An Architectural Pattern for Goal-Based Control

Matthew Bennett, Daniel Dvorak, Joseph Hutcherbtinohel Ingham, Robert Rasmussen, David Wagner
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
818-393-6426
{ matthew.b.bennett, daniel.l.dvorak, joseph.o.hatson, michel.d.ingham, robert.d.rasmussen, dawegner }
@jpl.nasa.gov

Abstract—Time-based command sequencing is
traditional paradigm for control of spacecraft anders in

thds time-based command sequencing, where there s b

considerable engineering investment in flight saftsv

NASA’s robotic missions, but this paradigm has been(sequence management, sequence execution) anddgroun

increasingly strained to accommodate today's nmssio
Goal-based control is a new paradigm that supgorie-
driven and event-driven operation in a more natweat and
permits a melding of sequencing and fault protecitido a
single control paradigm. This paper describes @praach
to goal-based control as an architectural pattererms of
purpose, motivation, structure, applicability,
consequences. This paper is intended to help flagid

software (tools for planning, scheduling, resourmaleling,
and flight-rule checking for activites and command
sequences). Fault protection generally exploitaisedgng
capabilities to some extent when responses aressege
usually at the expense of planned activities. Rer most
part, however, fault protection is independent #&sign,

and character, and execution from sequencing.

ground software engineers understand the new mpmadi The predominant feature of this approach is thateco

and how it compares to time-based sequenting.

TABLE OF CONTENTS

1. INTRODUCTION ..ceuiiiiiieiiiieeeeeeee et e 1.
2.BACKGROUNDccuiiiiiniiieiiieeeeeeeeeee et e 2
3.DESIGN PATTERNS ...uciniiiiieici e 3
4. RELATED WORK ..ottt 13
B5.SUMMARY e 15

6. FUTURE WORKovniiniiiiiiii e, 15
ACKNOWLEDGEMENT ...iuiitiiiiiieieieeeeneeneeieeaeanaas 16
REFERENCES....cctiiiiiii e eeeeeee et e e 16
BIOGRAPHY ...eeiiiiii e 17

1.INTRODUCTION

Much software in aerospace systems is devoted kingna
system do what its operators intend. These intestrange
from high-level mission plans to low-level hardwanedes
and from long timescales to short
Fundamentally, the software for carrying out suttlentions
must perform closed-loop control, with some contodps

operation of sequences depends on a mixture ofngrou
based a priori predictions and a posteriori chedks,
addition to on-board health and safety checks trat
typically linked only weakly to planned activitieShe
driving intent of a sequence is largely absent fthefinal
uplinked product, and the models essential totisctire
are also typically left behind, replaced by timérkat is, if
the system does not perform as predicted, discoggmmay
go unnoticed by the flight system, which is unaweafr¢he
overarching intent. If an anomalg detected, the flight
system does not have sufficient knowledge of thient or
of system behavior to safely restore operation. &ones,
the actual real-time progression of sequencesnditoned
on observations made during execution, but morellysu
these sequences proceed based purely on time.

This paradigm has been increasingly strained to
accommodate today's more complex missions, which
require more localized capabilities such as autauEm
resource management, vehicle mobility with hazard
avoidance, opportunistic science observations,sanoh. In

timescalesthese missions, keeping the ground in the loop May

impractical or even impossible, plans may be fretye
subject to change given a dynamic situation, andt fa

closed through automation and others closed througfesponses may need to restore planned activitiesrrénan
human-in-the-loop analysis and decision-making. sThi halting them.

“control software” must also coordinate activities

multiple timescales and multiple levels of systemd a
subsystem decomposition and must respond apprelyriat

failures.

For nominal operation at the system level, the dami
paradigm for such control in today’s interplanetarigsions

1 1-4244-1488-1/08/$25.00 ©2008 IEEE.
2 |EEEAC paper #1542, Version 9, Updated DecembeRQ07.

An emerging paradigm—known as goal-based control,
which is a form of closed-loop control—can provisigch
capabilities in a more natural way while still prpasng the
option to “command” a system at a very detailecllex
goal, in contrast to a command or command sequeésce,
inherently a closed-loop directive since it spesfian
intention on the state of the system under contka@r a
period of time—an intention that is monitored contusly
during execution and therefore knowingly succeadfits.

Note that a goal specifiaghat to do but nothowto do it,
thus leaving options open to the control system-ieogt
that may be exercised in both normal operationsimufalilt
responses.

Since a goal specifies a constraint on state oyesriad of
time, its execution can not only be time-driven lalgo
event-driven. Moreover,
description of intent as state and time constrgntsides a
basis for model-based reasoning that permits, Her first
time, a melding of sequencing and fault protecticio a
single, highly flexible control paradigm.

The objective of this paper is to describe one ipadr
approach for goal-based control to software engias an
architectural pattern. As a pattern, the descmplozuses on
types of elements and relationships, their mechasisf
interaction, and rules for combining them. This grap
describes a set of smaller patterns that are cardposo the
larger architectural pattern, emphasizing
architectural principles including:

e Separation of concerns:

the wuniform and complete

severa?

= Purpose What does the design pattern do? What
problem does it address?

= Motivation This is usually a scenario that
illustrates how the pattern solves a problem.

= Structure Includes descriptions of the participants
and collaborations between them.

Applicability. Conditions in which this pattern
applies, or does not apply.

= ConsequencesVhat are the trade-offs and results
of using the pattern? What are its limitations?

2.2 Separation of Control System and System Undetr@

Fundamental to these control patterns is the canckep
separation between th€ontrol Systemand the System
Under Control. The System Under Control is what the
Control System is intended to control. A clear laany is
ssential to defining clear models of behavior and
establishing clear control authority. Control spste
designers can choose to define the boundary atdavhee
interface, or a subsystem interface, or anywhese, s
long as the boundary is formally defined and thenaary

o0 separation of control system from system underules described in these patterns are adhered to.
control

0 separation of state knowledge from intent 0

0 separation of state estimation from control '[15:&\; apecifies intent,

0 separation of reactive and deliberative processing gets stalus

¢ Distinction of concepts:

o distinction between goal and command

o distinction between measurement and state

estimate

Major elements of the pattern include state vaesbboal
elaboration, goal scheduling, goal status monitprigoal
timeline execution, state estimation, controllerand
hardware adapters. As a pattern, the ideas araidgeg
independent, so software engineers can implememt in
any programming language and begin to experimetit wi
goal-based control. In fact, C++ and Java versainsady
exist and are available for use.

2.BACKGROUND

2.1 Architectural Patterns

Architectural design involves making decisions thate
system-wide impact. Architectural patterns helphadects
understand the impact of the architectural decssiahthe
time these decisions are made, because patterraircon
information about consequences and context of i
usage. The patterns used here are based roughtheon
software design pattern methodology described ih]. [1
Section 3 of this paper describes an architectpadiern
using a template of the following five elements:

Control System

controls

gets evidencs
(feedback)

System Under Control

Figure 1 — Separation of Control System
and System Under Control

2.3 State-Based Control

Control systems are designed to translate somemaii
user intent into actions that cause that interfiet@chieved.
State-based control systems make a clear distinctio
between the intent and the actions that the cosysiem
may perform to achieve the intent. Intent expresaes
desired outcomé some physical state of the system under
control, rather than a script or sequence of astieeded to
achieve it.

Control theory defines alosed-loopcontrol system as one
in which direct feedback from the system under r@rdan
be used to determine the effectiveness of contrbbras,
allowing the control system to actively compare stegte of
the system with the intent, and perform controlomc that

attempt to keep the system within a range of aeddpt
behavior. This is distinct from aspen-loopsystem where
control actions are performed without feedbackedback
allows the control system to react to unpredictabie

instantaneously, either due to the speed of sydigramics
or to potential conflicts.

The design patterns presented here are intendprbwde

unexpected effects in the physics of the systemg anarchitectural solutions for achieving closed-logmtrol in

compensate for them.

these increasingly complex systems. Section 3desgtlops
the patterns for reactive control involving a seghysical

Intent defines what the external users want the system tstate variable. Later, the section develops théeipet for

accomplish. Intent is generally defined as a ramfe
acceptable behavior that may optionally be augnoewith
additional performance measures.

deliberative control, addressing the complexityadticed
when the control intent demands coordination of tipel

Intent is expdessephysical states variables.

through aGoal. A goal is intended to constrain the state of

the physical system, but in order to do this aespntation
of that physical state must exist in the contratem. As
shown in Figure 2, &oftware State Variable the control
system represents the valueaoPhysical State Variable
the system under control. Formally, then, a gpat#ies a
constraint on the values of a software state viriaber an
interval of time. All control decisions are based the
relationship between estimated state and desirate st
(goals). Patterns for estimation and control ushig basic
paradigm are described later in this paper.

Control System System Under Control
indirectly constraing l
S [software Physical
directty State represents State
—{ constrains Variable Variable

specifies intent,
gets status

P e N
user

Figure 2 — State Variables and Goals

Real control systems, of course, usually controltipia

3. DESIGN PATTERNS

3.1 State Estimation
Purpose

Define an architectural pattern for estimating Waéies of
physical state variables based on available evigletieanly
separate estimation from control.

Motivation

It is a common mistake in control system enginggiio
make control decisions based on incomplete knowdeafg
the state of the physical system as described im ra
measurements. Measurements can be noisy, and
intermittent. Filters are commonly applied to raw
measurements, but if the results are buried in r@rab
algorithm, they cannot easily be reused by othatroblers.
Worse, two different users of the same raw measemésn
using different filters, may arrive at differenttiesates of
the state of the physical system, resulting in rabnt
conflicts. Having a single explicit representatioh any
physical state variable of the system under contraihg a
single estimator, ensures consistent representaficinat
variable in the control system.

Structure

elements in the system under control, with multipleThe primary structural elements that participate thiis

concurrent objectives. The physical state variablethose
elements may be physically coupled, or interdepende
Further, some physical state variables may notiteity

pattern are described in Figure 3.

First, theState Variableprovides an explicit representation

measurable, and many are only indirectly contredlab i, the control system of a corresponding physidates
Even as the complexity of the system increases, thgyaple of the system under control. This is &sown as

challenge for designers is to control the wholdesysin a
coordinated way.

Real control systems often employ botkhactive and

the software state variable to make the distinction clear.
State variables are first-class entities in thiggpa for three
reasons. First, a direct representation in softwafréhe
physical state being controlled makes the softwame

deliberativecontrol, according to the timescale for reactingreadily understandable. In addition, telemetry Haze state

to feedback and the form of reasoning applied meaing
intent. In relative terms, reactive control opesabe faster
timescales and makes control decisions based arrawm
scope of awareness. Deliberative control operatesawer
timescales and makes control decisions based oider w
scope of awareness. Deliberation is driven by teednto
anticipate future demands and to attempt to ensume
conditions appropriate to those demands will hagenb
established, where such conditions cannot be asthiev

3

variable values is generally more informative thaw
measurements because they refer to a physical [statg
monitored and possibly controlled. Second, thetemie of
the state variable permits a separation of conceehseen
estimation logic and control logic. Third, the égisce of a
single software state variable for each physicgkestariable
ensures that there is one definitive source famases of a
given physical state in the control system, ang onke way

to access it. This avoids the common situationreviteo issued to an actuator affects one or more phystesés, and
different controllers each have their own privaté-b can therefore provides evidence about the valuahase
inconsistent estimates of a physical state, leadiog physical states. Thus, estimators may acquire mdy o
surprising and potentially hazardous interactions. measurement evidence from sensor hardware addpiers
also command evidence from actuator hardware adapte

constrains

Goal State Variables store information about the systéate in
conauilts: the form ofState Value FunctionsThese are distinct from
updates - Measurements in that State Value Functions must be

i continuous over time, and explicit about uncertaint

Softwara | Estimator Measurements are readings at discrete points i, tand

State ' usually provide a single uncalibrated value. Thacess of

S acquires Estimation (the role of the Estimator) involvesiloadtion,

hardware smoothing, or noise elimination, and applicationsgétem

Uik models to determine and express uncertainty. Stites

P can explicitly represent the fact that the systetesmay be
unknown in situations where measurements are not

Physical Sensar Hardware Adapter

State Senses
Variable .__l

available (e.g., if a sensor is powered off orefd)l

Estimators produce state knowledge and repeateuiista
software state variables. The precision and cextahthat
state knowledge depends is driven by need, typichk
need to control one or more physical state vargaltea
desired accuracy. Goals are used in this patteexpoess
constraints on the desired quality of the statewkedge,
An Estimatoris responsible for actively providing values to which may vary over time. Thus, estimators can ibsved
populate the state variable with the best estirofiis value as “achievers” for these goals.
from available evidence. In the simplest case déimasor
may have only one source of evidence, such a#gpplicability
measurements from a single sensor, but in the gknase
there are multiple sources of evidence: measurenfeon
multiple sensors, commands sent to multiple actaaend
estimates of other state variables. The role ofedtanator
is to combine that evidence into a “best guesghefvalue
of the physical state, known as @stimate Estimators must
deal with discrete and continuous values, noissing or The existence of software state variables as dlests
corrupted measurements, and inconsistent evideree f citizens in the architecture encourage a separatibn
multiple sources. These characteristics undersgbyestate concerns between estimation and control. The State
estimation deserves special attention, quite afrann Estimation pattern—and the State Control patterat th
control. follows—formalize this separation. This separatid
important because it decouples two concerns thag bfien
The Hardware Adapteris simply a formal interface to the been intertwined in control system software, makiagh
system under control. It provides a command iat&ffor concern easier to design, implement, verify, andee
components that can be directly commanded (act)ator
and a measurement interface to components thaiderov Also, the role of a software state variable assitie source
measurements of the system state (sensors). itsrolais of information for estimates of its correspondingysical
to formalize the interface, but it can also sexv@drmalize state variable eliminates the potential problenmaitiple,
the interface (like a device driver) and bufferadat private-but-inconsistent estimates within a consy@tem.

Figure 3 — Estimation Pattern (minus command
evidence)

This pattern applies in any control system wheratadge
of the target control states must be inferred fs@nsors or
other indirect evidence.

Consequences

Measurementare raw samples delivered from sensors to aiThis pattern also makes a clear distinction between
Estimator via a Hardware Adapter. They can haw anmeasurements and state estimates. This is an amport
form, since this is often determined by the setsodware. distinction for robust control systems because ehare
They should have time tags to eliminate timing ajaty. It often multiple sources of evidence about the stdtany

is important to remember that measurements arestaté single physical state variable—sources that shoodd
estimates; measurements are a type of evidence msed examined and reconciled before making control dwss
estimators to generate state estimates.

Commandsre another type of evidence used by estimators,
though not shown in Figure 3. Specifically, a comoha

4

3.2 State Control
Purpose

Define an architectural pattern for exercising colnover a
given target system in a way that directly usesatedge of
the state of the system under control.

Motivation

Consider a simple thermostatic temperature cosysiem.
The system under control includes a temperatursoseand
a heater which can be controlled by a switch. Jbed is to
maintain the temperature within a target rangeyithin a
target range.
control system for this is straightforward. Howewshat if
the underlying system changed (such as a chandketo
sensor) after the software was written, or you togabrt the
control system to different hardware? How hard lddube
to pick apart the various models, assumptions,
algorithms from the code?

The closed-loop control pattern is intended to asslrthis
problem by defining placeholder elements for eathhe
key roles in a control loop, and rules governingasation
of responsibilities between these elements.

Structure

The elements of this pattern are shown in Figure 4.

constrains

Goal
consults
Software Controller
Statn achieves
Variable
commands
represents 6
Hardware Adapter
Physical Actuator
State affects
Varlable

Figure 4 — State Control Pattern

As in the State Estimation pattern, a Hardware Aetap
provides a line of separation between Actuator in the
system under control, and @ontroller in the control
system.

Control intent is expressed through the us&oéhls which
express a constraint on the target state over tenval of
time.

A Controller is responsible for any direct interactions with
the system under control required to change orrabitfie
target physical state. The controller can issurmeands to
the target system through a Hardware Adapter. Arobher

is goal-directed in the sense that it issues condisaas
needed in order to drive the state of the physgsiem into
agreement with the goal, or desired state. Not¢ tiha
controller bases its decisions on the comparistwdan the
goal and state knowledge provided by state vamalie
other words, the controller never examines raw
measurements to make control decisions, i.e., iteme
performs any internal state estimation.

Designing and implementing a 5°ﬂwarApp|icability

This pattern applies in situations where the codntrtent
(the goal) can be expressed as a constraint o ctar a
time interval, or as a sequence of such constraantd

anwhere the target state can be explicitly described state

variable, and where the target state is directhtratlable.

This pattern is typically limited to primitive sest of the
system under control that can be affected throwtiators.
The controller may rely on models of the systemaund
control to determine appropriate control actionsewhhe
target state can only be indirectly controlled.

Consequences

This pattern, like the State Estimation pattermppsuts the
separation of concerns between estimation and apraind
therefore makes control software easier to design,
implement, and verify because control logic is clga
separated from estimation logic.

This pattern places responsibility for control oplaysical
state variable within a single controller. As sudh,
controller may issue commands to multiple actuator
hardware adapters that have an effect on the @lysiate
being controlled.

3.3 Reactive Closed-Loop Control
Purpose

Define an architectural pattern for exercising sangosed-
loop control over a given target system in a way threctly
represents knowledge of the state of the systemerund
control, distinguishes between raw evidence ande sta
estimates, cleanly separates state estimation @ambrol,
and bases all control decisions on the relationbeigveen
estimated state and desired state.

Motivation

Consider a simple thermostatic temperature cosysiem.
The system under control includes a temperatursoseand
a heater which can be controlled by a switch. Jbed is to
maintain the temperature within a target rangeyithin a
target range. Designing and implementing a softwar
control system for this is straightforward. Howewshat if

the underlying system changed (such as a changbketo As long as the system is accurately modeled anihason

sensor) after the software was written, or you togabrt the
control system to different hardware? How hard lddube
to pick apart the various models, assumptions,
algorithms from the code?

The reactive closed-loop control pattern is intehde
address this problem by defining placeholder eleméor
each of the key roles in a control loop, and rgiegerning
separation of responsibilities between these elesnen

Structure

The structure of this pattern is a simple compasiof the
state estimation pattern and the state controlepatas
shown in Figure 5.

consults, | Software
updates Siate consults
Variable
constrains
iEs‘llmator achiwes.l Goal | achieves [controlier,
|
i e —
acquires commands
command & measurement
evidence
r 3 ’Iuj
Hardware Adapter Hardware Adapter
| Sensor Physical Actuator
State fracts
SENSEs affec
_ Variable i

Figure 5 — Reactive Closed-Loop Control

What is important to note in the structure of thagtern is
how it can be composed from the sub patterns dubeo
clean separation between estimation and
Estimation and control are separate functions thaly
interact through the state variable.

Applicability
This pattern applies in situations where the in{ém goal)

can be expressed as a constraint on state oveme ti

interval, or as a sequence of such constrainthdsimplest
case, the goal may be statically built into theeys In the

controf

and control algorithms are faithfully executed,stipattern
works for all control problems where the intent dam

andxpressed as a single constraint, or at least glesin

constraint at a time. The pattern can be extetalsdpport
more complex behaviors in the following ways:

* Complex constraints (e.g., trajectory) — Here theal
includes timing information that describes a pdtrotigh
state space over time. An example of this igaasition
goal, which is defined as a goal that allows for tlamsition
from one stable state value to another. Transigoals
express intent to have the state arrive at a ta@ee, yet
avoid a determination of failure if the state istno
immediately being satisfied. For example, a tit#orsigoal

on a temperature state variable might be definataoit is

succeeding as long as the temperature is movingrtbthe

target value, whereasmaintenance goalould be defined
so that any excursion from the constrained valuggea
would be considered a failure.

* Hierarchical layering of achievers — goal achisvean be
organized in a control hierarchy whereby a higlesel
achiever issues goals to subordinate achieversdamate
their actions in real time. An example is a positi&

heading controller for a Mars rover that issued-tiege

goals to the multiple driving and steering contl

* External sequencing of constraints — this appno&
commonly used in robotic systems not only to seqgeehe
constraints on a single state, but also to cootélirthe
application of goals applied to many states. Setose3.7,
Executive Control.

These patterns can be combined in various ways to

implement quite complex behaviors. A common littidta,
though, is the limited tolerance for faults. Intpaular, the
sequencing of goals into complex activities wilpitally
describe one plan or script with all events ordenetime,
or possibly sequenced according to states beinig\ath If
omething breaks, or something unexpected hapfeess
scripts have only a limited ability to recover besa there is
no explicit representation of the higher-order t@and no
formal mechanism for expressing alternative methtmls
accomplish them. This limitation motivates the Detative
Closed-Loop Control Pattern described in sectién 3.

3.4 Goal Network

Purpose

more general case, an external sequencing mechanism

delivers goals in order, as described later instaion 3.7,
Executive Control.

Consequences

Some states can only be controlled indirectly.His tase
the pattern may extend, and control loops may apeone
another via common state variables.

Define an architectural pattern to represent thetiomships
between a set of goals on a set of state varitiéespecify
control coordination across states and over time.

Motivation

The primitive patterns described thus far provigde means
to control state variables individually. In orderdoordinate

control of multiple states, a way is needed to esent
relationships among goals on different state véeab

Structure

constraints, in this case indicating a minimum and
maximum duration allowed between the given timen{soi

Earlier, a goal was defined as a constraint orvéiee of a
state variable over an interval of time. Note tihat goal's

A Goal Network(see Figure 6) is primarily a container for a relationship with time is indirect, through its agbnship

set of goals and their associated software staieblas. To
make any sense as a plan, goals must be tempuoekdted
with one another. This is done usifgme Pointsand
Temporal Constraints

with a starting and ending time point. Constraiotsthe
duration of the goal are specified through temporal
constraints on the bounding time points, and ngbaas of
the goal itself. This separation of concerns allder goals
that do not have any temporal constraints, buisit allows

A time point represents an abstract event. Eversl go temporal constraints that are not elaborated froaisgto be

associates with exactly one starting time pointl ame
ending time point. However, time points can be stidny
many goals.

Time points carry no internal relationship to tinkestead,
all temporal relationships are represented throtgynporal

added as part of the scheduling process, which beéll
described later.

Every goal instance in the network associates avispecific
software state variable that it constrains. Theofgyoals
associated with a single state variable can be atedgnto

Constraint objects, which also associate with one startingt sequential timeline through the process of ondethe

time point and one ending time point. A temporaistraint

time points into a topological ordering that séisfall of

can specify a minimum and maximum duration allowedthe temporal constraints. This may result in oygiag

between two time points, or simply a sequentialednd)
constraint.

goals on the same state variable. Thus, goals Inawst the
property that allows them to be combined,nzerged The
process of merging two goals may result in a newrem

A Goal Networkcontains goals, time points, and temporalconstrained goal. Merging occurs as part of thedaeling

constraints, as shown in Figure 6. The term “geavork”

is used because the topology of the containeras dh a
directed graph where the time points are the nagles the
goals and temporal constraints are the edges. paeerit’
relationship shown in the figure means that eac gas a
link to its parent goal. This parent/child relatbip is
populated during goal elaboration, as explaineddation
3.5, Goal Elaboration.

Goal Metwork
A 4,
Goal start, end Time Temporal
Point | _|Constraint
parent

Figure 6 — Goal Network

Since time points can be associated with diffegals on
different state variables, they enable coordinatibrgoals
across different state variables. Figure 7 depgintexample
goal network. The yellow circles represent timenpgi The
green boxes represent goals aligned along state liires.
Time points joined by vertical lines indicate thiabse time
points are shared, representing events that cotinedtate
time lines. The arcs between time points repressnporal

process described later.

A goal network can exist in two states. When ifiitia
constructed, anunscheduled networkis simply the
aggregation goals, time points, and temporal caimgs
representing a proposed plan. Amecutable planhas
undergone scheduling and verification (describedr)ato
merge and order goals according to temporal cdntdra
and verified that the proposed plan is achievable.

1to 2 hours

Camera Power:

0to 10 sec is On

Camera Power:
is transitioning to On

Camera Power:
is known

Camera Power:
is known

Camera Power Switch:
is transitioning to Closed

Camera Power Switch:
is Closed

Figure 7 — Example goal network depiction

Applicability

This pattern becomes applicable as soon as cotedina
control over multiples states is required.

Consequences

The use of temporal constraints to indirectly coaistevent
times allows for temporal flexibility in the plai€ontrast
this with sequences having fixed event times, orelgu
sequential ordering.

3.5 Goal Elaboration

Purpose

scheduling failures, and failures of supportinglgahuring
execution. In the latter case, goal elaboratioreBponse to
execution failures is called re-elaboration, andescribed
further in section 3.8, Goal Monitoring and FaudsRonse.
In the case of a scheduling failure, a schedulagusine
tactic is determined to be unachievable, so thboetdor
tries a different tactic if one is available.

The elaborator is separate from its goal mainlgéparate

Define an architectural pattern to represent causalpecification of intent (the goal) from planninghbeior that

dependency relationships among a set of goals.
Motivation

Coordinated control is about controlling severahponent
states to accomplish some higher intent. In or@achieve
intent on a given state variable, the control systeay need
to control other state variables that are causaligted. In
other words, goals may beget other supporting goals

The elaboration pattern provides a formal mecharigm

may or may not need to exist where the goals azeutzd.

The process of elaboration is performed at thel lef/an

entire goal network. The initial set of goals ialerated and
then their supporting goals are elaborated receissiuntil

the process bottoms out with goals having no ektbos
(i.e., having no need for supporting goals).

Goal elaborations are normally defined such thppstting
goals are on state variables that are either thee sgtate
variable as the parent goal, or are state variahkasaffect

which a goal (an expression of intent) can specifthe parent goal's state variable [12].

dependencies on other supporting goals neededhé@r t
own achievement.

Structure

The elaborator class can be more than a simplaic@ntof
a set of predefined tactic sub-networks. It can use
information available in the network context indlugl
current and historic states of the system (fromtesta

Elaboration is defined as the process of generating thgariables) to compute tactics appropriate to theemyi

additional supporting goals that would be neededhia
same plan in order to accomplish the “parent” gawaigoal
can associate with an Elaborator (see Figure 8pe/ub it

is to provide the additional plan elements needeachieve
the given goal. This set of supporting goals—pduny
needed time points and temporal constraints—is knasva
Tactic Tactics are small goal networks defined in suppo
of a particular parent goal. A goal can have mbentone
tactic, i.e., there may be more than one set opaujmg
goals that can help achieve the parent goal.

Goal Network

i—r;

_Ta::m:

Figure 8 — Goal Elaboration Pattern

Elabora [;

|

When the elaborator provides multiple tactics, amig can
actually be used at a time in a single plan. Arbalator
determines the tactic to apply depending on a tawé¢
possible conditions, including current state vddalalues,

situation.
Applicability

This pattern applies to any system where coordihate
control across multiple state variables is needed.

Consequences

A goal represents a desired outcome, and that emgesi
operators to think in terms of the outcome ratliemtin
how it will be achieved. Of course, somebody stdls to
design the tactics to achieve the outcome, butithdbne
once, and then appropriate tactics are selectedéfter via
goal elaboration.

The elaboration process can be invoked prior t@uien

(at plan design time) to elaborate operator-spetifjoals
into the complete set of goals needed to accomplish
intent. A modified version of the process can bedugduring
execution to respond to goal failures. (A goal wglling

tactics can be re-planned by removing its curraatids
from the goal network, and elaborating and schaduén
alternate tactic.)

3.6 Goal Planning and Scheduling

Purpose

Define a pattern for automatically preparing a guetivork
for execution.

Motivation

The power of the elaboration process is that it esak

Before a scheduled goal network is ready for exeeut
must be validatedvalidation of a scheduled goal network
checks that sequential goals on state variable@rsistent

possible to describe a high-level goal and all bé t and that state predictions based on the orderedramnged

supporting goals it needs to be achieved.
flexibility is achieved if the elaborations spectfye fewest
temporal constraints. Additional constraints need be
added to the goal network by the planning and sdireyl
process to create an executable goal network shigtawn
to be “achievable”. Achievability is determined blye
planner by checking the executable goal networknagthe
capabilities of the control system, and the physitdhe
system under control.

Structure

The planner/scheduler shown in Figure 9 represtrgs
object performing planning and scheduling.

planner/scheduler is basically a constraint solGren a
set of proposed goals, and temporal constraintgegeth a

Maximungoals meet the intent of the ordered and mergeds.goa

Sequential goals are checked against transitioiewadility

criteria to determine if a goal can begin executiigen the
previous goal's end condition is met. Predicticm®
computed using a mechanism called state projeetitich

takes into consideration models for the effectgadls on
affecting states, initial state variable valuesygatal models
of state variable behavior, the behavior of thetr@rsystem
when it executes goals, and temporal constraintghen
goals. If a consistency check for sequential goala state
prediction check fails, the scheduled goal netwdsk
rejected, and the scheduler attempts a differes¢rorg of
time points. If all consistency checks succeedn thtee

Aordered and merged goal net is promoted for exatas an

executable goal network. The projections for eadrged
goal are saved with that merged goal in what itedahn

directed graph) the planner first elaborates alblgo executable goal. If no ordering of time points tessin a

recursively to populate a complete set of goalsleeeo

valid goal network, the planner/scheduler backtsatk

achieve the proposed goals. The planner then merggboose another elaboration tactic.

concurrent portions of overlapping goals on the esztate
variable. Merges that result in unachievable gamis
rejected.

Executable Temporal
Goal Constraint
Metwork adds,
retracts .
produces, 'Fal'u:l ates/*‘/
Blanner adds, Tactic
retracts
m—
‘N""\
consuls MEFS selects
Software i SEk |
Elsborator
Variable

Figure 9 — Planner/Scheduler Interactions

Applicability
Needed if goal elaborations allow for temporal ithity
Consequences

A key advantage of the planning and schedulingepatis
that problems can be detected before they happen by
checking predictions for planned executable goals.

An executable goal network has been validated again
models to ensure that every goal is achievable, evedy
transition from one goal to the next is achievalidthough
the ordering in which goals are executed along giagn
state variable timeline will be fixed by this prese the
network may still permit flexibility in the ordemiwhich
events occur on different timelines, and the firiofgtime
points.

3.7 Executive Control (Timeline Execution)

Purpose

Define an architectural pattern for execution oplanned
and scheduled network of goals (an executable goal

Schedu”nga goa| network is the process by which annetwork) that will execute goaIS associated Wlthﬂpbd

elaborated goal network is prepared for executfinthe
end of elaboration, each state variable has goalstiane
points defined on it. Scheduling picks an orderaigthe
time points for each state variable. Goals thatlapeover
time intervals are merged.
inconsistent goal, then a different time orderingsélected
by the scheduler. In addition, the temporal coirgsan the

activities according to a time-driven, and statgedr
schedule.

Motivation

If merging results in an

Given that operator intent is captured within al gedwork
as a series of goals placed upon state variabbes,isthis

goal network are propagated to determine if thel goaranslated into activities performed by the systender

network is temporally consistent.

control? Using the simple thermostatic control eglemthe

switch to the heater must be turned on at tigramt turned

must perform an action. The temporal constraintghef

off at time {. During that span of time the heater mustcontributing goals determine the valid range ofesmor

remain within a certain temperature range. In éxample
there are two events that must occur; turning thigcls on
then turning it off. During the period of time tisaitch is
on the temperature of the heater must be monittoed
ensure it remains within the range specified bygbal. The
Executive Control pattern ensures the events owadilrin
their temporal windows.

Structure

The purpose of th&oal Executiveas depicted in Figure 10,

is to carry out the intent represented in an exdstatgoal
network by dispatching goals for
appropriate times. The executive relies on thetfaat goals
express a continuous intent on a target stateblaras long
as they are in effect, and it is the responsibdityhe control
system to continue to try to achieve each assigoad for
each state variable until the next goal is dispaddor that
state variable.

The executable goal network specifies the intenelines
for each of the state variables modeled within ¢betrol

system. An intent timeline for a state variableeigresented
in the executable goal network as of a seriesnoé tpoints

connected by merged, executable goals. Schedubed ti

points can retain some temporal flexibility as a#d by the
set of temporal constraints in the goal network.tid®e is
advanced by the executive, it is the responsibibtythe
executive to continually propagate the temporalst@mnts
to refine the schedule of each time point.

Executable
Goal
Metwork

executes

propagates

fires Time

Paoint

Executive

=

consults

“~djspatches
e

.=
COnstrains

Software Goal
State

Variable

Figure 10 — Executive Pattern

Like goals, executable goals are bounded withistadnd
ending time points, some of which may have beereigeed
during the scheduling process due to partially laygring
goals. A time point represents a time at whichekecutive

10

window, in which the time point is considered open,
eligible to fire. To fire a time point, the Goal &outive
checks that all the goals that have this time pamtheir
starting time point are “ready” to start executitttgt is, the
post-conditions and pre-conditions associated vitle
transition from the current executable goal to tiext
executable goal on the timeline have been satiqiéd
When the Goal Executive fires a time point it beesm
“grounded” in time, removing any temporal flexibjiit
may have had, and the next executable goal's @nstis
dispatched to the control system for execution. Gual
Executive will honor a not-ready transition statwhile

execution at thewithin the eligible window of the time point and tno

dispatch the next executable goal, however once thas
window the Goal Executive will fire the time poiand

issue the next executable goal even if it is netdyefor

transition. Thus a temporal problem in executionl e

manifested as a potential goal failure by the gbat was
not ready to transition.

Consequences

Executive Control provides for the sequencing divies
on individual state variable time lines and therdomation
of events across all state variables modeled withia
system. As an independent functional entity, thealGo
Executive may continue to execute the latest mispian
while other planning activities occur. It providemn
intermediate rate of execution between potentiathg-term
planning activities and rapid execution cycles akactive
control system. As such, care must be exercisednwhe
choosing a rate of execution for the Goal Executive

3.8 Goal Monitoring and Fault Response
Purpose

Define a pattern for monitoring the execution oflgoin
order to respond to goals that cannot be achiegedl (
failures).

Motivation

Time continues moving forward regardless of whaigens
in the system. Although a reactive control systeiith the
knowledge of intent available in a goal, may beeatd
compensate for some unexpected events, thingdittdails

Since the current goal network was planned usispegific
set of tactics to achieve certain goals, there bayother
goal networks (using alternate tactics) that costdl

achieve the plan’s intent.

For example, consider a goal to drive a mobile rdimm
point A to point B through city streets. The skawailable
routes is constrained, and a given plan may chaose
route. However, after executing part of the roue,
obstacle is encountered, preventing further advaceg

that route. Now the only option is to give up tharent
plan, and try another route.

Since the current plan may also contain goals d@hatstill
relevant, the executive and the goal achievers atajust
stop — they must continue trying to achieve theerurplan
until a new plan can be produced. So, a separet@anism
is required to notice that the plan is failing, aratify the
planner to do something about it.

Structure

The parent goal’'s elaborator has several optiohgah
decide to do nothing (i.e., just let the plan cond to
execute and hope for the best); it can assert aor er
condition that would stop and safe the system; ah c
propose a change of plan by invoking re-elaboratiba
different tactic; or, it can “fail up” by consultnits parent
for a fault response. The process of failing up foal
elaboration hierarchy allows a fault to propagatetal the
level of intent at which it can be appropriatelydavith.

Consequences

The Goal Monitor is a separate element of the controlSeparating the goal monitor from the executivevedidhe

system that monitors the status of all currentlgaexing

goals. The Goal Monitor consults each executabl&’gjo
associated state variable to check the estimaade against
the intent of the goal. The Goal Monitor may al$eak

temporal constraints and projections to determiree goal

can still be satisfied. If the state variable répdnat a given
merged executable goal is no longer satisfiable, Gwoal

Monitor will then initiate a fault response.

——, Yerifies
Goal Monitor | saiisfaction) Goal
consults gets failurg
N response
Software
State
Variable consults | Elaborator

Figure 11 — Goal Monitor

First, it will attempt to determine which of thentabuting
goals merged into the failing executable goal Haited. To
do so, it will query each of the contributing gotdssee if it
is still satisfiable. For each failing goal it théinds that
goal’'s parent goal (using relations in the goaivoek), and
notifies the parent goal's elaborator, which in ntur
determines an appropriate fault response.

replan failing goals

elaborates,
lschedules

Planner Goal Network | monitors ||Goal Monitor

gxecutes

delivers new plan Executive

Figure 12 — Fault Response

11

executive to continue trying to achieve the curnglan as
best it can. Separating the goal monitor from the
planner/scheduler allows the monitor to continuecking
the status of goals even after a fault is deteeted a
response initiated. If a second fault occurs, tloaitor and
planner/scheduler can then prioritize their respdresed on
relationships between the failing goals. For exanpl
several goals are all failing at the same time ikaly
situation if their state variables affect one aeoththen the
goal monitor, or planner can determine that they alt
children of the same parent goal, and then onlyehtav
replan that one parent goal. Or, it can deterntivae the
goals are entirely independent, and re-elaboratd an
reschedule them separately.

3.9 Deliberative Closed-Loop Control
Purpose

Reactive control is very useful for many situatiomisen
control decisions can be made without looking fdp ithe
future. However, sometimes the determination of twha
should be accomplished in the present depends @ iwh
planned or predicted for the future. Because reaciontrol
systems have no knowledge of future plans beyored th
activity they are currently trying to accomplishgete is a
need for a mechanism to control systems that nmorgtider
the future. The deliberative closed-loop controlttgra
provides such a mechanism.

This mechanism constructs, monitors, and revisesl go
networks that take into consideration requirememntsvhat
needs to be accomplished in the future. The delibher
closed-loop control pattern monitor function resg®rno
unpredictable or unanticipated events as they odoung
execution.

Motivation

Consider the problem of maintaining a battery state
charge through a series of activities that bothsauame and
produce energy. One can represent the requirengent t
maintain the battery state of charge above a mimrtionit

as a goal on a battery energy state variable. Theitges,
represented as a series of goals, need to be dratetine
into a plan such that the battery state of chaogs ahot fall
below the minimum limit. The goals that affect thattery

state of charge in the plan are used to predictbtittery Consequences

state of charge, and validate that the plan doésintate
the minimum battery state of charge limit. The gtal
maintain the state of charge can be monitored durin
execution, and activites can be shed if the use an
unexpected amount of power.

A key advantage of the deliberative closed looptrabn
pattern is that problems can be detected beforehtthppen
by checking predictions for executable goals. Giuive
action can be taken before serious consequencas.drer
example, if battery energy is being used fastern tha
predicted, the goal network may be revised to dbeer

Applicability priority energy-consuming goals. Or it may scheduésv
This pattern is applicable to situations in which: goals to charge the battery.
(1) A large number of state variables need to beThe deliberative closed loop control pattern magune
controlled in parallel, significant computing resources and time for peniog
scheduling. This can be ameliorated by ensuring goal
(2) The control strategy involves a series of actigitie networks are scheduled for a limited time horizawgiding
organized into a long term plan; the computational expense of long-term planningoApre-
scheduled networks can be quickly swapped in iast f
(3) The activities can be expressed as goals on statésponse is required. An example may be a “safeergodl
variables: network” that puts the system into a safe state.

(4)

()

The state variables must be controlled to meet userfhis pattern needs good models of physics and ahie

defined goals; and behavior to validate scheduled goal networks. Hamev
models only need to be as good as necessary tevachi

The plan needs to be able to be change@bjectives. Many times conservative simple models a

automatically in response to unanticipated or

unpredictable events.

Deliberative Closed-Loop
Structure Cantraol
This pattern is a composition the following pattern
described previously:
(1) Goal Network Software
State
(2) Goal Elaboration Variable
(3) Goal Planning and Scheduling
(4) Executive Control (Timeline Execution)
Reactive Closed-Loop
(5) Goal Monitoring and Fault Response Control
Construction of a goal network includes the elationaof
operator-specified goals, scheduling the resultoopl Figure 13 — Deliberative and reactive closed-loop
network, and validating the result as an executajual control patterns are connected through
network. The executable goal network is executedhay software state variables.
goal executive, and as each executable goal exeduis d ¢
monitored by the goal monitor. The goal monitor ifitest adequate.
the planner when an executable goal fails, allowing . . .
Purpose

Combining these patterns enables the kinds of ocapl . _ .

behaviors made possible by traditional sequenaimyfault ~ Réactive and deliberative closed-loop control pagteare
management mechanisms, but in addition, it accoratesd combined into a single pattern to allow for higlffllgxible
dynamic changes to the plan. Specifically, it jues a and robust control system behavior.

coordinated mechanism for responding to faults threro o

unexpected deviations from the plan. Motivation

Control systems may need to be both reactive tollsma
changes in the system under control, as well agyl=dle to

12

plan and execute a long-range series of taskseXxample,
a Mars rover needs to be able to deliberatively @lasafe
path across rocky terrain and also reactively @bnits
wheel rotations to accommodate slippage while raaiirtg
forward progress.

Applicability

This pattern is applicable to most embedded andtiob
control systems, which require both deliberatived an
reactive control.

Structure

This pattern is a composition the following pattern
described previously:

(1) Reactive Closed-Loop Control
(2) Deliberative Closed-Loop Control

These two patterns are connected through softwiate s
variables, as shown in Figure 13. State variables a
estimated and controlled by the reactive contrstesy in
response to executable goals metered out by titeedative
closed loop control system. The deliberative cdrdystem
sequences and validates the plans for goal execusiod
detects goal execution failures as the reactivércbsystem
acts on the goals. The deliberative control systesponds
to goal failures through goal re-elaboration anldesiiling
to produce a modified executable network. Figurestidws
major data flows within this combined control patte

Consequences

The integration of deliberative and reactive cantmongs
some complexity in terms of interactions betwees tilvo
patterns, but this complexity is largely inherent the
challenging control problems for which it is applate. The
intent of specifying this architectural patterrtasprovide a
structured means of dealing with this complexity.

13

Control System
operator-specified goals

Y

Goal Elaboration
& Re-elaboration

Scheduling

executable
goal network goal
failures
State Variables
Intent timeline I > Goal.
| Executive
Knowledge timeline | y, » & Monitor
)
control
knowledge goals
A 4 goals A\ 2
Estimators Controllers
A A
measurements v commands
Sensor Actuator

Hardware Adapter Hardware Adapter

System Under Control

Figure 14 — Major data flows within combined
architectural pattern for goal-based control

4. RELATED WORK

The idea of operating systems at the level of ekpintent
is not a novel concept. For example, thermostais baen
used to control the temperature of building inteyifor over
a hundred years. The thermostat’s set point isra @ goal
in that it specifies the desired temperature thatiuilding’s
heating, ventilating, and air conditioning contrg}stem
must achieve and maintain. In the context of space
exploration, goals have actually been used for diecan
limited fashion, particularly in the context of sparaft
attitude and articulation control systems, for plueposes of
pointing science instruments, communication antenna
solar panels, etc. Vehicle reorientation and gindagles
are “commanded” by specifying trajectories of dedir
angles and rotation rates; these state trajectarggexplicit
representations of intent. Until recently, howevsuch
representations have not been used consistenthgsaail
spacecraft subsystems, and have not been integiratzd
coherent system-level control architectures andatipas
processes. This section provides a brief overvievelated
work in goal-based control architectures and geakd
operations (GBO), highlighting a number of sigrafit
achievements from the space exploration domain.

One of the first full-scale (system-level) applioas of plan that satisfies these goals and schedule tiétias in
goal-based control architecture was the Remote A@d) the plan such that conflicts between incompatiloleviies
Experiment [3], which was flight-validated in 199@ the and oversubscription of limited resources are aachid
Deep Space One (DS1) spacecraft, the first deepespaMAPGEN leverages the automated planning and scmedul
mission in NASA’s New Millennium Program. RA is a engine that was flight-validated as part of RA of-D
model-based, reusable, artificial intelligence (Afftware integrating it into a GUI environment that enaldeerators
system that enables goal-based spacecraft comngaadih to incrementally build and edit their plans. Witisttool, a
robust fault recovery. A simplified view of the Rédftware plan is refined through iterations of automated potation
architecture is shown in Figure 15. RA consistgefieral- and judicious hand-editing based on domain expggrtis
purpose reasoning engines (both deductive and guoa® eventually converging to a final plan that the eper finds
and mission-specific domain models. One of its keyappropriate. Onboard each rover, the flight sofevas
characteristics—and a main difference with trad#@ilo programmed to accept a combination of abstract-igaal
spacecraft commanding—is that ground operators cadirectives, such as ‘drive to waypoint’, and lovievel
communicate with RA using goals (e.g., “During text commands. In a remote and unpredictable environiient
week take pictures of the following asteroids awdist 90% the Martian surface, the rovers robustly achieveirth
of the time”) rather than with detailed sequenckimed ambitious science objectives by taking advantag¢heir
commands. RA determines a plan of action that @ekie ability to make certain decisions in-situ, and exec
those goals; actions are represented as tasks atieat flexibly-specified plans in an event-driven fashiorhese
decomposed on-the-fly into more detailed tasks andare fundamental characteristics of goal-based mgste
eventually, into commands to the underlying fligbftware.
The RA Experiment provided an invaluable proof-of- The most recent and comprehensive space-basedatjpli
concept and lessons learned in a number of ameaading of a goal-based control architecture is the Autooasn
benefits and challenges associated with autonorgoas Sciencecraft Experiment (ASE) [7, 8]. ASE is a wafte
based operations. These lessons have been docuhiente system currently flying onboard the EO-1 spaceckalfiich
the Remote Agent Experiment DS1 Technology Valmati has demonstrated several integrated autonomy tkufies
Report [4]. that together enable science-directed autonomous
operations. The ASE software includes onboard contis
NASA’'s Mars Exploration Rovers (MER) [5], Spirit @n planning, robust task and goal-based executionpabdard
Opportunity, also employ a certain degree of g@sedl machine learning and pattern recognition, and hasem
operations capability, in both the ground systend anrecently been augmented to demonstrate model-based
onboard the rovers. In the ground system, operaseshe diagnosis capabilities with RA heritage. Like RASE
Mixed-initiative Activity Plan GENerator (MAPGEN [6 began as a technology experiment within NASA’'s New
tool to plan each rover’s science and engineerotiyiies Millennium Program, as part of the Space Technolégy
on a sol-by-sol basis. Given a set of user observaioals project. Early tests had the goal-directed plannargl
and their priorities, this tool enables operatorsdnstruct a execution capabilities deployed as part of a greomskd

Scripts

Deep Space One

Remote Agent

Mission
Manager

Scripted
Executive

HSTS:
Planner/
Schedule

Livingstone:
Diagnosis &
Repair

Planning
models

Component
models

Figure 15 — Remote Agent Experiment on Deep Spacen® demonstrated goal-based operations
in 1999. In this architecture the Mission Manager ends high-level goals to the
Planner/Scheduler which then generates detailed tes (lower-level goals), and the Executive
executes scripts associated with the lower-levelas, issuing commands as needed.

14

sequencing system; the success of these tests uguilt
confidence in the technology in preparation forinudtte
deployment of the capabilities onboard the spaftecfae
technology was declared fully validated in May 200te
ASE software now runs full-time onboard the EO-telite,
and has become its primary mission planning andrabon
system. Through automation of the operations pspad&SE
has contributed operational savings of approxinga®dM
per year, compared to EO-1's nominal operation$ jmosr
to ASE deployment. It has resulted in dramaticeases in
science return, thanks to its intelligent downlisdédection
and autonomous retargeting capabilities, and isecka
flexibility in operations, thanks to the resultisggeamlining
of human-operator-in-the-loop activities. Anothend-term
benefit of the ASE project is documentation of tbgsons
learned which will certainly be invaluable to fugur
applications of
operations.

Not surprisingly, NASA is not alone in its destoeexploit
the benefits of goal-based autonomous control ciires.

In 2001, the European Space Agency (ESA) launcked i
first Project for On-Board Autonomy [9] (PROBA-1)

spacecraft. The PROBA-1 technology validation noissi
successfully demonstrated both onboard and groasdeb
automation, including the ability to convey higlvéégoals

(user requests) to the spacecraft via the InteEfA is also

investigating the use of goal-based control andchasrd

planning and scheduling for ExoMars [10], a Marsero
anticipated to be the first flagship mission in ESAurora

Exploration Programme.

Although this paper’s focus is on spacecraft apfilbns,
the goal-based control approach has broad appliyatm
other domains, such as industrial robot control

autonomous unmanned air/underwater/ground vehiEl@s.

onboard autonomy and goal-based

variables, and data controllers); and patternssfapothly
transitioning from the execution of one plan to tmext
(promotion).

6. FUTURE WORK

Additional architectural patterns have been dewdofor
the following capabilities, and could be descrilie@ne or
more follow-on publications:

e Delegationis a pattern that enables one achiever to
send goals directly to another achiever that esable

a goal-based version of reactive control;

e Measurement Distillatioris a pattern that converts

the essential information for

estimation;

required

measurements into measurements that retain only
state

e State Variable Timelinegre an abstraction of state
variable representations for three kinds of state

variable information:

projection;

knowledge, intent,

e Proxy State VariablandProxy Hardware Adapter

and

are copies of state variable information and
command and measurement histories available to a
deployment that is remote from the deployment in

which they were created,

e Data State VariablesData Controllers and Data

Commandsre special representations and control

and

mechanisms to control the content and transport of
value histories using the reactive and deliberative
control mechanisms described in this paper,

example, the Defense Advanced Research Projectscige
(DARPA) has sponsored Grand Challenges, which have e
stimulated the development of various goal-directed
planning and execution techniques and technolodilese
broadly, goal-based control architecture is thei$oaf much
research and development in academic, governmanthl
industrial organizations.

Promotionis the mechanism by which a scheduled
and validated executable goal net is installed and
placed into execution by the goal executive.

Current work is investigating the interfaces betwdbe
control system and its human users in an attemiptpoove
the ways people interact with control systems. Waithe
active roles described in these patterns can be,
traditionally are, performed by people. Using thettern
interfaces may allow for a more seamless intemactio
between systems and their users.

5. SUMMARY an

The patterns for goal-based control provide theegmn
organizing principles that allow intent to be prese
through the planning, execution, and fault respgriseses

of system operation. These are only the genertépat and Although these patterns have been applied in large

real control systems present many special circumetaand distributed systems, they present some interesfirggtions

situations that call for specializations or addptet of these N @ Systems-of-systems context. It is possiblede these
patterns. Reference [12] describe several patterﬂattems recursively, so that systems could digtilgoals

specializations for more complex estimation, ortesta to s_ubsystem_s, where the_subsystems perform thewr o
representation patterns (distillation, graphestairiables, tactical planning and execution.

value histories); patterns for dividing controls®ms

across physical boundaries (proxy state variabled a

hardware adapters); patterns for managing data &tate

15

ACKNOWLEDGEMENT

The work described in this paper was carried ouhat
Jet Propulsion Laboratory, California Institute
Technology, under a contract with the National Aendics
and Space Administration. Thanks to Nicolas Rougquet
help with the UML diagrams.

[1]

of

(2]

3]

[4]

[5]

[6]

[7]

(8]

9]

REFERENCES

Constellation Program Web site, National Aendics
and Space Administration,
http://www.nasa.gov/mission_pages/exploration/niain/
dex.html

Ingham, M., Rasmussen, R., Bennett, M., and ¢ada,
A., “Engineering Complex Embedded Systems with
State Analysis and the Mission Data System”, AIAA
Journal of Aerospace Computing, Information and
Communication, Vol. 2, No. 12, Dec. 2005, pp. 5865

Bernard, D., et al, "Design of the Remote Agen
Experiment for Spacecraft Autonomy,” Proceedings of
the IEEE Aerospace Conference, Aspen, CO, 1999.

Bernard, D., et al., “Final Report on the Remétgent
Experiment”, Proceedings of the New Millennium
Program DS-1 Technology Validation Symposium,
Pasadena, CA, February 2000.

Morris, J.R., Ingham, M.D., Mishkin, A.H., Rasissen,
R.D. and Starbird, T.W., “Application of State Aysik

and Goal-Based Operations to a MER Mission
Scenario”, Proceedings of SpaceOps 2006 Conference,
Rome, Italy, June 2006.

Ai-Chang, M., et al.,, “MAPGEN: Mixed Initiative

Activity Planning for the Mars Exploration Rover
Mission”, Proceedings of the 13th International
Conference on Planning & Scheduling (ICAPS ’'03),
Trento, Italy, June 2003.

Chien, S. et al., “Using Autonomy Flight Softneato
Improve Science Return on Earth Observing One”,
AIAA Journal of Aerospace Computing, Informatiordan
Communication, Vol. 2, No. 4, April 2005, pp. 19662

Chien, S., et al., “Lessons Learned from Autonas
Sciencecraft Experiment’, Proceedings of the
Autonomous Agents and Multi-Agent Systems
Conference (AAMAS 2005). Utrecht, Netherlands, July
2005.

Proba: Observing the Earth Web site, Europepac8&
Agency,
http://www.esa.int/esaMI/Proba_web_site/findex.html

[10]Woods, M., et al., “On-board Planning and Sithiag

for the ExoMars Mission”, Proceeding of the DASIA
(DAta Systems In Aerospace) Conference, Berlin,
Germany, 22-25 May 2006.

[11] Gamma, E., et al, “Design Patterns: Elements o

16

Reusable Object-Oriented Software”, Addison-Wesley,
1995.

[12] Bennett, M., Dvorak, D., Ingham, M., Morris,RJ,
Rasmussen, R., and Wagner, D., "State Analysis fq
Software Engineers Training Coursehttps://pub-
lib.jpl.nasa.gov/docushare/dsweb/View/Collection-68

BIOGRAPHY

Matthew Bennett is a Senior

Flight Software & Data Systems
section at the Jet Propulsion
Laboratory. He has interests in
model-based engineering, software
architecture, and spacecraft
autonomy. He has developed
mission software for fault
protection, guidance and control,
science data collection, performance analysis, andg
simulation. He holds an MS from the University of
Washington in Computer Science, and a BS from t
University of California at San Diego in Computer
Engineering.

Daniel Dvorak is a principal
engineer in the Planning &
Execution Systems section at the
Jet Propulsion Laboratory. His
research interests include software
architecture, model-based
engineering, and operation of
autonomous systems. Prior to 1996
he worked at Bell Laboratories on
the monitoring of telephone
switching systems and on the design and developofent
R++, a rule-based extension to C++. Dan holds aPhin
computer science from The University of Texas atiAuan
MS in computer engineering from Stanford Universityd

a BS in electrical engineering from Rose-Hulmartituie

of Technology.

Joseph Hutcherson is a senior
software engineer in the
distributed systems technologies
group at the Jet Propulsion
Laboratory. He has helped
develop information distribution
systems for the Navy and Marine
Corps using R/F and satellite
communications. Most recently he
has helped to develop a Java —
based version of MDS. He has a BS in General Epging
from Harvey Mudd College.

17

Software Systems Engineer in theS M. degrees from MIT in Aeronautics and Astrorzayti

and a B.Eng. in Honours Mechanical Engineering from
McGill University in Montreal, Canada.

Subsystem.
control and autonomy, helping to initiate the awavithning
Remote Agent experiment on DS-1. He has also been
Technologist for the Information Technologies antivéare
Systems Division, and Architect for the Mission &Dat
System project, developing a unifying architectaned

model-based

Michel Ingham is a senior software

system engineer in the Flight
Software Systems Engineering and
Architecture Group at the Jet

Propulsion Laboratory. His

research interests include model-
based methods for systems and
software engineering, software
architectures, and spacecraft
autonomy. He earned his Sc.D. and

Robert Rasmussen has been a
systems engineer at JPL since 1975
after receiving his Ph.D in
Electrical Engineering from lowa
State University. He has
contributed broadly to several
planetary missions, including
Voyager and Galileo, and was the
lead engineer for the Cassini
Attitude and Articulation Control

Bob has long been interested in sptecr

engineering methodology for complex
autonomous systems. He is presently a JPL Engneer
Fellow and Chief Engineer for the Systems and &oftw

David Wagner is a senior software

system engineer in the flight
software applications group at the
Jet Propulsion Laboratory. He has a
BS in Aerospace Engineering from
the University of Cincinnati, and a
MS in Aerospace Engineering from
the University of Southern

California.

18

