it runs it will create a subdirectory under that output directory in which it will
run the test and record any outputs. The test harness automatically redirects the standard
output and error streams from any executable program it runs into files in the output
directory (executable_name.stdout and executable_name.stderr).

The test harness also controls the environment in which the test scripts and executables
are run. The test harness filters out most environment variables defined in the user’s
environment and defines environment variables that describe the test configuration
specified in one or more -g command line options, or as assignments on the command
line. It is usually most convenient for you to create one or more top-level configuration
files that define your particular test configurations. These top-level configuration files
can include settings from other files, including system configuration settings in the
verification/TestMaster/Config directory.
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It may be convenient to use a top-level script or makefile in the MDS_ROOT directory to
invoke a set of tests that are used routinely during development and testing. Using a
makefile in this way is particularly convenient, because then you can invoke common
tests using a short simple alias name. The delivery system includes a makefile in the
MDS_ROOT directory that does this for the included system build and regression tests.
You can add your tests to this makefile, or create your own.

12.2.1 Test Code Organization

It is important to keep test code distinct from code that you intend to be part of the actual
delivered system. The convention used in the MDS source tree is to put most test code in
a separate Test subdirectory under the subdirectory of the target package that it tests.
Code in a Test subdirectory is defined in a Test sub-package under the target package.
This makes it easy to tell that everything in this subdirectory is test code. This way it is
also easier to create a TARGET_TEST_LIB that provides some common test
frameworks for a number of unit test executables in the test package.

12.2.2 CppUnit Unit Test Framework

CppUnit is a C++ unit testing framework designed initially as a port of the JUnit java unit
testing framework. More information about CppUnit can be found at the CppUnit
homepage at http://cppunit.sourceforge.net/cppunit-wiki. You don’t have to use

CppUnit to write tests, but you may find it useful. Primarily it provides a standard
internal interface to define a test, and a simple process for running each test and
accounting for the results. An example CppUnit unit test program is provided in
source/Mds/Ra/Example/Test/Standalone.cpp. This example provides comments to
describe what each part does. The example explains the basic interfaces to CppUnit

12.2.3 Test Scripts and Script Helpers

The simplest kind of test script is one that simply invokes one or more unit test
executables. Since this is a very common pattern, it is the most thoroughly supported by
the test harness. You still need to write a test script for this, but you can write one test
script that can build and run all of the unit tests defined in a given source directory. An
example script that can do this is provided in verification/Mds/Ra/Example/RunTest.pl.
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This script can be broken down into four key lines. First, the top line is a shell script
redirect that declares this to be a perl script:

#! /usr/bin/perl

After several lines of comments there are two lines that do most of the work. The first
tells perl where to find helper modules. The second one loads the MDS unit test helper.
This is a perl module containing a number of methods for invoking the build system, and
reporting results back to the test harness.

use 1lib split(/:/,SENV{TSTHELPERPATH});
use MDS: :UTest;

The last line is the actual specification of the test. This says to build and run a particular
unit test executable and report its results. It calls the MDS::Make::build function to build
the unit test executable target (identified by naming convention as
“Mds/Ra/Example/Test/Standalone.cpp”), and then execute the result as a unit test. This
test assumes that there is a make.cfg file in the source/Mds/Ra/Example/Test directory
that contains a UTESTSRCS directive that lists Standalone.cpp as one of its unit test
sources. The test also depends on you having already run the metamake test to find all of
these targets in the source tree.

MDS: :UTest: :runTestTarget (
MDS: :Make: :build(
“Mds/Ra/Example/Test/Standalone.app”));

Alternatively, you could just let the test helper find all the unit tests itself and run them
all:
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MDS: :UTest: :buildAndRunTests (
“Mds/Ra/Example/Test”);

Here, the test helper will try to build and execute a unit test executable for each source
file listed in the UTESTSRCS in the named subdirectory’s make.cfg file.

Another useful test helper is the MDS::Elf module, which can be used to analyze events
reported through the MDS Event Logging Facility (EIf) framework. Simple unit tests
will ordinarily route events to an output file called Elf.log. This test helper provides
methods to analyze the log file particularly for goal planning and execution events, and
then assert requirements such as time point firing order and timing. [examples...]

12.2.4 Testing MDS Adaptations

Testing different levels of integration tends to require different amounts of test support.
At the simplest level of individual classes and methods, very little test framework is
needed, while testing full control loops requires quite a bit of additional test support.
This section describes patterns for three categories of tests along with the MDS
frameworks and test-support features provided to help implement them.

12.2.4.1 Class API Unit Tests

True unit tests are supposed to test individual units of functionality at an atomic level
before those atoms are integrated into larger subsystems. This sort of test is
recommended for all of the data classes that are used in MDS adaptations including
Measurement, Command, StateValue, StateFunction, and Constraint, particularly for
methods in Constraint and StateValue used to merge and compare values. These
methods can be subtle and complex. Errors in these methods can be very difficult to
diagnose in a running control system, while they can be very easy to test at an API level.

Unit tests should exercise all of the constructor signatures of the target classes you intend
to use in the real system, along with any other methods you will depend on. In particular,
the merge methods and subset methods in Constraints are very important to test in all the
combinations. Since these tests require only the target classes, they can be developed
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concurrent with the development of the target classes, adding tests for each new method
as it is implemented.

12.2.4.2 Planning and Scheduling Tests

Planning and scheduling tests are used to exercise and verify goal elaboration functions,
the implementation of planning and scheduling methods, and as a prerequisite to
execution tests. Tests should be devised first to verify the schedulability of nominal
operational goals, and then to verify that unallowable goals or goal orderings are rejected.
Note that because may of the default implementations of planning methods in the
framework base classes for SV and Achiever return true, it is important to implement
additional tests to verify that scheduling fails for goals with unachievable physical or
temporal constraints, or where transition goals are missing. These tests can be
implemented as the planning and execution methods are implemented in the adapted
code.

Scheduling tests require that the system instantiate all of the planning and execution
framework components (Executive, XGoalChecker, ElaborationManager) as described in
section 4. Top-level Goals to be scheduled can be passed directly to to
ElaborationManager’s internal elaborate method, which provides a direct result (the
method that takes a single Goal as argument is the external method normally used in
operations which will enqueue the Goal and elaborate it later by calling the internal
method).

12.2.4.3 Execution Tests

Once the basic planning methods are implemented and tested you can proceed to test
execution by promoting the scheduled network. This can be done in your test by directly
promoting the network you created using the method described in the previous section
and then letting the system run by advancing the component scheduler’s clock.

Alternately, you can do this using operational interfaces which provide more indirect
feedback. The operational interface requires that the top-level Goal be enqueued in the
ElaborationManager’s input queue using the external elaborate method (the one that takes
just a Goal argument), and then running the system. In this case, results will be available
as event messages in the EIf event log output file. The system should produce numerous
messages as the goal is elaborated and scheduled, and then promoted.
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Once the goal network is promoted messages will be generated when a time point’s
execution window opens, and then when it fires. Section 6 describes how you can add
your own EIlf events to your code to report significant events which can also aid
verification. Section 10.2.3 describes some test helpers that can be used to analyze event
messages in the EIf output.

12.3 Debugging

Ideally, the process described here for developing code against a structured sequence of
test cases starting with low-level unit tests, and proceeding up through complex system
tests, should simplify the process of diagnosing problems at each step. Liberal use of
assertions in the code will also help you discover problems at the earliest possible
opportunity, and the earlier a problem is found, the easier it is to diagnose. Properly
written tests (particularly unit tests) will clearly indicate the particular failure, and an
understanding of what each test case is verifying should point you directly to the problem
(so, it is important to document the test cases sufficiently to make the requirements
clear).

When that fails, you have to dig more deeply to sort out what happened. The MDS test
harness provides some help by saving all of the test outputs in separate, organized
directory structures for each test. Also, when a test fails, the test harness writes a debug
script in the output directory (called debugMe) that can be used to re-launch the failed
test application under the debugger. Normally, all you have to do is run the script to
launch the debugger, and then, using debugger commands, run the application to repeat
the failure.

12.4 Simulation

The MDS version 6 release contains no simulation frameworks. Simulations are
important for developing control system software either before the hardware system is
finished, or when the actual embedded system is just too precious a resource to use for
testing software. The recommended approach is to develop separate hardware adapter
components or underlying device drivers to act as interfaces to simulated hardware.
Usually, hardware adapters are just thin interfaces to underlying hardware or device
drivers anyway, so having alternate versions to interface with real or virtual hardware
requires little extra effort. The MDS test harness can support alternate switchable system
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configurations like this through the use of test harness environment variables, and
conditional compilation.

13 Advanced Topics

13.1 Multi-Threading

Embedded control systems frequently rely on Multi-Threading to achieve concurrent
execution of multiple tasks. The MDS frameworks do not assume any particular
threading model or implementation (though the example threaded rate group scheduler
does use posix threads), and are intended to be usable under different execution
frameworks. The current system makes some design-level assumptions that the
execution framework will be based on a periodic execution model rather than a purely
event-driven one. The components could probably be adapted for use in an event-driven
system, but this is not provided in this release.

The framework design assumes that State Variables, and specifically their Value History
containers, serve as the synchronization points between threads of execution. The
example value history containers provided in the framework provide async-safe update
and query interfaces when used as described in their class documentation.

Furthermore, the planning and execution components provide inter-component interfaces
that are intended to be thread-safe when executed according to their documentation.
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Appendix A. Open-Loop Temperature Controller
Adaptation Example

The MDS V6.1 distribution provides an example adaptation that includes a set of
requirements developed through the state analysis process, and the corresponding
software that implements and verifies those requirements. The example demonstrates a
simple open-loop temperature control system that uses the temperature of a system
indirectly by controlling the states of two heater switches. This example was chosen to
elucidate the analysis and development process, and to demonstrate some of the
integrated fault protection mechanisms in the MDS architecture. It is not intended to be
particularly realistic as a physical system (modern devices can easily provide closed-loop
thermostatic control in hardware), or to provide a complete fault analysis and recovery of
the given system. And, the software is not as highly optimized as it might need to be in a
fully-integrated embedded system. Rather, the code is written to be instructive, withuot
being overly elaborate.

Getting Started

The source code for the MDS V6.1 frameworks, including the temperature controller
example are included on the distribution disk in the source.tar archive file. Instructions
describing how to extract, install, and build this code can be found in the build.html file
in the root directory of the CD. Follow the instructions provided there to build the
framework libraries and run regression tests before proceeding any further.

Once you’ve got the system installed, locate the example source code in the
source/Mds/Ra/SimpleThermostat directory.

Before proceeding to look at the source code, let’s first examine the requirements which
include a description of the system being controlled, and the control problem being
solved. The requirements are documented in two files provided on the distribution disk.
These specifications represent standard artifacts of the state analysis process. The main
requirements document can be found in doc/example/tcanalysis.pdf. It describes the
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physical system under control, all state models, estimation and control algorithms, value
and constraint representations, and required verification tests. Details of the required
planning and execution methods are specified in a spreadsheet which can be found at
doc/example/methods.xls on the distribution disk. You’ll need a Microsoft excel-
compatible spreadsheet program to view this file.

First, it is important to understand the physical system that this adaptation is trying to
control. The requirements document describes this in the first section after the
introduction. The system consists of a hardware device with some thermal mass
containing two heaters which can be controlled through software-commandable switches.
There is a temperature sensor to measure the temperature of the device. The device
resides in a cold environment so that at least one of the heaters needs to be on in order for
it to achieve a warm temperature. This might represent an instrument that needs to be
warmed up to a calibrated operating temperature.

The control system for this device requires state variables to represent the two switch
states, the temperature state, and the sensor health state. In this example, temperature
control is achieved using an open-loop control algorithm: goals on the temperature state
have to be elaborated into goals on the directly-controllable switch states. To achieve
closed-loop thermostatic control the system would have to be able to delegate control of
the switches to a controller associated with the temperature state. In this case, delegation
was not used’.

A state effects diagram is shown in illustration 1. This shows that the heater switch states
affect temperature, and the sensor health state affects the quality of temperature
measurements. The physical temperature state also affects the temperature
measurements.

The subsequent sections in the state analysis document describe the physical models of
the switches and sensor, and algorithms for representing and estimating the various
states. Review these descriptions so that you will be able to follow the logic when we
start to review the code later.

One of the last items in this document is a collaboration diagram that describes the
required control loop element components and their interactions. Note that the
architecture includes a simulation component to take the place of the physical hardware
at the level of a device driver (below the hardware adapters). Hardware adapters for the

2 Delegation interfaces are not implemented in MDS V6.1 release.
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two switches are combined into a single component. This is because the hardware
interface to the two switches is likely to be a single physical device attached to the
computer and accessed through a common device driver. In such situations, it is often
convenient and efficient to design hardware adapters that respect the physical
organization of the hardware interfaces. Note that for a similar reason, a single switch
state estimator is used to estimate both switch states. The switch state variables remain
separate because we want to be able to elaborate and schedule goals on each switch state
separately.

Finally, at the end of the state analysis is a list of test cases that will be used to verify the
basic functionality. This is intended to be only a representative set of functional tests.
There are many more sub-cases that could be tested, and should be verified in a real
adaptation. Also, in a real system you would want to extend the verification process
beyond the simulation stage, and verify the software in-situ in the embedded system.

The second part of the requirements specification is contained in the spreadsheet. As
described in the state analysis course, the spreadsheet is a convenient form for analyzing
the requirements for methods that govern the interactions between two state constraints,
or a state constraint and state value. We will refer back to these tables in subsequent
sections when we look at individual classes that implement these requirements.

A Tour of the Software Adaptation

Find the example software adaptation of this control system in your installed source tree
in the directory source/Mds/Ra/SimpleThermostat. Note that the directory is organized
into a main body of code, plus three sub-packages, each in separate subdirectories. The
main body of code in the SimpleThermostat directory contains the adapted components
and support classes. The Goals subdirectory (sub-package) contains the adapted goals,
elaborators, and tactics that apply to these states. It is convenient to put these in a
separate package because the goals and elaborations are likely to be adapted further as
testing, and particularly, operational testing begins, while the underlying control code
should remain stable.

A System subdirectory contains a primitive system architecture class that is responsible
for instantiating and initializing the control architecture in this simple example. In a
more complex system you might use hierarchical aggregation of subsystems following
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this pattern, rather than doing it all in a single class. In this case, the subsystem
architecture assumes that it will be instantiated in a main function provided by the system
test architecture.

A third subdirectory contains the classes that support the unit and system tests. These are
in a separate package intended to keep the test code distinct from the target code. Note
that these classes are all heavily commented to help explain various implementation
details.

Let’s look at the main body of code first.

First of all, you should be able to locate all of the required control loop components as
separate classes:

State Variables:
TemperatureSV Temperature State Variable
HeaterSwitchSV Common class for heater switch state variables
SensorHealthSV Temperature sensor health State Variable
Hardware Adapters
HeaterSwitchHWA Switch hardware adapter
TemperatureSensorHwa Sensor hardware adapter
Achievers
HeaterSwitchController Switch state controller
TemperatureEstimator Temperature state estimator
SensorHealthEstimator Temperature sensor health esimator
Reporting/Telemetry
Event Telemetry event message
EventGen Interface for reporting telemetry events
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Simulates hardware devices and physics

The remaining classes are support classes that represent the data types and containers

used by these components:

TemperatureMsmt
TemperatureStateVal
TemperatureStateFunction
TemperatureConstraint
HeaterCmd
HeaterSwitchStateVal
HeaterSwitchStateFunction
HeaterSwitchConstraint
SensorHealthStateVal
SensorHealthStateFunction

IdealTempModel

Temp sensor measurement class
State value for temperature state
State function for temperature state
Temperature state constraint
Heater switch command

State value for switch state

State function for switch state
State constraint for heater switch
State value for sensor health

State function for sensor health

Temperature model functor

Note that the physical model for temperature as a function of known states and time is

explicitly represented in a separate functor class (IdealTempModel) because it is used in

more than one place, and to make it explicitly distinct when it is used in the switch state

estimator.

The Goals directory contains classes to support two macro goals for this subsystem.
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KnowAll Elaborates into knowledge goals on all four state variables over a given duration.
This goal is used to establish background knowledge required to plan and schedule
control goals on these states.

StayWarm Implements the required goal to maintain a warm temperature state over a given
duration (between two time points). The goal has two tactics, as required, to use
one or the other heater to achieve the required temperature. Note that the
associated Tactic classes are implemented in the same files as the Elaborator.

Examining the Adapted Classes in More Detail

Let’s start by working from the subsystem level down into the more detailed
implementation classes. Along the way we’ll take a look back up at how we instantiate
the subsystem in a test harness environment in order to verify the functionality. The
temperature controller subsystem is constructed in the ThermostatArch class in the
directory source/Mds/Ra/SimpleThermostat/System. The declaration in
ThermostatArch.h declares public member instances of each of the state variables. The
associated estimators, controllers, and hardware adapters are declared as private
members. In this example the simulation component is also declared here. In a more
complete example, references to the simulation would probably be compiled
conditionally (inside an #ifdef directive), and there might be alternative physical
deployment device drivers instead. Because the simulation is included, this class also
provides a few test ports in the form of public methods that can be used to induce various
failure modes in the simulation. Use of these methods will be explained later when we
look at the test code.

All of the logic in this class is in the constructor. This is the method in which the
architecture is actually instantiated and the inter-component connections are established.
These connections are all specified as requirements in a collaboration diagram at the end
of the state analysis report. Most connections are represented as member pointer or
reference attributes in each component class, and have to be explicitly initialized in the
separate component constructor calls. For example, the heater switch controller needs to
have a connection to the switch hardware adapter, and to each switch state variable.
These connections are initialized in the initializer list in the implementation of the
architecture constructor.
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The connections from state variables to their associated achievers are supported in the
framework base class for state variables (SV). The calls to SV::linkAchiever on each of
the state variable instances in the architecture constructor body initializes these
connections.

The second thing the architecture constructor does is to schedule each runnable
component in a rate group. In this example all of the components are scheduled to run in
one common rate group which is passed in as a constructor argument (this design
presumes that a higher-level subsystem will create the rate groups and schedule them
with a scheduler). The components are scheduled to run in the rate group in the order in
which they are passed as arguments into the group.schedule() call.

Finally, the last thing the architecture constructor does is to define which states affect
which others by calling the SV::affects method on affected state variables. For effects
that cross between subsystems you may need to make these calls at a higher subsystem
level. The graph of state effects that is established using these calls is important to the
goal scheduling algorithms used in the frameworks.

Next, let’s look at some of the classes where these components are implemented.

State Variables

The requirements specify that some of the planning and execution methods are to be
implemented in the state variables, and others in the associated achievers. In most cases,
the state variable implements the projection methods, and uses the default
implementation of other methods to call through to implementations on the achievers. In
other cases such as the temperature state variable, many of the methods are overridden
and implemented in the state variable itself because there's only one achiever and the
methods don't have any particular dependencies on the estimator class.

Note that the state variable’s value histories are not constructed or initialized internally.
This is a design choice. In our example, all history initialization is performed by the
associated estimator when it is initialized at runtime through the scheduler start method.
For states that can be initialized statically it makes sense to do so at the earliest
opportunity. Some states may require access to underlying data management frameworks
in order to retrieve persistently stored checkpoint data. In that case it would be better to
wait until a point in the initialization process when all of these lower-level services have
been started (whether or not that has happened by the time you construct your
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architecture is a design choice). Still other states may require an active estimation
process to establish valid estimates. In such cases, the initial state should be unknown.

In the example adaptation we initialize most states to unknown. In the first version of the
analysis we realized that it would be impossible to schedule any of our control goals that
require knowledge of switch and sensor health states if we didn't have current estimates
of those states. To solve this we schedule a background activity that starts in the setup
part of each test. The background activity schedules knowledge goals on each state
variable will be running when we try to schedule and execute the target control activities.

Estimators and Controllers

Our example provides only one instance of a controller implemented in
HeaterSwitchController. The controller runs periodically (at the same rate as the other
components) and issues commands to try to bring the switch states into compliance with
its given state constraints (via the ordinary constraint in a given XGoal).

The HeaterSwitchEstimator provides an example of a reasonably complex health
estimator that has to try to infer the health of the switches from indirect evidence in the
form of most recent commands, and their effects in the temperature state history.

All of the estimators and controllers are implemented so that when unconstrained they
will return immediately from their periodic run calls and effectively do no work. A
minimal knowledge constraint is required for the estimator to begin estimating and
updating its state variable, and an achievable control goal is required before the controller
will do anything.

Hardware Adapters

The hardware adapters in our example are defined as passive interfaces to underlying
hardware (probably via a device driver that isn’t explained in the model). The interface
is passive in the sense that all interactions with hardware will occur on the public
command and measurement calls. The only thing the hardware adapter has to do here is
to remember a history of recent commands and measurements needed to support the
required estimation algorithms. The requirements specify that we only need to remember
one most recent measurement (in fact, even that could probably be optimized away), and
the one most recent command for each switch.
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Since the hardware adapter’s value histories are intended to also serve as interfaces to
telemetry, they should not be entirely optimized away unless it is certain that the given
values will never be needed for remote diagnosis, or can be obtained by other means.
Note that this telemetry interface is not implemented in the value history interface in
MDS V6.1.

Data Classes: Measurements, Commands, and State Values

Data value classes represent the kinds of information passed between components in our
example control loop. TemperatureMsmt represents the one measurement provided by
the hardware adapter. This class contains a one-byte raw data value and a boolean flag to
reflect the quality of the measurement. The raw data value is specified precisely in the
requirements. The m_isValidMsmt flag is a placeholder value that, given the specific
requirements, could be optimized away. The MDS control architecture specifies that
measurement interfaces should always provide an indication of the validity or quality of
the measurement. This is to ensure that the user doesn’t have to guess or infer whether or
not the hardware is even turned on. In this case the requirements stipulate that the
measurement itself will provide an explicit indication when the sample is invalid, so the
extra flag is superfluous. In most cases, though, the raw value sampled from hardware
isn’t likely to provide an explicit indication of validity, and the extra flag would be
needed in those cases.

The Measurement base class provides a time tag for every measurement instance.

Most of the methods implemented in the TemperatureMsmt class are simple and
straightforward. The only methods that might require some explaining are the
serialization methods, writeObject, and the deserializing constructor (the one that takes
an ObjectInputStream argument). These methods implement a common virtual interface
on all data classes that are intended to support portable storage and transport of these
values in telemetry. Although the telemetry interface is not implemented in this release,
the design relies on using symmetrical input and output interfaces in each data class to
provide conversions to and from a bytestream representation that could be stored in a file,
or transported as a data stream over some communications medium. The Mds::Fw::Ser
data stream frameworks provide support methods for portably reading and writing
standard primitive data types. This method eliminates the need for external tables or
mappings between flight and ground implementations of data structures.
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HeaterSwitchCmd represents the one kind of command used in this control system.
Since we use one hardware adapter and one command type to command the positions of
two switches, we chose to include a switch identifier attribute in the command value.
This way we can maintain a single command history in the hardware adapter and still
know which command went to which switch.

State values are implemented in HeaterSwitchStateVal, SensorHealthStateVal, and
TemperatureStateVal. These classes represent the pure state values of their separate
physical states at a point in time. The implementations of these classes is similar to those
of the measurement and command classes except that state values also need to provide an
indication of uncertainty. Since they represent the result of an estimation process these
values are never absolutely certain. So, the architecture requires that values include an
explicit indication of uncertainty. For scalar values such as the temperature state the
uncertainty is represented in two distinct ways. In our temperature state value, the class
stores a mean value, but provides an interface that expresses the value as a uniform
distribution between a max and min value. In the example, the deviation is defined as a
constant value that is a function of the underlying device. The value class also provides
an isUnknown method that return true if the uncertainty is greater than the ordinary
measurement uncertainty. For example, this provides a default state value when the
estimator has not yet estimated the state.

This particular adaptation chooses to maintain a piecewise-continuous state value history
in each state by using a framework-provided ConstantStateFunction template class as the
state variable’s value history type.

State Constraints

State constraints are like other value classes in that they have to implement serialization
methods. In addition, they need to implement two key methods that are used during the
planning and scheduling process to determine if goals are mergeable and achievable.
Requirements for the outcomes of the mergeFrom and isSubsetOf methods are specified
in the spreadsheet that accompanies the requirements document. The mergeFrom method
modifies the object constraint to turn it into a constraint representing the intersection of
its original value and the value of the argument constraint. That is, the resulting state
constraint describes a set of target state values that is the intersection of the set of states
permitted by the original constraint and the argument constraint.
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Requirements for these methods are usually given in the form of a table where the rows
and columns describe the original object constraints’s values, and those of the argument
constraint. The cell values describe the result of the combination of the row and column
values.

The MDS architecture provides unique definitions and rules for control constraints and
knowledge constraints. This is often reflected in the requirements specifications along
with a note that the adapter should implement a logical combination of the knowledge
and control constraints somehow. Usually, these separate kinds of constraint are
implemented in a common constraint class. In our example, there is only one kind of
knowledge constraint: that the state be known (when the state is completely
unconstrained, the estimators stop estimating the state). Thus, the KNOWN state in our
state constraints represents a knowledge constraint in the absence of any control
constraint.

Goals and Elaborations

The requirements for this adaptation specify only one goal with two tactics that need to
be elaborated (others are specified in the requirements, but not implemented since the
ones shown are sufficient to explain how it works). The required goal is implemented in
the class StayWarm in the Goals subdirectory of the adaptation. This goal uses three
other goals in its elaborations: GetWarm, Sensor, and Heater. The GetWarm goal defines
a temperature transition goal. Both this and StayWarm use the Sensor goal to require the
sensor to remain healthy (needed to estimate temperature state), and the Heater goal to
elaborate heater switch states. The first tactics in GetWarm and StayWarm each
elaborate goals on the switch states to have one switch open and the other switch closed.
Their alternate tactics elaborate goals to have the switches in the opposite positons. Each
of the Heater switch goals elaborates a switch transition goal ahead of itself.

The adaptation includes a second goal, KnowAll, which implements a background
knowledge goal on all states. This is needed because the default states of the estimators is
an idle state, and all states are initialized to unknown when the system starts’. In order to
be able to schedule the StayWarm control goals the system has to be in a configuration
where the health states of the sensor and switches are known. That implies that the

3 A more complete example might include a persistence mechanism so that once a failure state has been
determined, the state variable remembers this persistently. The framework supporting this mechanism
was not implemented in MDS V6.1, though the design is part of the architecture.
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system has to be already executing a set of control goals, or at least a set of knowledge
goals when the new control goals are scheduled. The KnowAll macro goal provides sucb
a set of background knowledge goals.

The tactic functors are implemented inside the same files as their elaborators for
convenience. These are effectively private implementation classes.

Note that the GetWarm and StayWarm elaborators implement different failure responses
in their getReElaboratableGoals method than do the Heater and Sensor elaborators. The
Heater and Sensor goals have no alternate tactics, and so when they fail they want to pass
the failure up to their parent goal, GetWarm or StayWarm. Since the temperature goals
can recover from certain failure cases, it does have alternate tactics, and it responds to
failures by adding its parent goal to the set of goals to be re-elaborated.

Unit Tests

The recommended development process suggests that you implement unit tests for all
measurement, command, state value, and especially state constraint class you implement
prior to implementing any of the planning and execution methods, or trying to validate
any system behaviors. The unit tests will verify that simple mechanisms like constructors
and accessors are working as expected in a straightforward way where mistakes are easy
to find and fix. Unit tests also make it much easier to verify all of the combinations of
state constraints that might be expressed in the requirements, but never (or worse, rarely)
exercised in an actual system test. Mistakes in the constraint merging or subset logic can
be very difficult to diagnose in a system test when complex interactions between states
are possible.

The example adaptation includes unit tests for each of the adapted data classes. All of
these test classes are defined as unit tests in the Test subdirectory of our adaptation
directory. Let’s just look at one of these in detail. TemperatureConstraint_test.cpp uses
a unit test helper class (which doesn’t really do anything here). The test helper class just
provides a context for several test methods that will exercise various requirements on the
cosntraint. The cpp file implements each of these test methods along with a main method
that configures the CppUnit test harness to call each of the test methods.

NOTE: Greg hasn’t finished the merge and subset tests here yet.
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TemperatureConstraint_test.cpp is listed in the makc.cfg file in its subdirectory in the list
of UTESTSRCS, that is, as a separately executable unit test. In order to run this test by
itself we need a helper script that will build and run it under the test harness. This script
is implemented in
verification/Mds/Ra/SimpleThermostat/Constraint/TemperatureConstraint_test.pl. This
perl script is very simple. The main body of the test script is shown here.
$testname='TemperatureConstraint test’;
MDS::UTest::runTestTargets (MDS: :Make: :build:: (

“Mds/Ra/SimpleThermostat/Test/${testname}.app”
)i

The argument to the MDS::Make::build method describes a make target in the system
makefile that the metamake program generated when you ran the metamake test (this
makefile expresses all of the file dependencies between all input and output files in the
system). By convention, this makefile uses the “.app” suffix to describe executable
targets. The build method will invoke make under the test harness (using the system
configuration defined by the test harness arguments) to try to build the unit test
executable from the source file. Once the executable is compiled and linked, the
MDS::Utest::runTestTargets method will try to run it. Since this is a unit test, this
method only looks at the exit status after the program runs to determine a success status
to report.

We can now try running this test from the MDS_ROOT directory:

> cd verification/TestMaster; ./runtests.sh -g
gcc343x86ace54l.cfg -z -b $MDS ROOT/results

MDS BUILD OPTION=debug -i out
Ra/SimpleThermostat/Constraint/TemperatureConstrain
t test

The Makefile in the root directory also provides a shortcut for this command via the
make target “tempconst_utest”. So, can also run the test by just typing “make
tempconst_utes” in the root directory (once you’ve configured the default test config in
the Makefile).
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When you run this test it will print a lot of NOTE:s to the standard output stream that
describe all of the environment variables visible to the test when it is run. The most
important information should be at the end of the output (once it finishes):

TESTEXITCODE AOK 0
TESTRUNSTATUS passed 0

TESTSUMMARY

Mds_Ra SimpleThermostat Constraint TemperatureConstra

int test passed 0

All Tests Passed
If the test hadn’t passed, the output would indicate that a failure occurred, and it would
list the names of output files that would provide more detailed results. The default test
configuration described in the root Makefile directs all test outputs into a “results”
subdirectory under MDS_ROOT. Each test’s output will go into a separate subdirectory
under that named using the make of the root Makefile target with “tmp.” as a prefix. This
subdirectory will contain a number of output files generated by the test harness, but the
diagnostic details that the test itself generated will be in a subdirectory whose name is
constructed from the test target name and “.dir” as a suffix. This directory will contain a
stdout and stderr file that will include and diagnostics from the compiler and linker, and
any results generated from the test helper perl script. The output of the executable unit
test program will be in another subdirectory of this directory (all of this layering can be
annoying in cases like this, but it makes it possible to run large suites of regression tests
without relying on any shared resources except for raw disk space). Note that the -z
argument in the default test harness configuration tells the test harness to delete any prior
instance of these results when you rerun the same test. If you want to preserve a history
of results you can remove the -z and -i options from the runtests command and instead of
using the statically named tmp directory it will create a unique timestamped subdirectory
for each test run.

Simulation

In order to test and verify the control system in a workstation environment we need to be
able to simulate the physical system under control. To provide the most accurate
simulation, and to simplify the job of porting the result to the target enbedded system, it
is important that the control system interact with the simulation only through software
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interfaces that will be common to the real physical system. In this case we do that by
defining the public interfaces of our hardware adapters as the primary interfaces we want
to preserve. Calls to the simulation are implemented in the hardware adapter. Note that
we could also have chosen a lower-level device driver interface as the cross-platform
standard here. Had we done that, we could have made the entire hardware adapter
portable. However, since these hardware adapters are only interface wrappers
themselves, this choice is expected to have little effect on the effort needed to port this to
the physical target.

The simulation itself is encapsulated in a Simulation class that keeps track of the
simulation states for the switches, sensor, and temperature using the models defined in
the requirements. Note that the model for temperature as a function of time is
encapsulated in its own separate class (IdealTempModel) so that the same model can be
used in the simulation and in the switch health estimator.

System Tests

The requirements for the system tests are specified in the example state analysis
document. The tests are implemented as follows:
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test Make target description

1 thm_stestl Schedule and execute a knowledge activity over a background knowledge
activity. Verify that all states are estimated.

2 Not implemented

3 Not implemented

4 thm_stest4 Schedule and execute an activity to maintain the WARM temperature state.

5 thm_stest5 Same as test 4, but simulate switch 1 failing stuck open as an initial
condition (implementation note: initialize state estimate to this condition).
Verify that tactic 1 schedules and runs.

6 thm_stest6 Same as test 4, but simulate switch 1 failing stuck closed as an initial
condition (implementation note: initialize state estimate to this condition)
Verify that tactic 1 schedules and runs.

7 thm_stest7 Same as test 4, but simulate switch 1 failing open during execution and
verify goal failure response: re-elaborate tactic 2

8 thm_stest8 Same as test 4, but simulate switch 2 failing closed during execution and
verify goal failure response: re-elaborate tactic 2

9 thm_stest9 Same as test 4, but simulate a sensor failure during execution and verify
goal failure response (safing)

10 sgraph Example graphic translation of goal network outputs (see
verification/Helpers/MDS/GoalNet.pm for a description of the
dependencies)

Table 7.: System Test Descriptions

Let's look at the results of the last test (9) as an example of how we verify the test success
criteria.

The thm_stest9 target in the root makefile executes under the test harness a test script
which can be found in verification/Mds/Ra/SimpleThermostat/SystemTests/STest9.pl.
This test script has two parts. The first part compiles and executes a unit test executable
in the source directory source/Mds/Ra/SimpleThermostat/Tests. The second part of this
test evaluates events reported in the event log file to verify some details of the execution
that are difficult to evaluate during the execution. Specifically, it verifies that the goal
network that was scheduled and executed ordered the time points in the correct order.

When you run the test from the MDS_ROOT directory using the root Makefile (make
thm_stest9) some summary results will be output directly to stdout; all of the details are
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saved to test-specific output files. By default, the test results go into test-specific
subdirectories of a results directory (named “results”) in the MDS_ROOT directory. The
output from this test will be in the “results/tmp.thm_stest9” subdirectory. That directory
contains several files used by the test harness including a file with the suffix “rslt”
containing a more detailed summary of the results for this specific test, and a
subdirectory (with suffix “dir””) containing the detailed results. In the detailed results
directory you'll find a stdout file containing any compiler results, and the test harness
output from launching the test executable. The actual output from the executable will be
in a subdirectory given the same name as the executable.

Let's first look at the results reported in
results/tmp.thm_stest9/Mds_Ra_SimpleThermostat_SystemTest_STest9.dir/stdout. The
first line 1n this file reports which test script is being executed:

COMVAND:
[...]/verification/Mls/Ra/Si npl eTher nost at/ Syst enlest / STest
9. pl

Following that is a lot of compiler commands and resulting compiler output from
compiling the test application, and then a couple of notes reporting that it is executing the
Stest9 application. The last note reports that the application finished and returned a zero
exit status:

NOTE: Mis_Ra_Si npl eTher nost at _Systenifest _STest9 [...]
returned zero (success) exit status

This indicates that the application ran and no CppUnit assertions were violated, so all of
the internal tests passed. This particular test script uses a test helper to evaluate the order
of goal scheduling and execution events that occur during the test. The test expects to
schedule a particular goal network with time points scheduled in a particular order. When
the goal network executes the test injects a sensor fault at a particular time which should
cause the parent goal of this network to fail. So the test asserts that the last time point of
planned network does not, in fact, fire, and that safing was invoked.
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More detailed results can be found in the Stest9 subdirectory. Here you will find two key
output files. Stest9.stdouterr contains all of the stdout and stderr output streams that the
Stest9 application produced when it ran. Elf.log contains all of the formatted event log
messages. Virtually everything in the stdouterr file is debug output, and there's quite a
lot of it when the system is built in the default debug configuration. This includes
initialization and finalization messages, details of the scheduling and execution process,
and details of input parameters and output results from key methods in the adaptation.

An additional test, sgraph, is provided to demonstrate a primitive graphical
transformation that can be performed on the goal network that these tests create. The
actual test script for this test can be found at
verification/Mds/Ra/SimpleThermostat/SystemTests/GraphicsTests.pl. This test uses a
special test helper perl module that uses the GraphViz graphics library to produce
graphical depictions. This requires some extra libraries be installed as described in the
helper module (found at verification/Helpers/MDS/GoalNet.pm). Illustration 4 shows the
goal elaboration graph produced by Stest4.pl (the full resolution version of this graphic
can be found on the distribution disk at docs/example/goalnetElaboration.png).

lllustration 4: Example Goalnet Elaboration from test 4
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Appendix B. Step-By-Step Process Used In the
Adaptations

This section provides a step-by-step description of the process used to develop the
example control system. This provides more detail that is given in the guideline, and
may be helpful to developers working though the process for the first time. Some of the
steps described here may not apply to your process. Some of the steps described here are
the result of a compressed development schedule in which requirements were being
developed in parallel with the coding. This is not the recommended process for obvious
reasons.

1) Create a new subdirectory SimpleThermostat in $MDS_ROOT/source/Mds/Ra.
2) Create a make.cfg file for the new package.
3) Write measurement class

e Copy $MDS_ROOT/source/Mds/Ra/Example/Measurement.h and
$MDS_ROOT/source/Mds/Ra/Example/Measurement.cpp to
SimpleThermostat/TemperatureMsmt.h and
SimpleThermostat/TemperatureMsmt.cpp, respectively.

® Add new ID to $SMDS_ROOT/source/Mds/Fw/Sid/Database.sid for the newly
created measurement class TemperatureMsmt.

4) Flesh out TemperatureMsmt class
® Define payload data as an unsigned char, per state analysis requirements.
® Need to add an accessor for this member.
® Need to augment constructors to initialize this new member.

5) Re-run metamake and build the core system. Verified code compiles with new
adaptation code in place.

6) Write unit tests for the measurement class.

® Add new subdirectory Test/ under SimpleThermostat
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Add common test code, and unit test cases to test all methods in measurement
class.

Add new scripts to run these unit tests under
$MDS_ROOT/verification/Mds/Ra/SimpleThermostat/Measurement/\

Add new make targets for the unit tests in top-level makefile under $SMDS_ROOT

7) Verify all unit tests pass.

8) Write command class

Copy $MDS_ROOT/source/Mds/Ra/Example/Command.h and
$MDS_ROOT/source/Mds/Ra/Example/Command.cpp to
SimpleThermostat/HeaterCmd.h and SimpleThermostat/HeaterCmd.cpp,
respectively.

Add new ID to $MDS_ROOT/source/Mds/Fw/Sid/Database.sid for the newly
created measurement class HeaterCmd.

Define desired switch state parameter as an unsigned char, per State Analysis
requirements.

Need to add an accessor for this member.
Need to augment constructors to initialize this new member.

Re-run metamake and build the core system. Verified code compiles with new
adaptation code in place.

9) Write unit tests for the command class.

Add new subdirectory Test/ under SimpleThermostat/
Add common test code, and unit test cases to test all methods in command class.

Add new scripts to run these unit tests under
$MDS_ROOT/verification/Mds/Ra/SimpleThermostat/Command/

Add new make targets for the unit tests in top-level makefile under $SMDS_ROOT

10) Verify all unit tests pass.

11) Write state value class
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Copy $MDS_ROOT/source/Mds/Ra/Example/StateVal.h and
$MDS_ROOT/source/Mds/Ra/Example/StateVal.cpp to
SimpleThermostat/HeaterSwitchStateVal.h and
SimpleThermostat/HeaterSwitchStateVal.cpp, respectively.

Add new ID to $MDS_ROOT/source/Mds/Fw/Sid/Database.sid for the newly
created measurement class HeaterSwitchStateVal.

Define enumeration for state values (as defined during state analysis).

Create one enumeration to handle operational mode, knowledge state, and health
state.

Need to add an accessor for this member.
Need to augment constructors to initialize this new member.

Re-run metamake and build the core system. Verified code compiles with new
adaptation code in place.

12) Write unit tests for the state value class.

Add new subdirectory Test/ under SimpleThermostat/
Add common test code, and unit test cases to test all methods in state value class.

Add new scripts to run these unit tests under
$MDS_ROOT/verification/Mds/Ra/SimpleThermostat/StateValue/

Add new make targets for the unit tests in top-level makefile under SMDS_ROOT

13) Verify all unit tests pass.

14) Write state function class for switch state.

For switch state function, simply use the ConstantStateFunction.

Add new ID to $MDS_ROOT/source/Mds/Fw/Sid/Database.sid for the newly
created measurement class HeaterSwitchStateVal.

Define traits struct and state function in new header HeaterSwitchStateFunction.h

15) In the interest of time, defer writing unit tests for the state function and value history

at the present time as we're just using a pre-canned class.

16) Write the state variable class for the heater switch.
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® Create new SV class, HeaterSwitchSV.

® Implement ctor, dtor, and both getState() methods.

® Add skeletons for isStillSatisfiable() methods, without constraints.

® Comment out getUnconstrainedConstraint() until constraint class is written.
17) Write skeleton versions of the following classes:

® Switch constraint

® Switch estimator

® Switch controller
18) Write hardware adapter for heater switch.

19) Write separate simulation component to perform temperature simulation as well as
provide interfaces for fault injection.

20) Write unit tests for temperature simulation model as well as sensor measurement
interface. Verify that model performs as specified in the requirements.

21) Write hardware adapter for temperature sensor.

22) At this point, all components for the heater switch control diamond are coded. It
makes sense to start thinking about hooking these up and getting them to run. However,
in order to do this, we require at least compilable skeletons for the other components.
The next step is write skeletons for the remaining classes and provide default
implementations for most methods (for instance, MPE methods just return true):

® Sensor Health SV

® Sensor Health Estimator

® Sensor Health Constraint

® Sensor Health State Value

® Sensor Health State Function
® Temperature SV

® Temperature Estimator

® Temperature Constraint
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® Temperature State Value
® Temperature State Function

23) Since all of the state value classes have a lot of similarities, write unit tests for all
state value classes, using the test for the heater switch state value as a template.

24) In order to run the simplest test, we need to be able to schedule a unconstrained
network.This requries that the state constraint classes be well-defined but not fully
implemented. Now, define the constraint classes and implement all of the methods on
them *except* for the MPE methods (just make them return true for now).

® As with the state values, the state constraint classes are all similar in structure. It
makes sense to write some unit tests for the state constraints now, deferring tests
for merge and subset methods until they are implemented later.

® For this adaptation, the specifications for the MPE methods came later than
expected. Ideally, one would like to write the entire constraint class, including
subset and merge methods, and spend some time to write unit tests to verify
proper behavior of these methods early on and not have to worry about them later.

25) At this point, all classes have at least skeletons. Add a new subdirectory, System/,
and define a new class ThermostatArch to aggregate all achitectural elements and hook
them up properly.

26) Create two classes, SimpleThermostatUTestCommon (for unit tests) and
SimpleThermostatSTestCommon (for system tests) using the existing
SimpleThermostatTestCommon as a base. This allows for different common test code
for unit and system tests.

27) Instantiate and properly initialize architecture aggregate object in common system
test code.

28) Create a basic system test which simply instantiates the system, schedules and
executes the unconstrained network for several minutes. Verify that this test compiles
and runs with no major anomalies (seg faults, etc).

29) The big tasks left at this point are: coding the achiever algorithms and the MPE
methods. Since we don't yet have the specifications for the MPE methods, write the
achiever algorithms.

® HeaterSwitchController::control (switch controller algorithm)
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SensorHealthEstimator::estimate (sensor health estimation algorithm)
TemperatureEstimator::estimate (temperature estimation algorithm)
HeaterSwitchEstimator::estimate (switch estimation algorithm)

The switch estimation algorithm is, by far, some of the most compelx logic in this
example. The algorithm laid out by Mitch was a good start but needed a bit more
by way of details. Ken is going to spend some time working out the details of the
estimation algorithm, so this one will need to be revisited later on.

30) Start coding MPE methods.

Start with MPE methods for the sensor health, as they are the simplest. Per the
Adapters Guide, code the schedule-time MPE methods first, followed by the
execution-time methods. That looks like:

SensorHealthSV::projectSerially
SensorHealthConstraint::isSubsetOf
SensorHealthSV::isAchievable
SensorHealthSV::isTransitionAchievable
SensorHealthSV::isReadyToTransition
SensorHealthSV::isStillSatisfiable

Here we identified a good optimization: the logic in isStillSatisfiable for both
Goals and Xgoals should be the same. Therefore, it makes sense to have a private
isStillSatisfiable method on each SV which performs the satisfiability checks, and
have the public isStillSatisfiable methods call the private method. It might also be
nice to put this in the base class and only have the private isStillSatisfiable be
adapted.

31) As MPE methods are being developed, it is essential to have system tests ready to run

which will be used to assess behavior of the system. Dave is working on the tests, while

I continue to fight with these MPE methods. Is there possibly a better way to represent

these requirements?

32) Refine switch estimation algorithm with Ken. Several iterations are needed before a

final version is settled on.
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33) Finish MPE methods for sensor health. Tests are running as of this point. Now move
on to switch MPE methods, since they are similar (no affecting state) but slightly more
complicated than the sensor health MPE methods.

34) Finish switch MPE methods, and Dave finishes temperature MPE methods (but only
a limited set of functionality corresponding to the cases that will be exercised by our
tests.)

34) All code written, including some late breaking updates to the switch estimation
algorithm.

35) Test test test!
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Glossary
Term Definition Traditionally...
Achiever An estimator or a controller. See estimator and
controller.
Allocation The part of a delegation goal that specifies the

bounds of allowable control.

Basis state variable

A state variable estimated in a deployment.

Global variable.

Bonus goals

Low priority goal added to the plan if projected

“Bonus” sequence

resources allow activity.
Command Time-tagged outgoing directive to change | Command
the condition of one or more physical states.
Command model Describes instantaneous effects of a command on Model used by fault

one or more physical states.

protection, sequencing, or
analysis tools.

Control goal A goal on the value of an estimated state of a state | Flight rule.
variable.

Control system Has cognizance over the system under control. State | Sequencing,
variables, estimators, controllers, planner, execution |Estimation
engine, goal networks. & Control,

Fault Protection, etc

Controller

Controls the physical state represented by one or
more state variables. Achieves
control goals.

Guidance,
navigation, and
control logic.

Data command

Outgoing directive to change the condition or
transport of one or more value histories.

Downlink priorities.

Data controller

Controls one or more data state variables.

Telemetry manager.

Data state variable

Represents the state of one or more value
histories.

Data catalogs.

Deployment

A partition of the control system into a
physically separate location.

Flight system,
testbed, simulation.
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Term

Definition

Traditionally...

Delegate achiever

An achiever that sends goals to a delegating
achiever.

On-board controller.

Delegating achiever

The achiever receiving goals from a delegate
achiever.

On-board guidance
and control
commander.

Delegation

Achiever sends goals directly to other achiever
during execution.

Use of on-board
commander.

Derived state

Represents a relationship between multiple

Power margin.

variable state variables.
Distillation Estimator conversion of a measurement into an On-board
idealized distilled measurement. measurement
filtering.
Elaboration Specifies a block of supporting goals on state Sequence

variables that reflect a state effects model and can be
assembled into plans.

expansion or

macro.

Estimated state

The control system's knowledge about a
physical state.

Onboard variable
updated by fault
diagnosis;
guidance,
navigation, and
control; mobility;
event-based
sequence engine,
etc ...

Estimator

Updates estimated state for one or more state
variables. Achieves knowledge goals.

Fault diagnosis.
Calibration ground
software.

Executable goal
(Xgoal)

Element of a scheduled plan to be executed.
Contains merged ordinary and delegation goals over
an interval and the projection for that interval.

Closed-loop
command.

Goal

A state constraint. A condition for a state
variable that persists over an interval of time.
Represents operator intent. Expressed as an
assertion.

Closed-loop
command. Flight
rule.
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Term

Definition

Traditionally...

Goal failure

State constraint violation caught during
execution.

On-board pointing
constraint violation,
etc...

Goal network

Collection of interconnected goals and time
points resulting from elaborations

Parallel sequences.

Hardware adapter

Provides a measurement and command

interface between the hardware of the system under
control hardware and the control system. Keeps one
or command and measurement value histories.

Device managers.
Device drivers.

Intended state

The control system's prediction for a state
variable based on the operator intent as
scheduled in the plan.

Sequence predicts
without use of
models and initial
conditions.

Is achievable

Defined for both goals and Xgoals. A goal is
achievable if is within the capability of its
achiever. An Xgoal is achievable if its elements are
consistent.

Sequence and
command
constraint checking.

Is still satisfiable

Evaluation of a goal over its interval of time

Fault monitor.

Is transition

Achiever capability to successfully execute two

Sequence checking

achievable Xgoals back-to-back. and command
constraint checking.
Knowledge goal A goal on the quality of estimated state Guidance,
knowledge for a state variable. navigation, and
control mode
commands.
Macro goal Expands to goal net on state variables that may be Sequence
unrelated in the State Effects Model. expanded block.
Measurement Provides time-tagged evidence about one or Telemetry. Science

more physical states for a moment in time. May be a
science observation.

observation. Image.

Measurement model

Describes how one or more physical states

Includes telemetry

affect a sensor’s measurement. calibration
parameters.
Merging The combination of concurrent goals over a Sequence

time interval into a single goal that fully satisfies the
intent of all concurrent goals.

integration and
checking.
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Term Definition Traditionally...
Model ("The All state variables, state effects models, See state variable,
Model") command models, and measurement models. state effects model,
command model,
measurement
model.
Physical state Exists in the system under control. May be a May appear in

hardware state, environment state, or even a
software state.

models used by
fault protection,
sequencing, or
analysis tools.

Projected state

The control system's prediction for a state
variable based on latest estimated state,
operator intent as scheduled in the plan, the
model, and achiever behavior.

Prediction of
sequence
execution, resource
usage (e.g.,
power/energy, data
storage), side
effects (e.g.,
thermal,
interference), and
characterization of
software behavior
(e.g., pointing,
mobility).

Proxy state variable

A copy of basis state variable whose value is
estimated in a separate deployment.

Uplinked calibration
parameter. Software
telemetry.

Reachable state

The control system's prediction for a state
variable based its the latest estimated state
and what is possible given the model.

Fault diagnosis
predictions.
Ephemeris
predictions.

Ready to transition

Specified conditions under which one Xgoal

Event-based

can stop executing and the next one begin. sequencing.
Safe goal net A goal network that establishes a safe system state. | Safing fault
reponse.
Safing The process of bringing the system to a safe Same

(recoverable) state after fault has been detected.
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Term

Definition

Traditionally...

Scheduling

1. Merging of elaborated goals into the current
goal network, scheduling goals to satisfy all
temporal constraints and eliminate any

1. Sequence
generation and
checking (e.g.,

conflicts, and verifying that the resulting plan is SEQGEN
consistent with projected state predictions. modeling).
Performed after elaboration. 2. Same
2. Low-level process of determining what
instructions should run on the processor at any given
time.

State effects model | Describes the behavior of a physical state Model used by fault
including how other physical states affect it. protection,

sequencing, or
analysis tools.

State function

Describes the change of an estimated state
over an interval of time. Produces state values

Trajectory function

State value Estimated state for a moment in time. Includes Global variable
uncertainty. value.

State variable Represents a property of a thing in the system under |Global variable.
control.

System under control | The vehicle, its environment, and certain The same.
software elements such as hardware I/O and
data management and transport functions.

Tactic Alternate way of elaborating a goal - produces a Conditional
different goal network when certain conditions are | sequence
met. expansion.

Temporal Constraint | Timing requirement between 2 time points. Can Sequence

specify order, min time, max time, or a range of

command time

time. (absolute, relative).
Time line Expresses a state variable's estimated, Sequence predicts.
intended, projected, or reachable state.
Time point Represents a moment in time in a plan (goal Command time in a

network).

sequence.

Value history

Contains state functions, commands, or
measurements. Resides in the system under
control. Content can be controlled with data
commands.
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Term

Definition

Traditionally...

XGoal

See executable goal.
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