
The MDS Autonomous Control Architecture

Erann Gat
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

ABSTRACT

We describe the autonomous control architecture for the JPL Mission Data System
(MDS). MDS is a comprehensive new software infrastructure for supporting unmanned
space exploration. The autonomous control architecture is one component of MDS
designed to enable autonomous operations.

KEYWORDS: autonomous control, unmanned space exploration

INTRODUCTION

Mission operations represent a large fraction of the total cost of unmanned space
missions. One way to reduce these costs is to automate parts of the spacecraft control
process. Earlier this year the feasibility of this approach was demonstrated by the
Remote Agent Experiment (RAX) [1] running aboard the New Millennium Deep Space 1
(DS1) spacecraft. JPL is currently developing a second-generation autonomous control
system for spacecraft as part of the Mission Data System (MDS) project [2].

The MDS autonomous control architecture is based on the concept of a goal, which is
defined as a constraint on a state over a temporal interval. Goals are an improvement
over traditional methods of commanding for several reasons. First, they explicitly
represent intentions, which makes it possible for the spacecraft to respond more robustly
to faults. Second, they allow decisions to be made locally aboard the spacecraft using
information that might not be available on the ground. Third, they allow temporal
flexibility and event-based actions.

To understand goals and their resulting advantages it is useful to begin with a review of
current spacecraft commanding methods and their shortcomings.

SEQUENCING

Spacecraft are currently controlled by command sequences, which are time-tagged lists of
commands. A command is essentially a black-box subroutine call. They range from very
simple (e.g. turn a device on or change its mode) to very complex (e.g. change the
spacecraft attitude). By stringing commands together in sequences the spacecraft can be
made to perform its mission functions.

The initiation of a command is almost always triggered by time. (In the few cases where
this rule has been violated it has required very expensive customized single-use flight
software.) The use of time-tagged command sequences is motivated by the desire to be

able to accurately predict exactly what the spacecraft is going to do. Historically this
approach has worked well, but it has costs and limitations that are now becoming
unacceptable.

The cost of command sequences arises from the fact that they do not just enable
prediction of spacecraft behavior, they require it. Executing a command will have
different effects depending on the circumstances under which the command is executed.
A given command could, under different circumstances have a desirable effect, a
disastrous effect, or no effect at all. As a result it is absolutely crucial that the state of the
spacecraft be accurately predicted. This in turn requires very precise modeling of
spacecraft behavior, which is expensive.

Further complicating the matter is the fact that spacecraft behavior is in some aspects
inherently non-deterministic. The onset of faults, for example, cannot be predicted.
Even in nominal operations there are non-deterministic aspects of spacecraft behavior.
For example, the amount of time it takes to complete a turn to a new attitude cannot be
precisely predicted.

The historical approach to these problems has been to 1) make worst-case assumptions
about things like resource usage and settling times and 2) to take a very conservative
approach to fault response. The general approach is that any deviation from predicted
behavior causes the spacecraft to enter a safe mode in which the all systems are shut
down except the bare minimum needed to communicate with Earth. The spacecraft then
waits for instructions from ground controllers. Unfortunately, there are a few situations
where this approach would cause loss of mission, e.g. during an orbit insertion. In such
situations the usual fault responses are disabled, and fault protection is done by a special
sequence customized for the particular circumstance called a critical sequence. But the
sequencing ontology is not designed to handle faults. (This limitation is deliberate, since
the whole point of sequences is to force spacecraft behavior to be deterministic, but fault
handling is inherently non-deterministic). As a result, generating critical sequences is
extraordinarily expensive. The cost of generating critical sequences can dominate an
operations budget despite the fact that only a tiny fraction of the mission actually requires
them.

Even during non-critical operations traditional sequencing extracts a significant cost.
Ground intervention is required every time the spacecraft enters safe mode, which is to
say, any time anything unexpected happens. This costs time and money, and can result in
the loss of significant science data. Finally, there are new classes of missions for which
the sequencing approach breaks down completely because the spacecraft must interact
with an unpredictable environment, e.g. comet landers, rovers, and the Mars Airplane.

GOALS

MDS is developing a fundamentally different approach to spacecraft commanding
designed to address the shortcomings of the sequencing approach. Instead of commands,
spacecraft operations in MDS are based on the concept of a goal, which is defined as a
constraint on a state over a temporal interval. A state in turn is defined as a property of

an object or a relationship between objects. Examples of states are: “The attitude of the
spacecraft,” “The power state of the camera,” and “The distance between the spacecraft
and Earth.” An example of a constraint is, “Constrain the power state of the camera to be
ON.” Constraints become goals when associated with a temporal interval, e.g.
“Constrain the power state of the camera to be ON between time T1 and time T2.”
Notice that goals describe the intended results of actions, not the actions themselves.

The times that constitute the beginning and end of a goal’s temporal interval are not
necessarily fixed times. Instead they can be flexible time points constrained by relative
intervals to other time points. For example, it is possible to say, “Constrain state X to
have value Y starting at least N and at most M seconds after time point T1 (associated
with some other goal) and ending at least P and at most Q after time point T2.” Such a
“floating” time point is called an ungrounded time point. A time point fixed in time is
said to be grounded. A set of goals that are associated with each other by virtue of
interrelated time points is called a goal network or goal net. Goal nets replace command
sequences in MDS.

CONTROL ARCHITECTURE

The software architecture that implements goal nets is conceptually similar to a
traditional closed-loop control system. The architecture is divided into two major
components, state determination or estimation, and state control [3]. The state
determination component is responsible for estimating the past, present and anticipated
future values of states. State control takes the output of state determination, compares the
results to the constraints in the goal net, and performs actions to influence system state to
conform to those constraints.

State determination and state control are both further subdivided into modules that are
responsible for estimating or controlling subsets of the total system state. On the
estimation side these modules are called estimators, and on the control side they are
called goal-achieving modules or GAMs. The MDS control architecture is thus
sometimes referred to as the GAM architecture.

Both estimators and controllers employ models of the system to perform their function.
A model is an object that describes a relationship among states. For example, a model
might represent the fact that the power state of a device is ON if the switching state of its
power switch is CLOSED. This information can be used by a GAM to figure out that it
can achieve goals on a device’s power state by issuing subgoals on the switch state. It
can also be used by an estimator to conclude that if the device is operating that its switch
is closed.

The interfaces to these components can be specified with some rigor, though we give
only an informal sketch here. An estimator takes as input as series of measurements,
which are the raw data from low-level transactions with the spacecraft hardware, and
produces as output a set of estimates of the values of certain states. Because these
estimates are not just estimates of the present value but of past and future history as well

we refer to these estimates as value histories. (To be precise, a value history is a data
object that represents a state estimate over time.)

A GAM takes as input a set of value histories and a set of goals, and produces as output
either primitive commands or subgoals which are inputs to other GAMs. Thus, the goal
structure is recursive, with high-level goals giving rise to lower-level subgoals. The
recursion bottoms out in primitive commands sent directly to the hardware or to real-time
control loops.

The process of expanding a goal into subgoals and primitive commands is called goal
elaboration. Goal elaboration can be done manually or automatically. Automatic goal
elaboration is the principal mechanism for autonomy in the MDS architecture. Notice
that MDS enables autonomy but does not require it. Automatic goal elaboration in MDS
is done using AI planning techniques developed elsewhere (e.g. [4]).

The MDS architecture is similar to a traditional hierarchical control architecture (e.g.
[5]). The distinctive features of the MDS architecture are 1) the explicit extension of
estimates into the past and future, 2) the representation of control “setpoints” as goals
extending over flexible temporal intervals (an idea borrowed from the Remote Agent
[1]), 3) the subdivision of estimation and control into separate regimes (estimators and
GAMs) that interact with each other, and 4) the extension of the paradigm to states with
discrete values like power switching states.

FAULT PROTECTION

MDS provides a model of fault protection that is smoothly integrated into the architecture
rather than being a separate module as in the traditional sequencing approach. Fault
protection is based on the idea of goal failure. A goal is said to succeed if the value of
the goal’s state variable conforms to the goals constraint over the goal’s interval,
otherwise the goal fails. Goals can fail for many reasons, including hardware faults,
unexpected environmental interactions, and conflicts with other goals. MDS makes no
architectural distinction among these various causes; all goal failures are created equal.

The effect of a goal failure is limited to the failed goal’s parent goal. If a goal G1 has a
subgoal G2 and G2 fails then the GAM responsible for G1 can locally contain the failure
by selecting an alternate method of achieving G1. For example, suppose G1 is a goal to
make the camera power state be ON, which results in a subgoal G2 to make the state of a
particular power switch S1 be CLOSED. If a hardware fault prevents S1 from closing
then G2 will fail. But the GAM responsible for G1 might issue a second subgoal, G3, to
close a backup switch S2 in stead of S1.

In a traditional sequencing architecture, the failure of S1 would result in the spacecraft
going in to safe mode. This would require expensive manual intervention, and could
result in the loss of science data or even the entire mission. In MDS the situation is
handled locally with no disruption. The need for manual intervention is eliminated in
many cases, as is the need to distinguish between critical and non-critical sequences.
Only in the case where all local recovery options are exhausted does the failure propagate

up the goal hierarchy. At every stage the spacecraft responds as robustly as its
knowledge of the circumstances permit.

Fault states can be modeled and estimated just like any other state; no architectural
distinction is made. For example, a switch could be modeled as having two orthogonal
states, its switching state (OPEN or CLOSED) and its operational state (OK or STUCK).
The model would represent the fact that the switching state can change only if the
operational state is OK. This gives the system a lot of flexibility in achieving goals. For
example, a stuck switch is not necessarily a useless one. It can still successfully achieve
goals as long as the switch happens to already be in the desired state. The system might
also have at its disposal a command that can cause a switch to transition from STUCK to
OK. (A realistic example would be a sold-state switching unit with a reset function.) In
this case the system could automatically determine that it has to change the operational
state of the switch before it can change its switching state.

EXAMPLES

The simplest example of a goal consists of a constraint on a discrete-value variable to
assume a specific value over a fixed time interval, e.g. “Make the power state of the
camera be ON starting at 1:00 and ending at 2:00.” There are several things to notice
about this goal. First, it says nothing about the power state of the camera before 1:00 or
after 2:00. If it is desired that the camera be on only between 1:00 and 2:00 and off
otherwise then two additional goals are needed to specify that the camera should be off
before 1:00 and after 2:00.

Second, if the camera is off then the command to turn on the camera must be issued
before 1:00 for this goal to succeed. The goal criterion is strict: if the camera is off even
for a fraction of a second between 1:00 and 2:00 then the goal fails. It is possible to
specify more lenient goals by relaxing the goal’s constraint. For example, one could
specify that the camera should be on for 99% of the time between 1:00 and 2:00. Brief
transient power outages would not cause this goal to fail until the outages exceeded 1%
of the interval. The only limit on how complex constraints can be is the ability of a GAM
to process them. There are no architecturally imposed limits.

Third, because instantaneous state transitions are physically impossible there must be
gaps between goals with non-overlapping constraints. In the camera example, it is not
possible to make the power state be OFF from 12:00 to 1:00 and ON from 1:00 to 2:00.
As specified at least one of those two goals must fail. To allow them both to succeed on
could, for example, specify that the camera should be OFF from 12:00 and 12:59. This
would give the system a one-minute window of opportunity to switch the camera on.
(Actually, the system could potentially switch the camera on and off an arbitrary number
of times during this one-minute window. To prevent that one could specify an additional
goal whose constraint is that the power state transitions from OFF to ON exactly once at
some unspecified time during the one-minute interval. Such a goal is called a transitional
goal.)

Goals can be issued on states over which the spacecraft has no direct control. For
example, one can formulate a goal on the position of Jupiter. At first it might seem that
such goals have no use since the position of Jupiter is not something that MDS has any
influence over. But MDS has two tools at its disposal for achieving goals. The first,
issuing commands, is only applicable for goals on states that are influenced by
commands. The second tool is making choices about how time points are grounded.
This second technique can be applied to non-controllable states.

For example, one could issue a goal for Jupiter to be in a particular position starting at an
ungrounded time point T1. The system could achieve this goal by grounding T1 at a time
when Jupiter is in the desired position. The utility of such a goal is that T1 can serve as a
trigger for goals on controllable states by constraining the intervals on those goals
relative to T1. This is the basis for doing event-driven control in MDS.

SUMMARY

The MDS autonomous control architecture is designed to replace traditional sequencing-
based approaches to controlling spacecraft. The MDS architecture is based
fundamentally on the idea of a goal, which is a constraint on the value of a state over a
(possibly flexible) time interval. Goals provide a unified model of fault protection, and a
smooth transition from manual to autonomous operation. The MDS control architecture
is part of the larger MDS effort to completely re-engineer the software infrastructure and
development process for flying unmanned space missions.

ACKNOWLEDGEMENTS

This paper describes work performed by the entire MDS design team and the MDS
control architecture implementation team, including Bob Rasmussen, Tom Starbird, Kim
Gostelow, Bob Keller, Winthrop Lombard, Ed Gamble, Weldon Smith and Dan Dvorak.

This work was performed by the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

1. Barney Pell, et al. “An Autonomous Spacecraft Agent Prototype.” Autonomous
Robots 5(1), March 1998.

2. Dan Dvorak and Robert Rasmussen. “Software Architecture Themes in JPL’s
Mission Data System.” Proceedings of the IEEE Aerospace Conference, March
2000.

3. Robert F. Stengel. Optimal Control and Estimation. New York: Dover, 1986.
4. Steve Chien, et al. “Autonomous Planning and Scheduling for Goal-Based

Autonomous Spacecraft.” IEEE Intelligent Systems, September/October 1998.
5. James Albus. "A Reference Model Architecture for Intelligent Hybrid Control

Systems." Proceedings of the 1996 Triennial World Congress, International
Federation of Automatic Control (IFAC), San Francisco, CA, July 1996.

