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Abstract—Time-based command sequencing is the 
traditional paradigm for control of spacecraft and rovers in 
NASA’s robotic missions, but this paradigm has been 
increasingly strained to accommodate today’s missions. 
Goal-based control is a new paradigm that supports time-
driven and event-driven operation in a more natural way and 
permits a melding of sequencing and fault protection into a 
single control paradigm. This paper describes one approach 
to goal-based control as an architectural pattern in terms of 
purpose, motivation, structure, applicability, and 
consequences. This paper is intended to help flight and 
ground software engineers understand the new paradigm 
and how it compares to time-based sequencing. 12 
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1. INTRODUCTION  

Much software in aerospace systems is devoted to making a 
system do what its operators intend. These intentions range 
from high-level mission plans to low-level hardware modes 
and from long timescales to short timescales. 
Fundamentally, the software for carrying out such intentions 
must perform closed-loop control, with some control loops 
closed through automation and others closed through 
human-in-the-loop analysis and decision-making. This 
“control software” must also coordinate activities at 
multiple timescales and multiple levels of system and 
subsystem decomposition and must respond appropriately to 
failures. 

For nominal operation at the system level, the dominant 
paradigm for such control in today’s interplanetary missions 
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is time-based command sequencing, where there has been 
considerable engineering investment in flight software 
(sequence management, sequence execution) and ground 
software (tools for planning, scheduling, resource modeling, 
and flight-rule checking for activities and command 
sequences). Fault protection generally exploits sequencing 
capabilities to some extent when responses are necessary, 
usually at the expense of planned activities. For the most 
part, however, fault protection is independent in design, 
character, and execution from sequencing. 

The predominant feature of this approach is that correct 
operation of sequences depends on a mixture of ground-
based a priori predictions and a posteriori checks, in 
addition to on-board health and safety checks that are 
typically linked only weakly to planned activities. The 
driving intent of a sequence is largely absent from the final 
uplinked product, and the models essential to its structure 
are also typically left behind, replaced by timers. That is, if 
the system does not perform as predicted, discrepancies may 
go unnoticed by the flight system, which is unaware of the 
overarching intent. If an anomaly is detected, the flight 
system does not have sufficient knowledge of this intent or 
of system behavior to safely restore operation. Sometimes, 
the actual real-time progression of sequences is conditioned 
on observations made during execution, but more usually 
these sequences proceed based purely on time. 

This paradigm has been increasingly strained to 
accommodate today’s more complex missions, which 
require more localized capabilities such as autonomous 
resource management, vehicle mobility with hazard 
avoidance, opportunistic science observations, and so on. In 
these missions, keeping the ground in the loop may be 
impractical or even impossible, plans may be frequently 
subject to change given a dynamic situation, and fault 
responses may need to restore planned activities rather than 
halting them. 

An emerging paradigm—known as goal-based control, 
which is a form of closed-loop control—can provide such 
capabilities in a more natural way while still preserving the 
option to “command” a system at a very detailed level. A 
goal, in contrast to a command or command sequence, is 
inherently a closed-loop directive since it specifies an 
intention on the state of the system under control over a 
period of time—an intention that is monitored continuously 
during execution and therefore knowingly succeeds or fails. 
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Note that a goal specifies what to do but not how to do it, 
thus leaving options open to the control system—options 
that may be exercised in both normal operations and in fault 
responses. 

Since a goal specifies a constraint on state over a period of 
time, its execution can not only be time-driven but also 
event-driven. Moreover, the uniform and complete 
description of intent as state and time constraints provides a 
basis for model-based reasoning that permits, for the first 
time, a melding of sequencing and fault protection into a 
single, highly flexible control paradigm. 

The objective of this paper is to describe one particular 
approach for goal-based control to software engineers as an 
architectural pattern. As a pattern, the description focuses on 
types of elements and relationships, their mechanisms of 
interaction, and rules for combining them. This paper 
describes a set of smaller patterns that are composed into the 
larger architectural pattern, emphasizing several 
architectural principles including: 

• Separation of concerns: 

o separation of control system from system under 
control  

o separation of state knowledge from intent 

o separation of state estimation from control 

o separation of reactive and deliberative processing 

• Distinction of concepts: 

o distinction between goal and command 

o distinction between measurement and state 
estimate 

Major elements of the pattern include state variables, goal 
elaboration, goal scheduling, goal status monitoring, goal 
timeline execution, state estimation, controllers, and 
hardware adapters. As a pattern, the ideas are language-
independent, so software engineers can implement them in 
any programming language and begin to experiment with 
goal-based control. In fact, C++ and Java versions already 
exist and are available for use. 

2. BACKGROUND  

2.1 Architectural Patterns 

Architectural design involves making decisions that have 
system-wide impact. Architectural patterns help architects 
understand the impact of the architectural decisions at the 
time these decisions are made, because patterns contain 
information about consequences and context of the pattern 
usage. The patterns used here are based roughly on the 
software design pattern methodology described in [11]. 
Section 3 of this paper describes an architectural pattern 
using a template of the following five elements: 

� Purpose. What does the design pattern do?  What 
problem does it address? 

� Motivation. This is usually a scenario that 
illustrates how the pattern solves a problem. 

� Structure. Includes descriptions of the participants 
and collaborations between them. 

� Applicability. Conditions in which this pattern 
applies, or does not apply. 

� Consequences. What are the trade-offs and results 
of using the pattern?  What are its limitations?  

2.2 Separation of Control System and System Under Control 

Fundamental to these control patterns is the concept of a 
separation between the Control System and the System 
Under Control. The System Under Control is what the 
Control System is intended to control. A clear boundary is 
essential to defining clear models of behavior and 
establishing clear control authority. Control system 
designers can choose to define the boundary at a hardware 
interface, or a subsystem interface, or anywhere else, as 
long as the boundary is formally defined and the boundary 
rules described in these patterns are adhered to. 

 

Figure 1 – Separation of Control System  
and System Under Control 

2.3 State-Based Control 

Control systems are designed to translate some notion of 
user intent into actions that cause that intent to be achieved. 
State-based control systems make a clear distinction 
between the intent and the actions that the control system 
may perform to achieve the intent. Intent expresses a 
desired outcome in some physical state of the system under 
control, rather than a script or sequence of actions needed to 
achieve it. 

Control theory defines a closed-loop control system as one 
in which direct feedback from the system under control can 
be used to determine the effectiveness of control actions, 
allowing the control system to actively compare the state of 
the system with the intent, and perform control actions that 



 3 

attempt to keep the system within a range of acceptable 
behavior.  This is distinct from an open-loop system where 
control actions are performed without feedback.  Feedback 
allows the control system to react to unpredictable or 
unexpected effects in the physics of the system, and 
compensate for them.  

Intent defines what the external users want the system to 
accomplish. Intent is generally defined as a range of 
acceptable behavior that may optionally be augmented with 
additional performance measures. Intent is expressed 
through a Goal.  A goal is intended to constrain the state of 
the physical system, but in order to do this a representation 
of that physical state must exist in the control system.  As 
shown in Figure 2, a Software State Variable in the control 
system represents the value of a Physical State Variable in 
the system under control.  Formally, then, a goal specifies a 
constraint on the values of a software state variable over an 
interval of time. All control decisions are based on the 
relationship between estimated state and desired state 
(goals). Patterns for estimation and control using this basic 
paradigm are described later in this paper.  

 

Figure 2 – State Variables and Goals 

Real control systems, of course, usually control multiple 
elements in the system under control, with multiple 
concurrent objectives. The physical state variables of those 
elements may be physically coupled, or interdependent.  
Further, some physical state variables may not be directly 
measurable, and many are only indirectly controllable.  
Even as the complexity of the system increases, the 
challenge for designers is to control the whole system in a 
coordinated way.  

Real control systems often employ both reactive and 
deliberative control, according to the timescale for reacting 
to feedback and the form of reasoning applied in achieving 
intent. In relative terms, reactive control operates on faster 
timescales and makes control decisions based on a narrow 
scope of awareness. Deliberative control operates on slower 
timescales and makes control decisions based on a wider 
scope of awareness. Deliberation is driven by the need to 
anticipate future demands and to attempt to ensure that 
conditions appropriate to those demands will have been 
established, where such conditions cannot be achieved 

instantaneously, either due to the speed of system dynamics 
or to potential conflicts.  
 
The design patterns presented here are intended to provide 
architectural solutions for achieving closed-loop control in 
these increasingly complex systems. Section 3 first develops 
the patterns for reactive control involving a single physical 
state variable. Later, the section develops the patterns for 
deliberative control, addressing the complexity introduced 
when the control intent demands coordination of multiple 
physical states variables.  

3. DESIGN PATTERNS 

3.1 State Estimation 

Purpose 

Define an architectural pattern for estimating the values of 
physical state variables based on available evidence; cleanly 
separate estimation from control.  

Motivation 

It is a common mistake in control system engineering to 
make control decisions based on incomplete knowledge of 
the state of the physical system as described in raw 
measurements. Measurements can be noisy, and 
intermittent. Filters are commonly applied to raw 
measurements, but if the results are buried in a control 
algorithm, they cannot easily be reused by other controllers.  
Worse, two different users of the same raw measurements, 
using different filters, may arrive at different estimates of 
the state of the physical system, resulting in control 
conflicts.  Having a single explicit representation of any 
physical state variable of the system under control, using a 
single estimator, ensures consistent representation of that 
variable in the control system. 

Structure 

The primary structural elements that participate in this 
pattern are described in Figure 3. 

First, the State Variable provides an explicit representation 
in the control system of a corresponding physical state 
variable of the system under control.  This is also known as 
the software state variable to make the distinction clear.  
State variables are first-class entities in this pattern for three 
reasons. First, a direct representation in software of the 
physical state being controlled makes the software more 
readily understandable. In addition, telemetry based on state 
variable values is generally more informative than raw 
measurements because they refer to a physical state being 
monitored and possibly controlled. Second, the existence of 
the state variable permits a separation of concerns between 
estimation logic and control logic. Third, the existence of a 
single software state variable for each physical state variable 
ensures that there is one definitive source for estimates of a 
given physical state in the control system, and only one way 
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to access it.  This avoids the common situation where two 
different controllers each have their own private-but-
inconsistent estimates of a physical state, leading to 
surprising and potentially hazardous interactions. 

 

Figure 3 – Estimation Pattern (minus command 
evidence) 

An Estimator is responsible for actively providing values to 
populate the state variable with the best estimate of its value 
from available evidence. In the simplest case an estimator 
may have only one source of evidence, such as 
measurements from a single sensor, but in the general case 
there are multiple sources of evidence: measurements from 
multiple sensors, commands sent to multiple actuators, and 
estimates of other state variables. The role of the estimator 
is to combine that evidence into a “best guess” of the value 
of the physical state, known as an estimate. Estimators must 
deal with discrete and continuous values, noisy, missing or 
corrupted measurements, and inconsistent evidence from 
multiple sources. These characteristics underscore why state 
estimation deserves special attention, quite apart from 
control. 

The Hardware Adapter is simply a formal interface to the 
system under control.  It provides a command interface for 
components that can be directly commanded (actuators), 
and a measurement interface to components that provide 
measurements of the system state (sensors).  Its main role is 
to formalize the interface, but it can also serve to normalize 
the interface (like a device driver) and buffer data.   

Measurements are raw samples delivered from sensors to an 
Estimator via a Hardware Adapter.  They can have any 
form, since this is often determined by the sensor hardware.  
They should have time tags to eliminate timing ambiguity. It 
is important to remember that measurements are not state 
estimates; measurements are a type of evidence used by 
estimators to generate state estimates. 

Commands are another type of evidence used by estimators, 
though not shown in Figure 3. Specifically, a command 

issued to an actuator affects one or more physical states, and 
can therefore provides evidence about the values of those 
physical states. Thus, estimators may acquire not only 
measurement evidence from sensor hardware adapters but 
also command evidence from actuator hardware adapters. 

State Variables store information about the system state in 
the form of State Value Functions.  These are distinct from 
Measurements in that State Value Functions must be 
continuous over time, and explicit about uncertainty.  
Measurements are readings at discrete points in time, and 
usually provide a single uncalibrated value.  The process of 
Estimation (the role of the Estimator) involves calibration, 
smoothing, or noise elimination, and application of system 
models to determine and express uncertainty.  State values 
can explicitly represent the fact that the system state may be 
unknown in situations where measurements are not 
available (e.g., if a sensor is powered off or failed).   

Estimators produce state knowledge and repeatedly update 
software state variables. The precision and certainty of that 
state knowledge depends is driven by need, typically the 
need to control one or more physical state variables to a 
desired accuracy. Goals are used in this pattern to express 
constraints on the desired quality of the state knowledge, 
which may vary over time. Thus, estimators can be viewed 
as “achievers” for these goals. 

Applicability 

This pattern applies in any control system where knowledge 
of the target control states must be inferred from sensors or 
other indirect evidence. 

Consequences 

The existence of software state variables as first-class 
citizens in the architecture encourage a separation of 
concerns between estimation and control. The State 
Estimation pattern—and the State Control pattern that 
follows—formalize this separation. This separation is 
important because it decouples two concerns that have often 
been intertwined in control system software, making each 
concern easier to design, implement, verify, and reuse. 

Also, the role of a software state variable as the sole source 
of information for estimates of its corresponding physical 
state variable eliminates the potential problem of multiple, 
private-but-inconsistent estimates within a control system. 

This pattern also makes a clear distinction between 
measurements and state estimates. This is an important 
distinction for robust control systems because there are 
often multiple sources of evidence about the state of any 
single physical state variable—sources that should be 
examined and reconciled before making control decisions.  
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3.2 State Control 

Purpose 

Define an architectural pattern for exercising control over a 
given target system in a way that directly uses knowledge of 
the state of the system under control. 

Motivation 

Consider a simple thermostatic temperature control system.  
The system under control includes a temperature sensor and 
a heater which can be controlled by a switch.  The goal is to 
maintain the temperature within a target range, or within a 
target range.  Designing and implementing a software 
control system for this is straightforward. However, what if 
the underlying system changed (such as a change to the 
sensor) after the software was written, or you had to port the 
control system to different hardware?  How hard would it be 
to pick apart the various models, assumptions, and 
algorithms from the code? 

The closed-loop control pattern is intended to address this 
problem by defining placeholder elements for each of the 
key roles in a control loop, and rules governing separation 
of responsibilities between these elements. 

Structure 

The elements of this pattern are shown in Figure 4. 

 

Figure 4 – State Control Pattern 

As in the State Estimation pattern, a Hardware Adapter 
provides a line of separation between an Actuator in the 
system under control, and a Controller in the control 
system. 

Control intent is expressed through the use of Goals, which 
express a constraint on the target state over an interval of 
time. 

A Controller is responsible for any direct interactions with 
the system under control required to change or control the 
target physical state.  The controller can issue commands to 
the target system through a Hardware Adapter. A controller 
is goal-directed in the sense that it issues commands as 
needed in order to drive the state of the physical system into 
agreement with the goal, or desired state. Note that the 
controller bases its decisions on the comparison between the 
goal and state knowledge provided by state variables. In 
other words, the controller never examines raw 
measurements to make control decisions, i.e., it never 
performs any internal state estimation. 

Applicability 

This pattern applies in situations where the control intent 
(the goal) can be expressed as a constraint on state over a 
time interval, or as a sequence of such constraints, and 
where the target state can be explicitly described in a state 
variable, and where the target state is directly controllable.   

This pattern is typically limited to primitive states of the 
system under control that can be affected through actuators.  
The controller may rely on models of the system under 
control to determine appropriate control actions when the 
target state can only be indirectly controlled. 

Consequences 

This pattern, like the State Estimation pattern, supports the 
separation of concerns between estimation and control, and 
therefore makes control software easier to design, 
implement, and verify because control logic is cleanly 
separated from estimation logic. 

This pattern places responsibility for control of a physical 
state variable within a single controller. As such, a 
controller may issue commands to multiple actuator 
hardware adapters that have an effect on the physical state 
being controlled. 

3.3 Reactive Closed-Loop Control 

Purpose 

Define an architectural pattern for exercising simple closed-
loop control over a given target system in a way that directly 
represents knowledge of the state of the system under 
control, distinguishes between raw evidence and state 
estimates, cleanly separates state estimation from control, 
and bases all control decisions on the relationship between 
estimated state and desired state. 

Motivation 

Consider a simple thermostatic temperature control system.  
The system under control includes a temperature sensor and 
a heater which can be controlled by a switch.  The goal is to 
maintain the temperature within a target range, or within a 
target range.  Designing and implementing a software 
control system for this is straightforward. However, what if 
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the underlying system changed (such as a change to the 
sensor) after the software was written, or you had to port the 
control system to different hardware?  How hard would it be 
to pick apart the various models, assumptions, and 
algorithms from the code? 

The reactive closed-loop control pattern is intended to 
address this problem by defining placeholder elements for 
each of the key roles in a control loop, and rules governing 
separation of responsibilities between these elements. 

Structure 

The structure of this pattern is a simple composition of the 
state estimation pattern and the state control pattern as 
shown in Figure 5. 

 

Figure 5 – Reactive Closed-Loop Control 

What is important to note in the structure of this pattern is 
how it can be composed from the sub patterns due to the 
clean separation between estimation and control.  
Estimation and control are separate functions that only 
interact through the state variable. 

Applicability 

This pattern applies in situations where the intent (the goal) 
can be expressed as a constraint on state over a time 
interval, or as a sequence of such constraints. In the simplest 
case, the goal may be statically built into the system. In the 
more general case, an external sequencing mechanism 
delivers goals in order, as described later in the section 3.7, 
Executive Control.   

Consequences 

Some states can only be controlled indirectly. In this case 
the pattern may extend, and control loops may overlap one 
another via common state variables. 

As long as the system is accurately modeled and estimation 
and control algorithms are faithfully executed, this pattern 
works for all control problems where the intent can be 
expressed as a single constraint, or at least a single 
constraint at a time.  The pattern can be extended to support 
more complex behaviors in the following ways: 

* Complex constraints (e.g., trajectory) – Here the goal 
includes timing information that describes a path through 
state space over time.  An example of this is a transition 
goal, which is defined as a goal that allows for the transition 
from one stable state value to another. Transition goals 
express intent to have the state arrive at a target value, yet 
avoid a determination of failure if the state is not 
immediately being satisfied.  For example, a transition goal 
on a temperature state variable might be defined so that it is 
succeeding as long as the temperature is moving toward the 
target value, whereas a maintenance goal would be defined 
so that any excursion from the constrained value range 
would be considered a failure. 

* Hierarchical layering of achievers – goal achievers can be 
organized in a control hierarchy whereby a higher-level 
achiever issues goals to subordinate achievers to coordinate 
their actions in real time. An example is a position & 
heading controller for a Mars rover that issues real-time 
goals to the multiple driving and steering controllers. 

* External sequencing of constraints – this approach is 
commonly used in robotic systems not only to sequence the 
constraints on a single state, but also to coordinate the 
application of goals applied to many states. See section 3.7, 
Executive Control. 

These patterns can be combined in various ways to 
implement quite complex behaviors.  A common limitation, 
though, is the limited tolerance for faults.  In particular, the 
sequencing of goals into complex activities will typically 
describe one plan or script with all events ordered in time, 
or possibly sequenced according to states being achieved.  If 
something breaks, or something unexpected happens, these 
scripts have only a limited ability to recover because there is 
no explicit representation of the higher-order intent, and no 
formal mechanism for expressing alternative methods to 
accomplish them. This limitation motivates the Deliberative 
Closed-Loop Control Pattern described in section 3.9. 

3.4 Goal Network 

Purpose 

Define an architectural pattern to represent the relationships 
between a set of goals on a set of state variables that specify 
control coordination across states and over time. 

Motivation 

The primitive patterns described thus far provide the means 
to control state variables individually. In order to coordinate 
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control of multiple states, a way is needed to represent 
relationships among goals on different state variables.   

Structure 

A Goal Network (see Figure 6) is primarily a container for a 
set of goals and their associated software state variables.  To 
make any sense as a plan, goals must be temporally related 
with one another. This is done using Time Points and 
Temporal Constraints. 

A time point represents an abstract event. Every goal 
associates with exactly one starting time point, and one 
ending time point. However, time points can be shared by 
many goals.  

Time points carry no internal relationship to time. Instead, 
all temporal relationships are represented through Temporal 
Constraint objects, which also associate with one starting 
time point and one ending time point.  A temporal constraint 
can specify a minimum and maximum duration allowed 
between two time points, or simply a sequential ordering 
constraint.  

A Goal Network contains goals, time points, and temporal 
constraints, as shown in Figure 6. The term “goal network” 
is used because the topology of the container is that of a 
directed graph where the time points are the nodes, and the 
goals and temporal constraints are the edges. The “parent” 
relationship shown in the figure means that each goal has a 
link to its parent goal. This parent/child relationship is 
populated during goal elaboration, as explained in section 
3.5, Goal Elaboration. 

 

Figure 6 – Goal Network 

Since time points can be associated with different goals on 
different state variables, they enable coordination of goals 
across different state variables. Figure 7 depicts an example 
goal network. The yellow circles represent time points. The 
green boxes represent goals aligned along state time lines.  
Time points joined by vertical lines indicate that those time 
points are shared, representing events that connect the state 
time lines. The arcs between time points represent temporal 

constraints, in this case indicating a minimum and 
maximum duration allowed between the given time points. 

Earlier, a goal was defined as a constraint on the value of a 
state variable over an interval of time.  Note that the goal’s 
relationship with time is indirect, through its relationship 
with a starting and ending time point.  Constraints on the 
duration of the goal are specified through temporal 
constraints on the bounding time points, and not as part of 
the goal itself.  This separation of concerns allows for goals 
that do not have any temporal constraints, but it also allows 
temporal constraints that are not elaborated from goals to be 
added as part of the scheduling process, which will be 
described later. 

Every goal instance in the network associates with a specific 
software state variable that it constrains.  The set of goals 
associated with a single state variable can be computed into 
a sequential timeline through the process of ordering the 
time points into a topological ordering that satisfies all of 
the temporal constraints. This may result in overlapping 
goals on the same state variable. Thus, goals must have the 
property that allows them to be combined, or merged. The 
process of merging two goals may result in a new, more 
constrained goal. Merging occurs as part of the scheduling 
process described later. 

A goal network can exist in two states. When initially 
constructed, an unscheduled network is simply the 
aggregation goals, time points, and temporal constraints 
representing a proposed plan.  An executable plan has 
undergone scheduling and verification (described later) to 
merge and order goals according to temporal constraints, 
and verified that the proposed plan is achievable.   

 

Figure 7 – Example goal network depiction 

 

Applicability 

This pattern becomes applicable as soon as coordinated 
control over multiples states is required.  

Consequences 
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The use of temporal constraints to indirectly constrain event 
times allows for temporal flexibility in the plan. Contrast 
this with sequences having fixed event times, or purely 
sequential ordering.   

3.5 Goal Elaboration 

Purpose 

Define an architectural pattern to represent causal 
dependency relationships among a set of goals.   

Motivation 

Coordinated control is about controlling several component 
states to accomplish some higher intent.  In order to achieve 
intent on a given state variable, the control system may need 
to control other state variables that are causally related. In 
other words, goals may beget other supporting goals. 

The elaboration pattern provides a formal mechanism by 
which a goal (an expression of intent) can specify 
dependencies on other supporting goals needed for their 
own achievement. 

Structure 

Elaboration is defined as the process of generating the 
additional supporting goals that would be needed in the 
same plan in order to accomplish the “parent” goal.  A goal 
can associate with an Elaborator (see Figure 8) whose job it 
is to provide the additional plan elements needed to achieve 
the given goal.  This set of supporting goals—plus any 
needed time points and temporal constraints—is known as a 
Tactic.  Tactics are small goal networks defined in support 
of a particular parent goal. A goal can have more than one 
tactic, i.e., there may be more than one set of supporting 
goals that can help achieve the parent goal. 

 

Figure 8 – Goal Elaboration Pattern 

When the elaborator provides multiple tactics, only one can 
actually be used at a time in a single plan. An elaborator 
determines the tactic to apply depending on a variety of 
possible conditions, including current state variable values, 

scheduling failures, and failures of supporting goals during 
execution. In the latter case, goal elaboration in response to 
execution failures is called re-elaboration, and is described 
further in section 3.8, Goal Monitoring and Fault Response. 
In the case of a scheduling failure, a schedule using one 
tactic is determined to be unachievable, so the elaborator 
tries a different tactic if one is available. 

The elaborator is separate from its goal mainly to separate 
specification of intent (the goal) from planning behavior that 
may or may not need to exist where the goals are executed.  

The process of elaboration is performed at the level of an 
entire goal network. The initial set of goals is elaborated and 
then their supporting goals are elaborated recursively until 
the process bottoms out with goals having no elaborators 
(i.e., having no need for supporting goals). 

Goal elaborations are normally defined such that supporting 
goals are on state variables that are either the same state 
variable as the parent goal, or are state variables that affect 
the parent goal’s state variable [12]. 

The elaborator class can be more than a simple container of 
a set of predefined tactic sub-networks. It can use 
information available in the network context including 
current and historic states of the system (from state 
variables) to compute tactics appropriate to the given 
situation. 

Applicability 

This pattern applies to any system where coordinated 
control across multiple state variables is needed. 

Consequences 

A goal represents a desired outcome, and that encourages 
operators to think in terms of the outcome rather than in 
how it will be achieved. Of course, somebody still has to 
design the tactics to achieve the outcome, but that is done 
once, and then appropriate tactics are selected thereafter via 
goal elaboration.  

The elaboration process can be invoked prior to execution 
(at plan design time) to elaborate operator-specified goals 
into the complete set of goals needed to accomplish the 
intent. A modified version of the process can be used during 
execution to respond to goal failures. (A goal with failing 
tactics can be re-planned by removing its current tactics 
from the goal network, and elaborating and scheduling an 
alternate tactic.)  

3.6 Goal Planning and Scheduling 

Purpose 

Define a pattern for automatically preparing a goal network 
for execution. 
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Motivation 

The power of the elaboration process is that it makes it 
possible to describe a high-level goal and all of the 
supporting goals it needs to be achieved.  Maximum 
flexibility is achieved if the elaborations specify the fewest 
temporal constraints. Additional constraints need to be 
added to the goal network by the planning and scheduling 
process to create an executable goal network that is known 
to be “achievable”. Achievability is determined by the 
planner by checking the executable goal network against the 
capabilities of the control system, and the physics of the 
system under control. 

Structure 

The planner/scheduler shown in Figure 9 represents the 
object performing planning and scheduling.  A 
planner/scheduler is basically a constraint solver. Given a 
set of proposed goals, and temporal constraints (edges in a 
directed graph) the planner first elaborates all goals 
recursively to populate a complete set of goals needed to 
achieve the proposed goals. The planner then merges 
concurrent portions of overlapping goals on the same state 
variable.  Merges that result in unachievable goals are 
rejected.  

 

Figure 9 – Planner/Scheduler Interactions 

Scheduling a goal network is the process by which an 
elaborated goal network is prepared for execution. At the 
end of elaboration, each state variable has goals and time 
points defined on it. Scheduling picks an ordering of the 
time points for each state variable. Goals that overlap over 
time intervals are merged. If merging results in an 
inconsistent goal, then a different time ordering is selected 
by the scheduler. In addition, the temporal constraints in the 
goal network are propagated to determine if the goal 
network is temporally consistent.  

Before a scheduled goal network is ready for execution is 
must be validated. Validation of a scheduled goal network 
checks that sequential goals on state variable are consistent 
and that state predictions based on the ordered and merged 
goals meet the intent of the ordered and merged goals. 
Sequential goals are checked against transition achievability 
criteria to determine if a goal can begin executing when the 
previous goal’s end condition is met.  Predictions are 
computed using a mechanism called state projection which 
takes into consideration models for the effects of goals on 
affecting states, initial state variable values, physical models 
of state variable behavior, the behavior of the control system 
when it executes goals, and temporal constraints on the 
goals. If a consistency check for sequential goals or a state 
prediction check fails, the scheduled goal network is 
rejected, and the scheduler attempts a different ordering of 
time points. If all consistency checks succeed, then the 
ordered and merged goal net is promoted for execution as an 
executable goal network. The projections for each merged 
goal are saved with that merged goal in what is called an 
executable goal. If no ordering of time points results in a 
valid goal network, the planner/scheduler backtracks to 
choose another elaboration tactic. 

Applicability 

Needed if goal elaborations allow for temporal flexibility 

Consequences 

A key advantage of the planning and scheduling pattern is 
that problems can be detected before they happen by 
checking predictions for planned executable goals. 

An executable goal network has been validated against 
models to ensure that every goal is achievable, and every 
transition from one goal to the next is achievable.  Although 
the ordering in which goals are executed along any given 
state variable timeline will be fixed by this process, the 
network may still permit flexibility in the order in which 
events occur on different timelines, and the firing of time 
points.  

3.7 Executive Control (Timeline Execution) 

Purpose 

Define an architectural pattern for execution of a planned 
and scheduled network of goals (an executable goal 
network) that will execute goals associated with planned 
activities according to a time-driven, and state-driven 
schedule. 

Motivation 

Given that operator intent is captured within a goal network 
as a series of goals placed upon state variables, how is this 
translated into activities performed by the system under 
control? Using the simple thermostatic control example, the 
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switch to the heater must be turned on at time t0 and turned 
off at time t1. During that span of time the heater must 
remain within a certain temperature range. In this example 
there are two events that must occur; turning the switch on 
then turning it off. During the period of time the switch is 
on the temperature of the heater must be monitored to 
ensure it remains within the range specified by the goal. The 
Executive Control pattern ensures the events occur within 
their temporal windows. 

Structure 

The purpose of the Goal Executive, as depicted in Figure 10, 
is to carry out the intent represented in an executable goal 
network by dispatching goals for execution at the 
appropriate times. The executive relies on the fact that goals 
express a continuous intent on a target state variable as long 
as they are in effect, and it is the responsibility of the control 
system to continue to try to achieve each assigned goal for 
each state variable until the next goal is dispatched for that 
state variable.   

The executable goal network specifies the intent timelines 
for each of the state variables modeled within the control 
system. An intent timeline for a state variable is represented 
in the executable goal network as of a series of time points 
connected by merged, executable goals. Scheduled time 
points can retain some temporal flexibility as allowed by the 
set of temporal constraints in the goal network. As time is 
advanced by the executive, it is the responsibility of the 
executive to continually propagate the temporal constraints 
to refine the schedule of each time point.   

 

Figure 10 – Executive Pattern 

Like goals, executable goals are bounded with starting and 
ending time points, some of which may have been generated 
during the scheduling process due to partially overlapping 
goals. A time point represents a time at which the executive 

must perform an action. The temporal constraints of the 
contributing goals determine the valid range of times, or 
window, in which the time point is considered open, or 
eligible to fire. To fire a time point, the Goal Executive 
checks that all the goals that have this time point as their 
starting time point are “ready” to start executing; that is, the 
post-conditions and pre-conditions associated with the 
transition from the current executable goal to the next 
executable goal on the timeline have been satisfied [2]. 
When the Goal Executive fires a time point it becomes 
“grounded” in time, removing any temporal flexibility it 
may have had, and the next executable goal’s constraint is 
dispatched to the control system for execution. The Goal 
Executive will honor a not-ready transition status while 
within the eligible window of the time point and not 
dispatch the next executable goal; however once past the 
window the Goal Executive will fire the time point and 
issue the next executable goal even if it is not ready for 
transition. Thus a temporal problem in execution will be 
manifested as a potential goal failure by the goal that was 
not ready to transition.  

Consequences 
 
Executive Control provides for the sequencing of activities 
on individual state variable time lines and the coordination 
of events across all state variables modeled within the 
system. As an independent functional entity, the Goal 
Executive may continue to execute the latest mission plan 
while other planning activities occur. It provides an 
intermediate rate of execution between potentially long-term 
planning activities and rapid execution cycles of a reactive 
control system. As such, care must be exercised when 
choosing a rate of execution for the Goal Executive. 

3.8 Goal Monitoring and Fault Response 

Purpose 

Define a pattern for monitoring the execution of goals in 
order to respond to goals that cannot be achieved (goal 
failures). 
 
Motivation 
 
Time continues moving forward regardless of what happens 
in the system. Although a reactive control system, with the 
knowledge of intent available in a goal, may be able to 
compensate for some unexpected events, things can still fail.  
Since the current goal network was planned using a specific 
set of tactics to achieve certain goals, there may be other 
goal networks (using alternate tactics) that could still 
achieve the plan’s intent. 

For example, consider a goal to drive a mobile robot from 
point A to point B through city streets.  The set of available 
routes is constrained, and a given plan may choose one 
route.  However, after executing part of the route, an 
obstacle is encountered, preventing further advance along 
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that route.  Now the only option is to give up the current 
plan, and try another route.   

Since the current plan may also contain goals that are still 
relevant, the executive and the goal achievers cannot just 
stop – they must continue trying to achieve the current plan 
until a new plan can be produced.  So, a separate mechanism 
is required to notice that the plan is failing, and notify the 
planner to do something about it. 

Structure 
 
The Goal Monitor is a separate element of the control 
system that monitors the status of all currently executing 
goals. The Goal Monitor consults each executable goal’s 
associated state variable to check the estimated state against 
the intent of the goal. The Goal Monitor may also check 
temporal constraints and projections to determine if a goal 
can still be satisfied. If the state variable reports that a given 
merged executable goal is no longer satisfiable, the Goal 
Monitor will then initiate a fault response. 

 

Figure 11 – Goal Monitor 

First, it will attempt to determine which of the contributing 
goals merged into the failing executable goal have failed. To 
do so, it will query each of the contributing goals to see if it 
is still satisfiable. For each failing goal it then finds that 
goal’s parent goal (using relations in the goal network), and 
notifies the parent goal’s elaborator, which in turn 
determines an appropriate fault response. 

 

Figure 12 – Fault Response 

The parent goal’s elaborator has several options. It can 
decide to do nothing (i.e., just let the plan continue to 
execute and hope for the best); it can assert an error 
condition that would stop and safe the system; it can 
propose a change of plan by invoking re-elaboration of a 
different tactic; or, it can “fail up” by consulting its parent 
for a fault response.  The process of failing up the goal 
elaboration hierarchy allows a fault to propagate up to the 
level of intent at which it can be appropriately dealt with.   

Consequences 
 
Separating the goal monitor from the executive allows the 
executive to continue trying to achieve the current plan as 
best it can. Separating the goal monitor from the 
planner/scheduler allows the monitor to continue checking 
the status of goals even after a fault is detected and a 
response initiated. If a second fault occurs, the monitor and 
planner/scheduler can then prioritize their response based on 
relationships between the failing goals. For example, if 
several goals are all failing at the same time (a likely 
situation if their state variables affect one another), then the 
goal monitor, or planner can determine that they are all 
children of the same parent goal, and then only have to 
replan that one parent goal.  Or, it can determine that the 
goals are entirely independent, and re-elaborate and 
reschedule them separately. 

3.9 Deliberative Closed-Loop Control 

Purpose 

Reactive control is very useful for many situations when 
control decisions can be made without looking far into the 
future. However, sometimes the determination of what 
should be accomplished in the present depends on what is 
planned or predicted for the future. Because reactive control 
systems have no knowledge of future plans beyond the 
activity they are currently trying to accomplish, there is a 
need for a mechanism to control systems that must consider 
the future. The deliberative closed-loop control pattern 
provides such a mechanism. 

This mechanism constructs, monitors, and revises goal 
networks that take into consideration requirements on what 
needs to be accomplished in the future. The deliberative 
closed-loop control pattern monitor function responds to 
unpredictable or unanticipated events as they occur during 
execution. 

Motivation 

Consider the problem of maintaining a battery state of 
charge through a series of activities that both consume and 
produce energy. One can represent the requirement to 
maintain the battery state of charge above a minimum limit 
as a goal on a battery energy state variable. The activities, 
represented as a series of goals, need to be ordered in time 
into a plan such that the battery state of charge does not fall 
below the minimum limit. The goals that affect the battery 
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state of charge in the plan are used to predict the battery 
state of charge, and validate that the plan does not violate 
the minimum battery state of charge limit. The goal to 
maintain the state of charge can be monitored during 
execution, and activities can be shed if the use an 
unexpected amount of power. 

Applicability 

This pattern is applicable to situations in which: 

(1) A large number of state variables need to be 
controlled in parallel; 

(2) The control strategy involves a series of activities 
organized into a long term plan; 

(3) The activities can be expressed as goals on state 
variables;  

(4) The state variables must be controlled to meet user-
defined goals; and 

(5) The plan needs to be able to be changed 
automatically in response to unanticipated or 
unpredictable events. 

Structure 

This pattern is a composition the following patterns 
described previously: 

(1) Goal Network 

(2) Goal Elaboration 

(3) Goal Planning and Scheduling 

(4) Executive Control (Timeline Execution) 

(5) Goal Monitoring and Fault Response 

Construction of a goal network includes the elaboration of 
operator-specified goals, scheduling the resulting goal 
network, and validating the result as an executable goal 
network. The executable goal network is executed by the 
goal executive, and as each executable goal executes it is 
monitored by the goal monitor. The goal monitor notifies 
the planner when an executable goal fails, allowing the 
planner to modify the plan to respond to goal failures. 

Combining these patterns enables the kinds of complex 
behaviors made possible by traditional sequencing and fault 
management mechanisms, but in addition, it accommodates 
dynamic changes to the plan.  Specifically, it provides a 
coordinated mechanism for responding to faults or other 
unexpected deviations from the plan.  

Consequences 

A key advantage of the deliberative closed loop control 
pattern is that problems can be detected before they happen 
by checking predictions for executable goals. Corrective 
action can be taken before serious consequences ensue. For 
example, if battery energy is being used faster than 
predicted, the goal network may be revised to shed lower 
priority energy-consuming goals. Or it may schedule new 
goals to charge the battery. 

The deliberative closed loop control pattern may require 
significant computing resources and time for performing 
scheduling. This can be ameliorated by ensuring that goal 
networks are scheduled for a limited time horizon, avoiding 
the computational expense of long-term planning. Also, pre-
scheduled networks can be quickly swapped in if a fast 
response is required. An example may be a “safe-mode goal 
network” that puts the system into a safe state. 

This pattern needs good models of physics and achiever 
behavior to validate scheduled goal networks. However, 
models only need to be as good as necessary to achieve 
objectives. Many times conservative simple models are 

adequate. 

3.10 Deliberative and Reactive Closed-Loop Control 

Purpose 

Reactive and deliberative closed-loop control patterns are 
combined into a single pattern to allow for highly flexible 
and robust control system behavior. 
 
Motivation 
 
Control systems may need to be both reactive to small 
changes in the system under control, as well as being able to 

 
Figure 13 – Deliberative and reactive closed-loop 

control patterns are connected through  
software state variables. 
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plan and execute a long-range series of tasks. For example, 
a Mars rover needs to be able to deliberatively plan a safe 
path across rocky terrain and also reactively control its 
wheel rotations to accommodate slippage while maintaining 
forward progress. 
 
Applicability 

This pattern is applicable to most embedded and robotic 
control systems, which require both deliberative and 
reactive control.  
 
Structure 

This pattern is a composition the following patterns 
described previously: 

(1) Reactive Closed-Loop Control 

(2) Deliberative Closed-Loop Control 

These two patterns are connected through software state 
variables, as shown in Figure 13. State variables are 
estimated and controlled by the reactive control system in 
response to executable goals metered out by the deliberative 
closed loop control system. The deliberative control system 
sequences and validates the plans for goal execution, and 
detects goal execution failures as the reactive control system 
acts on the goals. The deliberative control system responds 
to goal failures through goal re-elaboration and scheduling 
to produce a modified executable network. Figure 14 shows 
major data flows within this combined control pattern. 
 
Consequences 

The integration of deliberative and reactive control brings 
some complexity in terms of interactions between the two 
patterns, but this complexity is largely inherent in the 
challenging control problems for which it is applicable. The 
intent of specifying this architectural pattern is to provide a 
structured means of dealing with this complexity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 – Major data flows within combined 
architectural pattern for goal-based control 

 
4. RELATED  WORK  

The idea of operating systems at the level of explicit intent 
is not a novel concept. For example, thermostats have been 
used to control the temperature of building interiors for over 
a hundred years. The thermostat’s set point is a form of goal 
in that it specifies the desired temperature that the building’s 
heating, ventilating, and air conditioning control system 
must achieve and maintain. In the context of space 
exploration, goals have actually been used for decades in 
limited fashion, particularly in the context of spacecraft 
attitude and articulation control systems, for the purposes of 
pointing science instruments, communication antennae, 
solar panels, etc. Vehicle reorientation and gimbal angles 
are “commanded” by specifying trajectories of desired 
angles and rotation rates; these state trajectories are explicit 
representations of intent. Until recently, however, such 
representations have not been used consistently across all 
spacecraft subsystems, and have not been integrated into 
coherent system-level control architectures and operations 
processes. This section provides a brief overview of related 
work in goal-based control architectures and goal-based 
operations (GBO), highlighting a number of significant 
achievements from the space exploration domain. 

Control System

State Variables

Intent timeline

Knowledge timeline

Controllers

Goal Elaboration
& Re-elaboration

control
goals

Estimators

knowledge
goals

Scheduling

goal
failures

operator-specified goals

System Under Control

commandsmeasurements

Goal
Executive
& Monitor

executable
goal network

Sensor
Hardware Adapter

Actuator
Hardware Adapter

Control System

State Variables

Intent timeline

Knowledge timeline

Controllers

Goal Elaboration
& Re-elaboration

control
goals

Estimators

knowledge
goals

Scheduling

goal
failures

operator-specified goals

System Under Control

commandsmeasurements

Goal
Executive
& Monitor

executable
goal network

Sensor
Hardware Adapter

Actuator
Hardware Adapter

 



 14 

One of the first full-scale (system-level) applications of 
goal-based control architecture was the Remote Agent (RA) 
Experiment [3], which was flight-validated in 1999 on the 
Deep Space One (DS1) spacecraft, the first deep space 
mission in NASA’s New Millennium Program. RA is a 
model-based, reusable, artificial intelligence (AI) software 
system that enables goal-based spacecraft commanding and 
robust fault recovery. A simplified view of the RA software 
architecture is shown in Figure 15. RA consists of general-
purpose reasoning engines (both deductive and procedural) 
and mission-specific domain models. One of its key 
characteristics—and a main difference with traditional 
spacecraft commanding—is that ground operators can 
communicate with RA using goals (e.g., “During the next 
week take pictures of the following asteroids and thrust 90% 
of the time”) rather than with detailed sequences of timed 
commands. RA determines a plan of action that achieves 
those goals; actions are represented as tasks that are 
decomposed on-the-fly into more detailed tasks and, 
eventually, into commands to the underlying flight software. 
The RA Experiment provided an invaluable proof-of-
concept and lessons learned in a number of areas, including 
benefits and challenges associated with autonomous goal-
based operations. These lessons have been documented in 
the Remote Agent Experiment DS1 Technology Validation 
Report [4].  

NASA’s Mars Exploration Rovers (MER) [5], Spirit and 
Opportunity, also employ a certain degree of goal-based 
operations capability, in both the ground system and 
onboard the rovers. In the ground system, operators use the 
Mixed-initiative Activity Plan GENerator (MAPGEN [6]) 
tool to plan each rover’s science and engineering activities 
on a sol-by-sol basis. Given a set of user observation goals 
and their priorities, this tool enables operators to construct a 

plan that satisfies these goals and schedule the activities in 
the plan such that conflicts between incompatible activities 
and oversubscription of limited resources are avoided. 
MAPGEN leverages the automated planning and scheduling 
engine that was flight-validated as part of RA on DS-1, 
integrating it into a GUI environment that enables operators 
to incrementally build and edit their plans. With this tool, a 
plan is refined through iterations of automated computation 
and judicious hand-editing based on domain expertise, 
eventually converging to a final plan that the operator finds 
appropriate. Onboard each rover, the flight software is 
programmed to accept a combination of abstract goal-like 
directives, such as ‘drive to waypoint’, and lower-level 
commands. In a remote and unpredictable environment like 
the Martian surface, the rovers robustly achieve their 
ambitious science objectives by taking advantage of their 
ability to make certain decisions in-situ, and execute 
flexibly-specified plans in an event-driven fashion. These 
are fundamental characteristics of goal-based systems. 

The most recent and comprehensive space-based application 
of a goal-based control architecture is the Autonomous 
Sciencecraft Experiment (ASE) [7, 8]. ASE is a software 
system currently flying onboard the EO-1 spacecraft, which 
has demonstrated several integrated autonomy technologies 
that together enable science-directed autonomous 
operations. The ASE software includes onboard continuous 
planning, robust task and goal-based execution, and onboard 
machine learning and pattern recognition, and has more 
recently been augmented to demonstrate model-based 
diagnosis capabilities with RA heritage. Like RA, ASE 
began as a technology experiment within NASA’s New 
Millennium Program, as part of the Space Technology 6 
project. Early tests had the goal-directed planning and 
execution capabilities deployed as part of a ground-based 
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Figure 15 – Remote Agent Experiment on Deep Space One demonstrated goal-based operations 
in 1999. In this architecture the Mission Manager sends high-level goals to the 
Planner/Scheduler which then generates detailed tasks (lower-level goals), and the Executive 
executes scripts associated with the lower-level goals, issuing commands as needed. 
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sequencing system; the success of these tests built up 
confidence in the technology in preparation for ultimate 
deployment of the capabilities onboard the spacecraft. The 
technology was declared fully validated in May 2004. The 
ASE software now runs full-time onboard the EO-1 satellite, 
and has become its primary mission planning and control 
system. Through automation of the operations process, ASE 
has contributed operational savings of approximately $1M 
per year, compared to EO-1’s nominal operations cost prior 
to ASE deployment. It has resulted in dramatic increases in 
science return, thanks to its intelligent downlink selection 
and autonomous retargeting capabilities, and increased 
flexibility in operations, thanks to the resulting streamlining 
of human-operator-in-the-loop activities. Another long-term 
benefit of the ASE project is documentation of the lessons 
learned which will certainly be invaluable to future 
applications of onboard autonomy and goal-based 
operations. 

 Not surprisingly, NASA is not alone in its desire to exploit 
the benefits of goal-based autonomous control architectures. 
In 2001, the European Space Agency (ESA) launched its 
first Project for On-Board Autonomy [9] (PROBA-1) 
spacecraft. The PROBA-1 technology validation mission 
successfully demonstrated both onboard and ground-based 
automation, including the ability to convey high-level goals 
(user requests) to the spacecraft via the Internet. ESA is also 
investigating the use of goal-based control and on-board 
planning and scheduling for ExoMars [10], a Mars rover 
anticipated to be the first flagship mission in ESA’s Aurora 
Exploration Programme.  

Although this paper’s focus is on spacecraft applications, 
the goal-based control approach has broad applicability to 
other domains, such as industrial robot control and 
autonomous unmanned air/underwater/ground vehicles. For 
example, the Defense Advanced Research Projects Agency 
(DARPA) has sponsored Grand Challenges, which have 
stimulated the development of various goal-directed 
planning and execution techniques and technologies. More 
broadly, goal-based control architecture is the focus of much 
research and development in academic, governmental and 
industrial organizations.  

5. SUMMARY  

The patterns for goal-based control provide the general 
organizing principles that allow intent to be preserved 
through the planning, execution, and fault response phases 
of system operation. These are only the general patterns, and 
real control systems present many special circumstances and 
situations that call for specializations or adaptations of these 
patterns.  Reference [12] describe several pattern 
specializations for more complex estimation, or state 
representation  patterns (distillation,  graph state variables, 
value histories);  patterns for dividing control systems 
across physical boundaries (proxy state variables and 
hardware adapters);  patterns for managing data (data state 

variables, and data controllers); and patterns for smoothly 
transitioning from the execution of one plan to the next 
(promotion). 

6. FUTURE WORK  

Additional architectural patterns have been developed for 
the following capabilities, and could be described in one or 
more follow-on publications: 

• Delegation is a pattern that enables one achiever to 
send goals directly to another achiever that enables 
a goal-based version of reactive control; 

• Measurement Distillation is a pattern that converts 
measurements into measurements that retain only 
the essential information required for state 
estimation; 

• State Variable Timelines are an abstraction of state 
variable representations for three kinds of state 
variable information: knowledge, intent, and 
projection; 

• Proxy State Variable and Proxy Hardware Adapter 
are copies of state variable information and 
command and measurement histories available to a 
deployment that is remote from the deployment in 
which they were created, 

• Data State Variables, Data Controllers, and Data 
Commands are special representations and control 
mechanisms to control the content and transport of 
value histories using the reactive and deliberative 
control mechanisms described in this paper, 

• Promotion is the mechanism by which a scheduled 
and validated executable goal net is installed and 
placed into execution by the goal executive. 

Current work is investigating the interfaces between the 
control system and its human users in an attempt to improve 
the ways people interact with control systems.  Many of the 
active roles described in these patterns can be, and 
traditionally are, performed by people. Using the pattern 
interfaces may allow for a more seamless interaction 
between systems and their users. 

Although these patterns have been applied in large 
distributed systems, they present some interesting questions 
in a systems-of-systems context. It is possible to use these 
patterns recursively, so that systems could distribute goals 
to subsystems, where the subsystems perform their own 
tactical planning and execution. 
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