
JPL D-22181/CL#02-1287
Mission Data System

MDS Product Development Plan
Version 1.0

 COMMENTS * MERGEFORMAT
June 3, 2002
Paper copies of this document may not be current and should not be relied on for official purposes. The most current version resides in the MDS Document Tree at
http://mds-doctree.jpl.nasa.gov/source/com/Policy/ProjectPlans/.

Prepared by:

Kenny Meyer, MDS Process and Tools Lead

Date

Approved by:

John Lai , MDS Project Manager

Date

Jet Propulsion Laboratory

California Institute of Technology

Change Log

Date
Comment

3/22/01
Major rewrite of Software Management Plan begins. The new document is called the Product Development Plan. The rewrite supercedes the previous Software Management Plan (D-16624). Susan Roberts will acquire a new D numbers for the Product Development Plan and all supporting process and plans.

12/21/01
Version 1.0 completed and ready for promotion.

6/3/02
Added clearance number

Referenced Documents

This document refers to other official project documents. The following table identifies those documents referred to in this document.

Title
Location
Designation

MDS Project Implementation Plan
http://mds-doctree.jpl.nasa.gov/source/com/Policy/ProjectPlans/
JPL D-17966

MDS Product Development Plan
http://mds-doctree.jpl.nasa.gov/source/com/Policy/ProjectPlans/
JPL D-22181

MDS Schedule Process
http://mds-doctree.jpl.nasa.gov/source/com/Policy/ProjectPlans/
JPL D-22182

MDS Build Process
http://mds-doctree.jpl.nasa.gov/source/com/Policy/ProjectPlans/
JPL D-22183

MDS Requirement Process
http://mds-doctree.jpl.nasa.gov/source/com/Policy/ProjectPlans/
JPL D-22184

MDS Verification Process
http://mds-doctree.jpl.nasa.gov/source/com/Policy/ProjectPlans/
JPL D-22185

MDS Metrics Plan
http://mds-doctree.jpl.nasa.gov/source/com/Policy/ProjectPlans/
JPL D-22186

MDS Information Management Plan
http://mds-doctree.jpl.nasa.gov/source/com/Policy/ProjectPlans/
n/a

MDS Configuration Management Plan
http://mds-doctree.jpl.nasa.gov/source/com/Policy/ProjectPlans/
n/a

Table of Contents

11.
Introduction

2.
Guiding Principles and Goals
1
3.
Project Roles
3
4.
Common Model
4
5.
Project Lifecycle
7
5.1.
Outer loop activities
7
5.1.1.
Feasibility (Formulation)
7
5.1.2.
Elaboration
8
5.1.3.
Construction
9
5.1.4.
Transition
9
5.2.
Inner loop activities
10
5.2.1.
Analysis and planning
11
5.2.2.
Design
11
5.2.3.
Implementation
12
5.2.4.
Integration and Test
12
6.
Workflow
13
6.1.
Moving artifacts through the workflow
13
6.2.
Backbone schedules
14
6.3.
Package Workflow
15
6.4.
Package definitions
19
6.5.
Workflow States
21
6.6.
Completion of work
22
7.
Supporting Processes and Plans
23
7.1.
Process documents
23
7.2.
Project support plans
23
8.
Waivers
23
9.
Acceptance Testing, Quality Assurance and Risk Management
23
10.
tools and environments
24
11.
plan updates
24
12.
Ackknowledgements
24
Appendix A: Process Development Background Documents
1

1. Introduction

This document describes the development processes that the Mission Data System will use to develop its products. This plan is intended to be both a definitive statement of the process and a reference for project members. Topics, like the description of the MDS technology, do not directly bear on process and are not covered
.

The Unified Modeling Language (UML) is used for most diagrams. Since UML defines a formal notation, the diagrams are definitive descriptions and contain information that is not included in the text. Readers are encouraged to consult one of the many available UML references
. Diagrams that do not conform to UML notation are marked as “non-UML.”

2. Guiding Principles and Goals

A successful software process is flexible. It outlines a means for a development organization to move forward with a minimum of constraint—the success of a development effort depends on timely, considered judgment, not rules.

Documenting a process is fraught with folly. Documents, like this one, are static and quickly dated. There are two principle causes of process change: management refocus and tool flux.

· Management refocus
During the course of a development effort, both funding sources and customer needs may vary widely. A project’s very existence depends on management’s ability to refocus resources as needed to assure financial stability while sustaining customer interest.

· Tool flux
Processes specifics must be defined in terms of tools; when tools change, and they must change, the processes must follow.

Maintaining accurate documentation of the process ebb and flow is a thankless career undeserving of institutional support. The reader should assume that this document is not (and should not be) followed in every detail.

To allow for the necessary disconnect between the documented plan and the daily reality of software development, this plan and its supporting processes lay out the MDS process as a set of high-level principles and low-level procedures. The latter is an interpretation of the former, and, in a sense, explain them. Adherence to particular details is less important than compliance with the intention suggested by them. In other words, this plan establishes a direction, not a set of inflexible marching rules.

The remainder of this section describes the high-level principles. The supporting process and plans are identified in Section 7, “Supporting Processes and Plans.”

Emphasize Roles not Rules

Rules are frequently counter productive. Unspecific rules lack content, beg for interpretation, and seldom add value; specific rules seldom generalize effectively. Perhaps a greater concern for a rule-bound process is that inflexibility may adversely impact efficiency and flexibility. For example, heavyweight processes with extensive reviews, meticulous paper work and deep hierarchies of approval are a significant burden to the development effort.

Nevertheless, rules are needed. If an organization could function in a coordinated fashion without rules, defined processes would not be necessary. An insufficiency of rules can lead to wasted resources and increased risk. For example, a lightweight process may under emphasize testing resulting in a fragile product that lacks key functionality.

Roles can be used instead of rules. Roles define a set of interests; roles with competing interests create a tension that produces an emergent organizational behavior. If the roles in the organization are carefully balanced, the organization will operate efficiently so long as individual role players seek satisfy their interests over-and-above the interests of those in competing roles. In many cases the desired coordination can be achieved without rules. The result is a simpler process in which everyone knows what do without prescription.

MDS roles are described in Section 3, “Project Roles.”

Converge actual and official processes

Projects frequently develop and document processes for the purpose of satisfying the need of a parent organization. These documented processes may have nothing to do with actual development methodologies. Compliance with these published processes comes as a tax on the actual work. Even worse, metrics based on “official” processes are highly misleading and seriously impair the prospects for effective management. When the actual and official processes are odds, cost overruns and schedules slips are usually be a surprise.

In order to preserve valuable resources and to maintain an accurate picture of status, the project must bring the actual work in line with the official process. Conversely, the official process should reflect the actual work.

Emphasize continuous -integration and test

The moment of truth in software development occurs during integration and test. It is only then that the actual status of the development effort can be assessed.

In order to maintain an understanding of the project status, integration must occur continuously. Continuous integration requires:

· An automated build regime that preserves baselines

· Active management of both code and schedule dependencies

· Active management of interface change

· Continuous testing in all development phases

Create a cohesive development organization

In the waterfall development methodology, each engineering discipline completes its work and hands off the results to another organization: systems engineering writes requirements and specifications and hands them off to software engineering who implements the code and ships it over to verification who then tests the system. Since these hand-offs are considered the completion off work, a handoff is often referred to as “throwing over the wall.”

This is an easy model to understand and manage, but it doesn’t work. Typically, the work is incomplete when it’s thrown over the wall. Requirements cannot be understood outside of implementation or test, implementation cannot be managed without requirements, risk cannot be managed without verification and verification cannot be conducted without requirements. A true understanding the system only emerges by degrees as each discipline applies its unique perspective to the problem. Efficient operation requires a cohesive effort by all disciplines through all phases of the lifecycle.

Facilitate management of the iterative/incremental process

Iterative/incremental development is widely preferred by programmers—that is how the work of programming actually gets done. Even projects organized around the waterfall process model tend to lapse into the an iterative/incremental methodology during final integration when delivery pressures make formal process about as relevant the 40-hour work week.

The problem with iterative/incremental development is that it requires much more effort to manage. Processes must be thoroughly understood and streamlined so that coordination is maintained across the engineering disciplines. The process must also be highly automated since all manual tasks must be frequently repeated
. In addition, the process must be well instrumented so that management has an objective means of observing progress. Managers need an accurate picture of progress and quality in order to make informed decisions about the allocation of limited resources.

Schedule all tasks

Software managers must balance aggressive schedules against finite resources in a frenzied environment of changing requirements and unanticipated contingencies. Success depends on the ability of a manager to target available resources on critical tasks.

In order to plan effectively, the books must be balanced. This means the project must have visibility into work that is complete, work that is underway and work that is yet to be done. Unscheduled work, while missing from the plan, is all too present in the actuals as overruns. In order to maintain an accurate picture of progress, all tasks should be scheduled.

Mechanically enforce the process whenever possible

Many forces conspire to prevent the adoption of a process by a software team. Communication is difficult. Rules change. Circumstances change. Tools don’t scale. Manual inspection is impractical and error prone. In an iterative/incremental process, the pace of work compounds all these effects. In other words, manual enforcement does not scale. Without automation, an iterative/incremental process will not work.

Embrace process improvement

Software development is dynamic. Requirements change. Personnel change. Tools change. Similarly, processes must change. A process that does not adjust to changing circumstances will be rightfully ignored — an irrelevant process is a barrier to progress.

A decaying process poses a real risk to a large team. The barriers to meaningful collaboration can cause the production of incompatible artifacts, integration failures, schedule overruns, missed requirements, and untested products.

Continuing process is improvement is key to a smooth running and efficient software development team.

3. Project Roles

The organization of the MDS project is described in the MDS Project Implementation Plan (PIP). While the PIP calls out nearly two-dozen project roles, four positions are central to the successful execution of the process: Build Manager, System Engineer Lead, Verification Lead and Project Manager.

The Build Manager, Systems Engineer Lead and Verification Lead have process objectives that compel each to compete for resources. The Project Manager must balance these competing interests—this balance sets the direction and focus of the project.

The competition for resources establishes an economy of interests. If available resources are insufficient to meet the process objectives, the process owner will be compelled to seek a remedy. So long as the project infrastructure has not eroded from constrained resources, adjustments can be readily applied by resource redirection. This makes for an agile and robust development organization.

Competition of interests was guiding theme for the development for the processes listed in section 7, “Supporting Processes and Plans.” Our working premise was that a rule is less likely to trigger a beneficial result than a responsible person working to satisfy a stated objective. As a direct consequence, the procedures in each process have been minimized. The goal was to leave staff in the key roles free to negotiate ad hoc means of solving real problems without lapsing an expensive digression of process redefinition. In general, the competition of interests should be considered primary to the processes themselves and, so long as the competition is maintained, the project should be considered to be in compliance with this plan.

Table 1 lists the key process objectives for each role and a few competing interests.

Competing interests of
Build Manager
Competing interests of
Systems Engineer
Competing interests of
Verification Lead

Build Manager

Key Objectives:

· Meet schedule
· Preserve baseline integrity
· Keep developers focused
· Manage the scope of accepted work
· Manage design effort
· Deliver integrated source code with unit and system tests
————
· Require delivery of full-suite of customer-requested capabilities
· Support requirement changes as needed
· Assure all requirements are implemented
· Require development proceeds against requirements
· Require that tests meet intent of requirements
· Prefer early detection and correction of defects
· Require rigorous maintenance of system and unit test suites
· Assure that all effective requirements are implemented
· Assure that each incremental delivery address all effective requirements

Systems Engineer Lead

Key Objectives:

· Establish development objectives
· Assure the develop effort addresses customer requirements
· Establish a development schedule that matches available resources
· Anticipate future customer requirements
· Constrain requirements to match development resources
· Constrain schedules to allow sufficient time for development and test
· Require incorporation of developer generated requirements
· Require accurate list of effective requirements
· Fix defects
· Address development needs not called out by requirements
————
· Require accurate list of effective requirements
· Require testable statements of system behavior
· Require confirmation that tests meet intent of requirements
· Minimize the need to test inspectable requirements

Verification Lead
Key Objectives:

· Assure quality
· Report test success and failure
· Detect errors early
· Report requirement defects
· Establish and maintain robust test suites
· Maintain record of anomalies
· Constrain development commitment to test maintenance
· Constrain development effort to fix defects
· Require that implementation defects, like memory leaks, are tested
· Require that testing provides complete code coverage
· Minimize defect list
· Constrain requirement maintenance effort
· Prefer inspectable requirements and specifications to testable requirements
· Require that testing provide complete coverage of the system
————

Table 1: Competing Interests of Role Objectives

4. Common Model

MDS is building a set of frameworks for developing end-to-end mission software. Frameworks are, by definition, designed for reuse
. The development of a software system that is designed for reuse is new to JPL. MDS needed a vocabulary for distinguishing analysis, design and test contexts for all phases of the lifecycle. For example, we needed concrete answers to questions like:

· How do we distinguish requirements on reusable elements from requirements on driving examples?

· How will we construct subsystems from architectural elements and not the other way around?

· How do we distinguish between shades of reusability?

· How do we select the pieces that will be our core product?

· How do we keep track of all the artifacts?

To address these issues, we have developed a set of organizing principles called the Common Model. Our approach is based on “system model” recommended by Bruce Douglass. Douglass defines a system model as “…an organized, internally consistent set of abstractions that collaborate to achieve system description at a desired level of detail and maturity.
”

In practice the Common model provides:

· Organizing principles for MDS development

· Clear development contexts

· Organization for all artifacts across all tools

· Definition of MDS products

Details of the Common model are discussed elsewhere in the Common Model FAQ and in an on-line CSMISS spotlight presentation (check http://mds.jpl.nasa.gov/outreach for slides and video). Some of the common model principles have bearing on the process. These are described in the following paragraphs.

The MDS common model is divided into four principal packages (see Figure 1). Each top-level package corresponds to a category in the MDS product suite.

1. Framework: core MDS product
The Framework includes core frameworks, infrastructure frameworks and discipline frameworks (see Figure 2). These framework pieces can be adapted to fit the needs of a customer’s mission software.

2. Architectural Elements: behavioral description of the Frameworks
The Architectural Elements are the analytical counterpart of the framework and serve as a concrete mechanism for separating analysis from implementation. If desired, customers will be able to use requirements from the Architectural Elements as a base and adapt them to needs of a specific mission.

3. Reference Adaptation: example adaptations of Frameworks
The Reference Adaptations are examples of mission specific adaptations. In some cases, customers may be able to copy the adaptations or pieces of adaptations for use in their own development effort.

4. Reference Deployment: examples of systems constructed from Frameworks
MDS will build several large-scale examples including end-to-end systems. Example systems include a Mars spacecraft that performs EDL and a rover. This approach is used to enforce the reusable and scalable qualities of the MDS products.

Figure 1 shows the relationship between these high-level packages. Dashed lines indicate dependencies between packages.

[image: image1.wmf]MDS

Reference Deployment

Reference Adaptation

Framework

Architectural

Elements

Figure 1: High-level Packages of the MDS Common Model

Each high level package is populated by a set of nested packages. Figure 2 shows an example of the packages nested in the MDS framework package. (The current set of nested packages is maintained in “MDS Package Structure” document.)

[image: image2.wmf]Mds::Fw

Discipline

Infrastructure

Avcs

Dprd

Gnc

Pwr

Prop

Pyro

Sci

Tel

Thml

Core

Init

Ews

Dm

Dt

Elf

MdsOs

Ser

Time

MdsStd

Exc

Nor

Math

Phy

Sttp

Sa

Sim

Vis

«Group»

Cmp

Mdap

Ewc

«Group»

«Group»

Figure 2: Example of MDS framework packages

As the details of the processes emerge, there will be frequent references to the high-level packages in the Common Model

5. Project Lifecycle

The MDS lifecycle is based the iterative incremental approach discussed in the OOPSLA
 process, the Objectory process
, Rational Unified Process
, and the ROPES process
. All of these process models are derived from the spiral process model described by Boehm
.

The MDS software lifecycle can be viewed as a set nested loops. The outer loop represents the work required to make a major delivery of the software. Each outer loop proceeds in a sequence of inner loops where the capability of system grows incrementally with each pass of an inner loop. Each inner loop corresponds to an increment in the Backbone Schedule (see Section 6.2). The inner and outer loops are illustrated in Figure 3.

[image: image3.wmf]2. Design

1. Analysis & Planning

3. Implementation

4. Integration & Test

Increment Complete

Inner Loop

(Increment)

1. Feasibility

2. Elaboration

3. Construction

4. Transition

Outer Loop

Major MDS Delivery

Figure 3: Conceptual picture of project life cycle (non-UML notation)

The MDS project traverses one cycle of its outer loop and multiple cycles of its inner loops for each formal delivery of a major release of the MDS software (e.g., MDS 1.0).

NOTE: The following descriptions may suggest an unintended ordering of activities with in each outer-loop and inner-loop phase. In practice, phase activities occur in any order.

5.1. Outer loop activities

The outer loop is divided into 4 phases: feasibility (sometimes called formulation), elaboration, construction and transition. The completion of the outer-loop corresponds with a major release of the MDS software (e.g., MDS 1.0)

5.1.1. Feasibility (Formulation)

During the feasibility phase the project establishes its goals and expectations for a development effort. The feasibility phase is characterized by the following activities:

· Select management staff
Project founders select a core team to determine project objectives and secure funding. The team includes a Project Manager, Architect, Chief Programmer and System Engineering Lead and any additional support needed to get backing for the project.

· Determine overall project objectives
The core team consults with potential customers to determine what capabilities should be included in the MDS products.

· Determine technical approach
Core team develops a technical approach that will be a basis for early plans, budgets and schedules.

· Develop initial plans, schedules and budgets
Core team prepares materials needed to make a compelling case to funding sources.

· Secure funding
Core team presents the MDS “business” opportunity to funding sources. Memos of Understanding are signed as required by sponsors.

· Start process development
Core team lays a foundation for development in the elaboration phase.

5.1.2. Elaboration

During the elaboration phase, the project bootstraps itself into a working organization. The elaboration phase is characterized by the following activities:

· Organize team
The project management and technical leads select individuals to satisfy the various roles required by the project.
· Establish the development environment
Project management selects or funds a development environment that includes personnel, hardware and facilities. Technical leads pick key tools. The development environment staff sets up tools. When the project processes emerge, the development environment staff places tools and environments under process control.

· Capture initial requirements
System Engineering captures an initial description of what functions the system shall provide and the initial target systems for those functions. The requirements will evolve through a series of iterations.
· Lay out backbone schedules
Project management establishes a plan for iteratively developing system capabilities called out by the initial requirements and commitment to sponsors. This plan takes the form of a backbone schedule (see Section 6.2). The backbone schedule evolves through a series of iterations.

· Define architectural approach
Frameworks impose a design methodology that becomes an architecture when used in a deployed system. The project technical leads define a design methodology and establish a concrete technical direction for product development. The architectural approach will evolve through a series of iterations.
· Conduct early prototyping
Project developers, in accordance with the backbone schedule, develop a series of prototypes that validate the technical direction. Typically prototypes demonstrate the efficacy of the architectural approach and other key software engineering decisions. (e.g., the tool readiness, component design strategy, memory and process management strategies, etc.)

· Start process deployment
Project management establishes a set of detailed processes for running the project. These processes are expressed in terms of the basic toolset. As processes are completed, project developers adopt them. The processes will evolve through a series of iterations.

· Conduct Preliminary Design Review
The project presents programmatic and technical status to sponsoring organizations.

5.1.3. Construction

During the construction phase the project develops the core products. The construction phase is characterized by the following activities:

· Plan for each increment
Project planning group determines which capabilities will be built and which tests will be run for each increment.

· Capture requirements for each increment
System engineering captures requirements for the capabilities and tests.

· Design and implement of frameworks, adaptations and deployments
Developers design and implement the current set of capabilities and tests.

· Verify each increment
Verification team run test suites to determine the quality completeness of the on-going work. The verification teams reports anomalies as they are discovered.

· Produce metrics
The integration team generates metrics for management to assess progress and quality.

· Conduct Critical Design and other reviews
The project presents programmatic and technical details to sponsoring organizations.

5.1.4. Transition

During the transition phase the project prepares the products for delivery to customers. The emphasis moves from development of new capabilities to intensive testing of built capabilities and defect correction. The transition phase is characterized by the following activities:

· Develop release plan
Project management identifies the elements of the released product and develops a plan for delivering them. These elements include user documentation and training materials. The plan includes alpha and beta test cycles as well a plans for managing concurrent technical support and new development efforts.

· “Productization”
Developers build ancillary customer-support products. (e.g., installers)

· Plan for each increment
Project planning group determines which capabilities will be built and which tests will be run for each increment.

· Capture requirements for each increment
System engineering captures requirements for the capabilities and tests.

· Design and implement frameworks, adaptations and deployments
Developers design and implement the current set of capabilities and tests.

· Verify each increment
Verification team run test suites to determine the quality completeness of the on-going work. The verification teams reports anomalies as they are discovered.

· Produce metrics
The integration team generates metrics for management to assess progress and quality.

· Establish technical support operation
Project management selects or funds a technical support organization for supporting customers that use MDS products. The support organization includes personnel, hardware and facilities needed to provide answers to technical questions and provide fixes to critical bugs.
· Release products
Project management releases to MDS customers.

5.2. Inner loop activities

During each circuit of the outer loop, the MDS team completes many inner loops. Each inner loop corresponds to an increment in the backbone schedule (see Section 6.2).

For the purpose of the MDS processes, an inner loop is an increment. The terms inner loop and increment are can be used interchangeably.

Inner loops are divided into four phases: 1) analysis and planning, 2) design, 3) implementation, and 4) integration and test. A milestone may be associated with the transition from one inner-loop phase to the next. The supporting processes describe the activities and artifacts required for each inner-loop phase or milestone. (The supporting processes are described in Section 7, “Supporting Processes and Plans.”) The activities and artifacts are described in detail in the supporting process documents.

The basic inner loop is illustrated as the activity diagram in Figure 4. This diagram reappears in the supporting process documents.

[image: image4.wmf]H

Analysis &

Planning

Design

Implementation

Integration &

Test

H

Milestones and artifacts are associated with

each inner loop phase transition

Figure 4: Phases of each inner loop (i.e. increment)

Inner loops may progress in parallel by staggering the phases.
 For example, analysis and planning for increment n+1 may proceed while increment n is in progress (See Figure 5).

[image: image5.wmf]H

H

H

H

H

H

Increment

n

Increment

n+1

Increment

n+2

Time

Figure 5: Increments may run concurrently
5.2.1. Analysis and planning

During the inner loop analysis and planning phase, the plans for the increment are firmed up. The analysis and planning phase is characterized by the following activities:

· Identify increment test cases (scenarios)
The planning team determines which test must run successfully in order to the increment to be completed.

· Define deployment architectures
Systems engineers architect the systems used to perform the increment tests.

· Capture requirements
System engineers describe the system behaviors required to perform the test cases.

· Review requirements
The project manager secures agreement from stakeholders for the increment requirement set.

· Identify new developments
Developers examine the requirements and architectures. New designs are introduced as needed.

· Determine dependencies
The build manager determines the schedule and physical dependencies between the required elements.

· Agree to delivery dates
The planning team identifies delivery dates that are agreeable to systems engineering, development and verification organizations. The build manager then schedules the development effort.

5.2.2. Design

During the design phase of the inner loop, the implementation approach is established. The analysis and planning phase is characterized by the following activities:

· Select designs for new developments
Developers create designs that satisfy the requirements for new developments.

· Review designs (not required)
In cases where the developer seeks a commitment from technical management the develop may request a design review. Likewise, when technical management needs visibility into a developers design, the management may request a design review.

· Develop test plans
The verification team will develop a test plan for checking increment requirements and verifying increment test cases

5.2.3. Implementation

During the inner loop implementation phase, developers create the artifacts needed to satisfy the increment requirements. The implementation phase is characterized by the following activities:

· Code
Developers create the code necessary to build the deployed systems.

· Integrate continuously
The MDS process calls for a continuous integration approach. All new code is integrated into the system.

· Develop tests
Developers create tests that verify the increment’s requirements and test cases.

· Create other artifacts
Developers create artifacts as required by the project.

5.2.4. Integration and Test

During the inner loop integration and test phase, the increment deployments are tested to assure they successfully achieve the increment scenario. The integration and test phase is characterized by the following activities:

· Maintain test suites
Developers maintain the test suites and test harnesses needed to catch defects and assure conformance with requirements.

· Maintain requirement test matrix
The system engineering team maintains a matrix of active requirements.
· Verify increment scenarios
The verification team confirms that the increment scenario meets all requirements.

· Verify requirements
The verification team uses the requirement trace matrix to assure that all requirements are tested and that tests produce expected results.

· Validate requirements
The verification team confirms that all requirements have been implemented.

· Record defects
The verification team records all defects found during the course of verification and test activities

· Report metrics
The integration team produce a set of metrics for management.

· Review progress
Management reviews increment metrics for project progress and product quality. Based on the metrics, the project management will replan as needed.

The activities described this section are not, as yet, mapped to specific work steps. These work steps, or process, are described in the process documents listed in Section 7, “Supporting Processes and Plans.” However, before the specific process can be developed, a general approach to the workflow is needed.

6. Workflow

The MDS workflow describes the mechanism the project uses to manage all work products, or artifacts, from the initial planning stage to delivery.

A concrete workflow must be built on the specifics of a workflow tool. MDS selected CCC-Harvest for configuration management of its artifacts and CCC-HarvestTM includes workflow support. MDS has based its workflow on CCC-Harvest workflow capabilities.

NOTE: In this document CCC-Harvest is referred to as Harvest

6.1. Moving artifacts through the workflow

MDS artifacts move towards completion by passing through a series of states. Here’s the basic three-step mechanism:

1. Create a package in a state

2. Attach an artifact to a Harvest package

3. Promote the Harvest package to the next state

A rule governs the promotion of package to each state (see Figure 6). Since artifacts may only enter the system via Harvest packages, all project artifacts can be systematically managed.

[image: image6.wmf]A

B

[rule]Transition(package)

Package

Figure 6: Rules govern package transitions

Harvest packages may be organized hierarchically, i.e., packages may contain child packages as well as artifacts. In some cases, packages only contain child packages and no artifacts; in other cases packages contain only artifacts. The possible relationships between parent packages, child packages and artifacts are illustrated in Figure 7.

[image: image7.wmf]Package A

Package

AA

Package Y

Package BB

Package X

Children to Package A --

no artifacts are attached

Package A only contains

child packages -- no

artifacts are attached

Children to Package AA.

Artifacts attached

Artifacts

Figure 7: Relationship between Harvest packages and artifacts

The hierarchy of packages is used to define the completion of work. The work of the parent is done when all the children are done.

MDS has used the mechanism of packages, states and rules to define the project workflow. The following sections describe the packages and states. The rules are discussed in supporting processes identified in Section 7, “Supporting Processes and Plans.”

6.2. Backbone schedules

A backbone schedule is a high-level work plan used to organize and control the development of artifacts. Each backbone schedule includes the following items:

· Schedule name
A name identifier distinguishes one backbone schedule from another

· Set of increments
The schedule progresses via a sequence of increments. Each increment corresponds to an inner loop.

· Increment titles
A phrase identifier distinguishes one increment from another. Increment titles are typically expressed as use cases.

· Increment test scenarios
Each increment includes one or more test scenarios.

· Increment behavioral descriptions
Each increment includes a set of high-level behavioral descriptions (requirements). These behavioral descriptions may be organized into areas of expertise called domains.

· Backbone mission scenario
The test case for the last increment corresponds to the mission scenario that motivated the backbone schedule. For example, a “Mars EDL Rock” backbone schedule would produce a system that could successfully complete an unpowered Martian entry, decent and landing.

Backbone schedules may be captured on a spreadsheet. An example appears in Figure 8. At the completion of the example schedule, the project will have developed a propulsionless test system that “lands” on the surface of Mars. Notice that the schedule title corresponds to the name of the worksheet and each row corresponds to an increment. Also note that the increment title resides in the first column and the increment test cases reside in the last.

[image: image8.wmf]Increment

Simulation

Flight

Transport

Ground

Framework

Test

Fail the supersonic

chute control switch

Set so commands to the

switch have no effect

Add FAILED_OPEN to

the switch state value

range

Accelerometer and

switch status estimators

should be able to tell the

difference between a

switch failure and a flat-

line accelerometer

failure

Switch goal should

report failed and

terminate

Transport goal failure

event, flight to ground

(eventually, not all goal

failures will be

interesting and we'll

need a way to say

which ones are)

Update switch state

variable proxy

Update switch "status"

display

Alarm FAILED_OPEN

state

Display switch goal

failure even

t

Alarm switch goal

failure event

Cyclically collaborating

estimators (up to now

estimators simply

chained acyclically, as

in switch -> chute ->

altitude, but now

estimated chute state

can also affect whether

or not the switch is

estimated to be

working)

Goal failure handling by

goal net

Try both

accelerometer and

switch failure modes

and show that the

correct diagnosis is

made

Show correct alarms

are reported

Make chute

deployment switch

redundant

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Test]

Detect proper

supersonic chute

deployment point

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Test]

Add supersonic

chute and backshell

separation

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Test]

EDL "Rock"

Title of backbone

schedule

Increment title/Use case

Test Cases

Behavioral descriptions (requirements)

by discipline

Figure 8: Sample backbone schedule (non-UML)
The project may maintain several backbone schedules, but it must have at least one backbone schedule for its principle development effort. Ancillary backbone schedules may be maintained in order to manage concurrent work like long-term framework development or perhaps a mission scenario that is not yet part of the main development effort. Backbone schedules are also discussed in the Schedule Process.

6.3. Package Workflow

The backbone schedule can be translated to the project workflow by mapping backbone schedule items to Harvest packages
. Backbone schedule items may be mapped to Harvest packages as follows:

NOTE: A summary of the Harvest packages appears in Section 6.4
· Each backbone schedule corresponds to an Implementation Task Rollup (ITR) package. The ITR is labeled with the schedule name. A backbone schedule artifact
 is attached to each ITR.

· Each increment corresponds to an Implementation Task (IT) package. The IT is labeled with the increment name.

· Each ITR has a set of child ITs. This relationship maps to the backbone schedule and its increments. The connection of ITRs to ITs is illustrated in Figure 9.

[image: image9.wmf]Implementation Task Rollup

Implementation

Task

Implementation

Task

Implementation

Task

Figure 9: Each Implementation Task Rollup contains a set of Implementation Tasks (non-UML)

· Each IT includes a set of requirements corresponding to the behavioral descriptions in a backbone increment. The relationship of an IT to its requirements is illustrated in Figure 10.

[image: image10.wmf]Implementation Task Rollup

Implementation

Task

Implementation

Task

Implementation

Task

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

Figure 10: Each implementation task has a set of requirements (non-UML)

· The scheduled work needed to satisfy an increment’s requirements corresponds to a Change Package Rollup (CPR). Each IT includes a set of CPR children. The relationship between ITs and CPRs is illustrated in Figure 11.

[image: image11.wmf]Implementation Task Rollup

CPR

CPR

CPR

CPR

CPR

CPR

CPR

CPR

CPR

Implementation

Task

Implementation

Task

Implementation

Task

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

Figure 11: Work is scheduled as CPRs (non-UML)

· The artifacts needed to satisfy a CPR are attached to a Change Package (CP). Each CPR includes a set of CP children. Multiple artifacts may be attached to each CP. The relationship between CPRs and CP is illustrated in Figure 12.

[image: image12.wmf]Implementation Task Rollup

CPR

CPR

CPR

CPR

CPR

CPR

CPR

CPR

CPR

Implementation

Task

Implementation

Task

Implementation

Task

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

Figure 12: CPR are satisfied with CPs (non-UML)

· The scheduled work needed to test an increment’s requirements corresponds to a Verification Package Rollup (VPR). The work includes the effort need to develop and verify the increment test scenarios. Each IT includes a set of VPR children. The artifacts needed to satisfy a VPR are attached to CPs. The relationship between ITs and CPRs is illustrated in Figure 13.

NOTE: A VPR may cover test cases for any effective
 requirement even if that requirement initially appeared in a previous IT.

[image: image13.wmf]Implementation Task Rollup

CPR

CPR

CPR

CPR

CPR

CPR

CPR

CPR

CPR

Verification

Package

Rollup

Implementation

Task

Implementation

Task

Implementation

Task

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

Figure 13: VPR schedule the verification effort

The package set of ITRs, ITs, CPRs, CPs and VPRs is sufficient to manage all the items in the backbone schedule. Figure 16 illustrates the match up by calling out the packages used to cover each backbone schedule item.

[image: image14.wmf]Increment

Simulation

Flight

Transport

Ground

Framework

Test

Fail the supersonic

chute control switch

Set so commands to the

switch have no effect

Add FAILED_OPEN to

the switch state value

range

Accelerometer and

switch status estimators

should be able to tell the

difference between a

switch failure and a flat-

line accelerometer

failure

Switch goal should

report failed and

terminate

Transport goal failure

event, flight to ground

(eventually, not all goal

failures will be

interesting and we'll

need a way to say

which ones are)

Update switch state

variable proxy

Update switch "status"

display

Alarm FAILED_OPEN

state

Display switch goal

failure even

t

Alarm switch goal

failure event

Cyclically collaborating

estimators (up to now

estimators simply

chained acyclically, as

in switch -> chute ->

altitude, but now

estimated chute state

can also affect whether

or not the switch is

estimated to be

working)

Goal failure handling by

goal net

Try both

accelerometer and

switch failure modes

and show that the

correct diagnosis is

made

Show correct alarms

are reported

Make chute

deployment switch

redundant

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Test]

Detect proper

supersonic chute

deployment point

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Test]

Add supersonic

chute and backshell

separation

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Behavioral description]

[Test]

EDL "Rock"

Items in the increment column correspond

to an

Implementation Task

Items in the test column correspond to test descriptions

that must be converted into

Verification Package

Rollups

 which are schedulable units. Verification

Package Rollups are broken down into

Change

Packages

 (i.e. work units)

Items in the Simulation, Flight, Transport

Ground and Framework columns are

functional descriptions that must be

converted into

Change Package Rollups

which are units of scheduleable work.

Change Package Rollups are broken down

into

Change Packages

 (i.e. work units)

All tasks in the middle columns (Simulation,

Flight, etc.) must be verified in some test (i.e.

Verification Package Rollup)

Each mission scenario or incremental

development of an Architectural

Element corresponds to an

Implementation Task Rollup

Figure 14: Mapping Harvest packages to the backbone schedule (non-UML)

6.4. Package definitions

The complete process requires more packages than those needed to manage the backbone schedule.

Table 2 includes the complete set of Harvest packages and a description of the role they play in the workflow. These packages are referred to in the supporting processes.

The hierarchical relationship between the Harvest packages is modeled in Figure 15
Name
Abbreviation
Description

Implementation
Task
Rollup
ITR
Incremental build plan. i.e. backbone schedule
An Implementation Task Rollup (ITR) contains a backbone schedule for developing system capabilities.

Attached artifact: none

Child packages: IT

Implementation
Task
IT
An increment in the backbone schedule

An Implementation Task (IT) contains a block of work that corresponds to a backbone increment. Each IT represents progress towards completion of an ITR.

An IT contains requirements that drive a set of Change Packages Rollups (CPRs) and Verification Package Rollups (VPRs). An assumption is made that near-term ITs are understood well enough to be decomposed into CPRs and VPRs. By contrast, long-term ITs may not be understood well enough to be fully or accurately decomposed. As the schedule proceeds, ITs acquire more detail.

Attached artifacts: none

Child packages: CPR, VPR

Change
Package
Rollup
CPR
Schedule item representing IT development effort

A Change Package Rollup (CPR) is a unit of scheduled work. The new development effort needed to satisfy an IT’s requirements is scheduled as CPRs. In other words, new developments schedule is expressed as CPRs.

Attached artifacts: none

Child packages: CP, RP, IAR (for defects with schedule impact)

Verification
Package
Rollup
VPR
Schedule item representing IT verification effort.

A Verification Package Rollup (VPR) is a unit of scheduled work. The effort needed to verify and validate an IT’s requirements is scheduled as VPRs. In other words, the test effort schedule is expressed as VPRs. VPRs cover the supplementary work needed develop and verify the test scenarios. VPR work includes development of artifacts like test plans, test procedures, results matrixes, release documentation, etc.

Attached artifacts: none

Child package: CP

Change
Package
CP
Unit of work for implementation or verification

Change Packages (CP) contains the work done to satisfy a CPR or VPR.

CPs are created, as needed, by programmers in order to promote new implementations into a baseline. CPs include only those artifacts needed to satisfy work needed to complete a CPR or VPR.

Change packages also contain work done to fix defects

Attached artifacts: source code, tests, test results or any other artifacts called for in a CPR or VPR.

Child package: none

Requirement
Package
RP
Unit of work for requirements capture

Requirements must be captured and reviewed for each IT. The Requirement Package (RP) contains the work done to capture requirements. RPs are created by systems engineers as needed in order to promote new requirements or requirement changes into the baseline. RPs include only those requirement artifacts needed to satisfy a CPR.

Attached artifacts: requirement documents (including backbone schedules)

Child packages: none

Internal
Modification
IM
Unit of unscheduled, unmanaged work

Internal Modifications (IM) are intended to contain work that is not scheduled or managed. For example, a correction to a comment in a source file or some other slight activity that has no noticeable schedule impact.

IMs should not be permitted to jeopardize the schedule. In addition, IMs are self-contained; they do not have integration impact (i.e., they do not impact other code by dependency or entanglement).

Attached artifacts: any artifact developed outside the schedule.

Child packages: none

Verification
Package
VP
Unit of work for testing established baseline

After a baseline is complete, it must be tested. VPs provide a mechanism for adding artifacts to a baseline without perturbing the core pieces. This includes artifacts like additional tests, tests results, and requirement traces.

Attached artifacts: any artifact introduced into a baseline after it has entered the Integration Test state (see Section 6.5).

Child packages: none

Internal
Anomaly
Report
IAR
Report of a defect in a baseline

Defects found during baseline testing are reported in Internal Anomaly Reports (IAR). IARs may address defects of all stripe and color including requirement defects.

NOTE: Defects with schedule impact are scheduled as CPRs.

Attached artifacts: any artifact that corrects a defect so long as the defect is corrected without schedule impact

Child packages: none

Anomaly
Report
AR
Report of a defect by a customer

Anomaly Reports (AR) capture defects found by customers. ARs are not currently used by the project.

Table 2: Complete set of Harvest Packages

[image: image15.wmf]Implementation

Task Rollup

(ITR)

Implementation

Task

(IT)

Change

Package Rollup

(CPR)

Verification

Package Rollup

(VPR)

Internal

Anomaly Report

(IAR)

Internal

Modification

(IM)

Change

Package

(CP)

1..*

1

1..*

1..*

1

0..*

1

0..*

Requirement

Package

(RP)

Work

Item

Schedule

Item

Backbone

Schedule Item

Increment

Item

Other Item

1..*

Legend

"Has a"

1..*, *

multiplicity

0..*

1

1

1

Verification

Package

(VP)

1

Figure 15: Harvest package model
6.5. Workflow States

MDS workflow is captured as the transition of Harvest packages through Harvest states.

Table 2 lists a brief description of the project-defined Harvest states. A detailed description appears in the MDS Configuration Management Plan.

State
Description

Dev Waiting
Packages in the Dev Waiting state serve as placeholders. No artifacts can be attached to a package in Dev Waiting.

Dev
Packages in Dev have artifacts that are under development. A child package can only be promoted to Dev if its parent is also in Dev.

NOTE: Since Harvest uses a delta-based repository, artifacts that remain in Dev are subject to entanglement and should be promoted to Dev Complete as quickly as possible.

Dev Complete
Packages in Dev Complete have artifacts that are complete. A parent package can only be promoted to Dev Complete if all its children are in Dev Complete or higher states.

Build Queue
Packages in the Build Queue have been promoted by the Build Manager of the CM lead in preparation for compiling, linking and testing. The order of the packages in the Build Queue reflects physical dependencies among the packages.

Build Test
Packages in the Build Test are currently being compiled, linked and tested.

Integration Test
Packages in Integration Test have artifacts that are part of a baseline.

Test Complete
Packages in Test complete include artifacts that have been subject to verification.

Release
Packages in Release include artifacts that are part of a release product (at the conclusion of the outer loop).

Figure 16 shows the basic transition paths for packages between the states. The packages enter the workflow in the Dev Waiting state and transition toward the Release state. (The Verification Package is the exception.) A transition rule is associated with each transition for each package.

[image: image16.wmf]H

Dev Waiting

Dev

Dev Complete

Build Queue

Build Test

Integration Test

Test Complete

Release

H

MDS CCC-Harvest State Model

Package X

Start

End

Conditional

Branch

Figure 16: States of the MDS Workflow

6.6. Completion of work

The promotion of package from Dev to Dev Complete signals the work is complete. Since a parent package is complete when all its children are complete, the following rules can be derived about the status of work:

· A CPR is complete when all its CPs are complete

· A VPR is complete when all its VPs are complete

· An IT is complete when all its CPRs and VPRs are complete

· An ITR is complete when all its ITs are complete

7. Supporting Processes and Plans

This section provides a brief description of the MDS supporting processes and plans. Processes describe activities that are coordinated with the project workflow. Plans describe activities that do not require coordination. Details of the implementation appear in supporting process documents and project support plans.

7.1. Process documents

The MDS development process has been decomposed into four major processes:

Schedule Process
The Schedule Process document describes the details of how the schedule are developed.

Build Process
The Build Process document describes the details of how the software are built, tested and baselined.

Requirement Capture Process
The Requirement Capture Process describes the details of how requirements are captured and what form they will take.

Verification Process
The Verification Process describes how tests will be run, how they will be mapped to requirements, and how anomalies will be handled.

7.2. Project support plans

Information Management Plan
The Documentation Process describes how and where project documents will be stored. It also describes how the documents will be published.

Configuration Management Plan
The Configuration Management Plan describes the details of how the CM system will support the Build Process, the Schedule Process, the Requirement-Capture Process, the Verification Process and the Documentation Process.

Metrics Plan
The Metrics Plan will describe which metrics MDS will gather and how they will be derived from project data.

8. Waivers

The process is intended to be flexible—for the most part waivers are not necessary. However, on the occasion that a controlled statement of a waiver is needed, the waiver document should be submitted to configuration control using the same procedures used to place a requirement artifact under configuration control. For more information see the Requirement Capture Process.
9. Acceptance Testing, Quality Assurance and Risk Management

This product development plan does not require separate Acceptance Testing, Quality Assurance or Risk Management plans.

Acceptance testing and quality assurance typically address issues like change control, anomaly reporting, and stress testing. These items are addressed as routine part of the process. The benefit of this approach is that completeness and quality testing standard ingredients of MDS product development. A separate plan is unnecessary.

Similarly, there is no need for a separate risk management plan.

There are three keys to successful risk management: 1) the ability to redistribute resources and refine obligations to meet the constraints of time and budget, 2) the ability to retire technical risk early and 3) the ability to acquire accurate and objective measures of project efficiency, progress and quality.

This plan already addresses all three strategies. Resource redistribution is handled routinely through the support processes. An iterative/incremental approach provides for the early introduction of high-risk items so that the likelihood of a big-bang integration surprise is significantly reduced. And, the well-defined workflow provides a surfeit of methods for gathering objective data—project management can use the data to track risk as it accumulates. The benefit of this approach is that risk is managed routinely. Consequently, a separate risk management plan is unnecessary.

10. tools and environments

The project must be able to adopt new technologies when necessary. Developers will identify new tools that enhance productivity. Customers will require development on new platforms with new tools. For these reasons and others that can’t be predicted, the baseline tool and environment will change.

The project will manage tool and environment changes using the same process used to develop its products.

A description of the MDS tool set and the MDS environment will be maintained online for the benefit of customers and new hires.

MDS plans to make extensive use of commercial off-the-shelf (COTS) software. The project will use COTS instead of “home grown” software where practical. If there’s a clear benefit to MDS customers, the project will attempt to establish licensing and maintenance agreements with third-party vendors.

11. plan updates

This development plan and its supporting processes and plans are living documents. As the project progresses, this document set should be updated. However, updates need not reflect every process change, rather the updates should be geared to provide benefit to the work effort. Custodians will make the updated documents available in the MDS Document Tree.

12. Ackknowledgements

We thank the Center for Space Mission Information and Software Systems (CSMISS) and Software Design, Build and Test (SBAT) for providing significant support for the development of the MDS Processes.

Appendix A: Process Development Background Documents

The MDS process team worked out the development approach described in this plan and the supporting processes. The team convened weekly for a 6-months from October 2000 through April 2001. The work was recorded in a set of meeting notes, decisions and action items. These artifacts are available online.

· Weekly meeting notes
The meeting notes record the issues, and decisions the team addressed at the weekly meetings. The meeting notes are available at
http://mds-lib.jpl.nasa.gov/mds-lib/dscgi/admin.py/View/Collection-1679

· Process Team decisions
Document that records the decisions reach by the Process team. The decision list is available at
http://mds-doctree/delivery/doc/Policy/Decisions/ProcessTeamDecisions.doc

· Process Action Items
The action items assigned by the process team were maintained in the MDS Action Item Database. The action items may be reviewed at
http://mistmac.jpl.nasa.gov:591/action_items/default.htm (search the Sub Category field for “Process Meeting”)

� Content and design of MDS products are covered elsewhere in numerous documents. For an overview of MDS see � HYPERLINK http://mds.jpl.nasa.gov/outreach ��http://mds.jpl.nasa.gov/outreach�.

� Recommended references include:

Booch, G., Jacobson, I. Rumbaugh, J. (1998). The Unified Modeling Language User Guide (The Addison-Wesley Object Technology Series) Addison-Wesley Pub Co; ISBN: 0201571684.

Rumbaugh, J., Jacobson, I., Booch, G. (1998). The Unified Modeling Language Reference Manual (Addison-Wesley Object Technology Series). Addison-Wesley Publishing Co; ISBN: 020130998X.

� A few examples: manual trace of requirements to test, verification by inspection, manual code inspections and manual metric generation.

� Framework development is the foundation of a product-line approach. For a description of frameworks see Gamma, E., Helm, R., Johnson, R., Vlissides, J. (October 1994). Design Patterns. Addison-Wesley Publishing Co ISBN 0-201-63361-2.

� Douglas, B. (1999). Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks and Patterns. Addison-Wesley Pub Co; ISBN: 0201498375.

� OOPSLA, Object-Oriented Programming, Systems, Languages and Applications, is a ACM conference sponsored by the ACM Special Interest Group on Programming Languages (SIGPLAN) and the ACM Special Interest Group on Software Engineering (SIGPLAN).

� See: Mueller, P., (1997). Instant UML. Wrox Press. ISBN: 1861000871.

� See: Krutchen, P., (March, 2000). The Rational Unified Process, An Introduction. Addison-Wesley Pub Company. ISBN: 0201707101.

� See: Douglas, B. (1999). Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks and Patterns. Addison-Wesley Pub Co; ISBN: 0201498375.

� See: Boehm, B. (1981). Software Engineering Economics. Prentice Hall PTR; ISBN: 0138221227.

� There are no required completion constraints between phases in separate increments. In other words, the process does not require finish-to-start, start-to-start, start-to-finish or finish-to-finish or any other relationship between inter-increment phases.

� The specific transitions of these packages through work states correspond the specific procedures in each process. The transitions will be described in the supporting processes.

� For example, a spreadsheet that describes the schedule is a schedule artifact.

� While requirements are in force, they are effective. Testing is conducted against effective requirements. Retired requirements are not effective. Requirement that apply to future increments are not effective.

_1067864176.vsd
Each mission scenario or incremental development of an Architectural Element corresponds to an Implementation Task Rollup�

Items in the increment column correspond to an Implementation Task�

Items in the test column correspond to test descriptions that must be converted into Verification Package Rollups which are schedulable units. Verification Package Rollups are broken down into Change Packages (i.e. work units)�

Items in the Simulation, Flight, Transport Ground and Framework columns are functional descriptions that must be converted into Change Package Rollups which are units of scheduleable work.

Change Package Rollups are broken down into Change Packages (i.e. work units)�

All tasks in the middle columns (Simulation, Flight, etc.) must be verified in some test (i.e. Verification Package Rollup)�

_1063689111.vsd
Dev Waiting�

Dev�

Dev Complete�

Build Queue�

Build Test�

Integration Test�

Test Complete�

Release�

�

�

�

�

�

�

�

�

�

�

�

�

�

MDS CCC-Harvest State Model�

Package X�

Start�

End�

Conditional Branch�

