
 1

An Architectural Pattern for Goal-Based Control
Matthew Bennett, Daniel Dvorak, Joseph Hutcherson, Michel Ingham, Robert Rasmussen, David Wagner

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

818-393-6426
{ matthew.b.bennett, daniel.l.dvorak, joseph.o.hutcherson, michel.d.ingham, robert.d.rasmussen, david.a.wagner }

@jpl.nasa.gov

Abstract—Time-based command sequencing is the
traditional paradigm for control of spacecraft and rovers in
NASA’s robotic missions, but this paradigm has been
increasingly strained to accommodate today’s missions.
Goal-based control is a new paradigm that supports time-
driven and event-driven operation in a more natural way and
permits a melding of sequencing and fault protection into a
single control paradigm. This paper describes one approach
to goal-based control as an architectural pattern in terms of
purpose, motivation, structure, applicability, and
consequences. This paper is intended to help flight and
ground software engineers understand the new paradigm
and how it compares to time-based sequencing. 12

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. BACKGROUND ...2
3. DESIGN PATTERNS ..3
4. RELATED WORK ... 13
5. SUMMARY ... 15
6. FUTURE WORK ... 15
ACKNOWLEDGEMENT ... 16
REFERENCES .. 16
BIOGRAPHY .. 17

1. INTRODUCTION

Much software in aerospace systems is devoted to making a
system do what its operators intend. These intentions range
from high-level mission plans to low-level hardware modes
and from long timescales to short timescales.
Fundamentally, the software for carrying out such intentions
must perform closed-loop control, with some control loops
closed through automation and others closed through
human-in-the-loop analysis and decision-making. This
“control software” must also coordinate activities at
multiple timescales and multiple levels of system and
subsystem decomposition and must respond appropriately to
failures.

For nominal operation at the system level, the dominant
paradigm for such control in today’s interplanetary missions

1
 1-4244-1488-1/08/$25.00 ©2008 IEEE.

2
 IEEEAC paper #1542, Version 9, Updated December 20, 2007.

is time-based command sequencing, where there has been
considerable engineering investment in flight software
(sequence management, sequence execution) and ground
software (tools for planning, scheduling, resource modeling,
and flight-rule checking for activities and command
sequences). Fault protection generally exploits sequencing
capabilities to some extent when responses are necessary,
usually at the expense of planned activities. For the most
part, however, fault protection is independent in design,
character, and execution from sequencing.

The predominant feature of this approach is that correct
operation of sequences depends on a mixture of ground-
based a priori predictions and a posteriori checks, in
addition to on-board health and safety checks that are
typically linked only weakly to planned activities. The
driving intent of a sequence is largely absent from the final
uplinked product, and the models essential to its structure
are also typically left behind, replaced by timers. That is, if
the system does not perform as predicted, discrepancies may
go unnoticed by the flight system, which is unaware of the
overarching intent. If an anomaly is detected, the flight
system does not have sufficient knowledge of this intent or
of system behavior to safely restore operation. Sometimes,
the actual real-time progression of sequences is conditioned
on observations made during execution, but more usually
these sequences proceed based purely on time.

This paradigm has been increasingly strained to
accommodate today’s more complex missions, which
require more localized capabilities such as autonomous
resource management, vehicle mobility with hazard
avoidance, opportunistic science observations, and so on. In
these missions, keeping the ground in the loop may be
impractical or even impossible, plans may be frequently
subject to change given a dynamic situation, and fault
responses may need to restore planned activities rather than
halting them.

An emerging paradigm—known as goal-based control,
which is a form of closed-loop control—can provide such
capabilities in a more natural way while still preserving the
option to “command” a system at a very detailed level. A
goal, in contrast to a command or command sequence, is
inherently a closed-loop directive since it specifies an
intention on the state of the system under control over a
period of time—an intention that is monitored continuously
during execution and therefore knowingly succeeds or fails.

 2

Note that a goal specifies what to do but not how to do it,
thus leaving options open to the control system—options
that may be exercised in both normal operations and in fault
responses.

Since a goal specifies a constraint on state over a period of
time, its execution can not only be time-driven but also
event-driven. Moreover, the uniform and complete
description of intent as state and time constraints provides a
basis for model-based reasoning that permits, for the first
time, a melding of sequencing and fault protection into a
single, highly flexible control paradigm.

The objective of this paper is to describe one particular
approach for goal-based control to software engineers as an
architectural pattern. As a pattern, the description focuses on
types of elements and relationships, their mechanisms of
interaction, and rules for combining them. This paper
describes a set of smaller patterns that are composed into the
larger architectural pattern, emphasizing several
architectural principles including:

• Separation of concerns:

o separation of control system from system under
control

o separation of state knowledge from intent

o separation of state estimation from control

o separation of reactive and deliberative processing

• Distinction of concepts:

o distinction between goal and command

o distinction between measurement and state
estimate

Major elements of the pattern include state variables, goal
elaboration, goal scheduling, goal status monitoring, goal
timeline execution, state estimation, controllers, and
hardware adapters. As a pattern, the ideas are language-
independent, so software engineers can implement them in
any programming language and begin to experiment with
goal-based control. In fact, C++ and Java versions already
exist and are available for use.

2. BACKGROUND

2.1 Architectural Patterns

Architectural design involves making decisions that have
system-wide impact. Architectural patterns help architects
understand the impact of the architectural decisions at the
time these decisions are made, because patterns contain
information about consequences and context of the pattern
usage. The patterns used here are based roughly on the
software design pattern methodology described in [11].
Section 3 of this paper describes an architectural pattern
using a template of the following five elements:

� Purpose. What does the design pattern do? What
problem does it address?

� Motivation. This is usually a scenario that
illustrates how the pattern solves a problem.

� Structure. Includes descriptions of the participants
and collaborations between them.

� Applicability. Conditions in which this pattern
applies, or does not apply.

� Consequences. What are the trade-offs and results
of using the pattern? What are its limitations?

2.2 Separation of Control System and System Under Control

Fundamental to these control patterns is the concept of a
separation between the Control System and the System
Under Control. The System Under Control is what the
Control System is intended to control. A clear boundary is
essential to defining clear models of behavior and
establishing clear control authority. Control system
designers can choose to define the boundary at a hardware
interface, or a subsystem interface, or anywhere else, as
long as the boundary is formally defined and the boundary
rules described in these patterns are adhered to.

Figure 1 – Separation of Control System
and System Under Control

2.3 State-Based Control

Control systems are designed to translate some notion of
user intent into actions that cause that intent to be achieved.
State-based control systems make a clear distinction
between the intent and the actions that the control system
may perform to achieve the intent. Intent expresses a
desired outcome in some physical state of the system under
control, rather than a script or sequence of actions needed to
achieve it.

Control theory defines a closed-loop control system as one
in which direct feedback from the system under control can
be used to determine the effectiveness of control actions,
allowing the control system to actively compare the state of
the system with the intent, and perform control actions that

 3

attempt to keep the system within a range of acceptable
behavior. This is distinct from an open-loop system where
control actions are performed without feedback. Feedback
allows the control system to react to unpredictable or
unexpected effects in the physics of the system, and
compensate for them.

Intent defines what the external users want the system to
accomplish. Intent is generally defined as a range of
acceptable behavior that may optionally be augmented with
additional performance measures. Intent is expressed
through a Goal. A goal is intended to constrain the state of
the physical system, but in order to do this a representation
of that physical state must exist in the control system. As
shown in Figure 2, a Software State Variable in the control
system represents the value of a Physical State Variable in
the system under control. Formally, then, a goal specifies a
constraint on the values of a software state variable over an
interval of time. All control decisions are based on the
relationship between estimated state and desired state
(goals). Patterns for estimation and control using this basic
paradigm are described later in this paper.

Figure 2 – State Variables and Goals

Real control systems, of course, usually control multiple
elements in the system under control, with multiple
concurrent objectives. The physical state variables of those
elements may be physically coupled, or interdependent.
Further, some physical state variables may not be directly
measurable, and many are only indirectly controllable.
Even as the complexity of the system increases, the
challenge for designers is to control the whole system in a
coordinated way.

Real control systems often employ both reactive and
deliberative control, according to the timescale for reacting
to feedback and the form of reasoning applied in achieving
intent. In relative terms, reactive control operates on faster
timescales and makes control decisions based on a narrow
scope of awareness. Deliberative control operates on slower
timescales and makes control decisions based on a wider
scope of awareness. Deliberation is driven by the need to
anticipate future demands and to attempt to ensure that
conditions appropriate to those demands will have been
established, where such conditions cannot be achieved

instantaneously, either due to the speed of system dynamics
or to potential conflicts.

The design patterns presented here are intended to provide
architectural solutions for achieving closed-loop control in
these increasingly complex systems. Section 3 first develops
the patterns for reactive control involving a single physical
state variable. Later, the section develops the patterns for
deliberative control, addressing the complexity introduced
when the control intent demands coordination of multiple
physical states variables.

3. DESIGN PATTERNS

3.1 State Estimation

Purpose

Define an architectural pattern for estimating the values of
physical state variables based on available evidence; cleanly
separate estimation from control.

Motivation

It is a common mistake in control system engineering to
make control decisions based on incomplete knowledge of
the state of the physical system as described in raw
measurements. Measurements can be noisy, and
intermittent. Filters are commonly applied to raw
measurements, but if the results are buried in a control
algorithm, they cannot easily be reused by other controllers.
Worse, two different users of the same raw measurements,
using different filters, may arrive at different estimates of
the state of the physical system, resulting in control
conflicts. Having a single explicit representation of any
physical state variable of the system under control, using a
single estimator, ensures consistent representation of that
variable in the control system.

Structure

The primary structural elements that participate in this
pattern are described in Figure 3.

First, the State Variable provides an explicit representation
in the control system of a corresponding physical state
variable of the system under control. This is also known as
the software state variable to make the distinction clear.
State variables are first-class entities in this pattern for three
reasons. First, a direct representation in software of the
physical state being controlled makes the software more
readily understandable. In addition, telemetry based on state
variable values is generally more informative than raw
measurements because they refer to a physical state being
monitored and possibly controlled. Second, the existence of
the state variable permits a separation of concerns between
estimation logic and control logic. Third, the existence of a
single software state variable for each physical state variable
ensures that there is one definitive source for estimates of a
given physical state in the control system, and only one way

 4

to access it. This avoids the common situation where two
different controllers each have their own private-but-
inconsistent estimates of a physical state, leading to
surprising and potentially hazardous interactions.

Figure 3 – Estimation Pattern (minus command
evidence)

An Estimator is responsible for actively providing values to
populate the state variable with the best estimate of its value
from available evidence. In the simplest case an estimator
may have only one source of evidence, such as
measurements from a single sensor, but in the general case
there are multiple sources of evidence: measurements from
multiple sensors, commands sent to multiple actuators, and
estimates of other state variables. The role of the estimator
is to combine that evidence into a “best guess” of the value
of the physical state, known as an estimate. Estimators must
deal with discrete and continuous values, noisy, missing or
corrupted measurements, and inconsistent evidence from
multiple sources. These characteristics underscore why state
estimation deserves special attention, quite apart from
control.

The Hardware Adapter is simply a formal interface to the
system under control. It provides a command interface for
components that can be directly commanded (actuators),
and a measurement interface to components that provide
measurements of the system state (sensors). Its main role is
to formalize the interface, but it can also serve to normalize
the interface (like a device driver) and buffer data.

Measurements are raw samples delivered from sensors to an
Estimator via a Hardware Adapter. They can have any
form, since this is often determined by the sensor hardware.
They should have time tags to eliminate timing ambiguity. It
is important to remember that measurements are not state
estimates; measurements are a type of evidence used by
estimators to generate state estimates.

Commands are another type of evidence used by estimators,
though not shown in Figure 3. Specifically, a command

issued to an actuator affects one or more physical states, and
can therefore provides evidence about the values of those
physical states. Thus, estimators may acquire not only
measurement evidence from sensor hardware adapters but
also command evidence from actuator hardware adapters.

State Variables store information about the system state in
the form of State Value Functions. These are distinct from
Measurements in that State Value Functions must be
continuous over time, and explicit about uncertainty.
Measurements are readings at discrete points in time, and
usually provide a single uncalibrated value. The process of
Estimation (the role of the Estimator) involves calibration,
smoothing, or noise elimination, and application of system
models to determine and express uncertainty. State values
can explicitly represent the fact that the system state may be
unknown in situations where measurements are not
available (e.g., if a sensor is powered off or failed).

Estimators produce state knowledge and repeatedly update
software state variables. The precision and certainty of that
state knowledge depends is driven by need, typically the
need to control one or more physical state variables to a
desired accuracy. Goals are used in this pattern to express
constraints on the desired quality of the state knowledge,
which may vary over time. Thus, estimators can be viewed
as “achievers” for these goals.

Applicability

This pattern applies in any control system where knowledge
of the target control states must be inferred from sensors or
other indirect evidence.

Consequences

The existence of software state variables as first-class
citizens in the architecture encourage a separation of
concerns between estimation and control. The State
Estimation pattern—and the State Control pattern that
follows—formalize this separation. This separation is
important because it decouples two concerns that have often
been intertwined in control system software, making each
concern easier to design, implement, verify, and reuse.

Also, the role of a software state variable as the sole source
of information for estimates of its corresponding physical
state variable eliminates the potential problem of multiple,
private-but-inconsistent estimates within a control system.

This pattern also makes a clear distinction between
measurements and state estimates. This is an important
distinction for robust control systems because there are
often multiple sources of evidence about the state of any
single physical state variable—sources that should be
examined and reconciled before making control decisions.

 5

3.2 State Control

Purpose

Define an architectural pattern for exercising control over a
given target system in a way that directly uses knowledge of
the state of the system under control.

Motivation

Consider a simple thermostatic temperature control system.
The system under control includes a temperature sensor and
a heater which can be controlled by a switch. The goal is to
maintain the temperature within a target range, or within a
target range. Designing and implementing a software
control system for this is straightforward. However, what if
the underlying system changed (such as a change to the
sensor) after the software was written, or you had to port the
control system to different hardware? How hard would it be
to pick apart the various models, assumptions, and
algorithms from the code?

The closed-loop control pattern is intended to address this
problem by defining placeholder elements for each of the
key roles in a control loop, and rules governing separation
of responsibilities between these elements.

Structure

The elements of this pattern are shown in Figure 4.

Figure 4 – State Control Pattern

As in the State Estimation pattern, a Hardware Adapter
provides a line of separation between an Actuator in the
system under control, and a Controller in the control
system.

Control intent is expressed through the use of Goals, which
express a constraint on the target state over an interval of
time.

A Controller is responsible for any direct interactions with
the system under control required to change or control the
target physical state. The controller can issue commands to
the target system through a Hardware Adapter. A controller
is goal-directed in the sense that it issues commands as
needed in order to drive the state of the physical system into
agreement with the goal, or desired state. Note that the
controller bases its decisions on the comparison between the
goal and state knowledge provided by state variables. In
other words, the controller never examines raw
measurements to make control decisions, i.e., it never
performs any internal state estimation.

Applicability

This pattern applies in situations where the control intent
(the goal) can be expressed as a constraint on state over a
time interval, or as a sequence of such constraints, and
where the target state can be explicitly described in a state
variable, and where the target state is directly controllable.

This pattern is typically limited to primitive states of the
system under control that can be affected through actuators.
The controller may rely on models of the system under
control to determine appropriate control actions when the
target state can only be indirectly controlled.

Consequences

This pattern, like the State Estimation pattern, supports the
separation of concerns between estimation and control, and
therefore makes control software easier to design,
implement, and verify because control logic is cleanly
separated from estimation logic.

This pattern places responsibility for control of a physical
state variable within a single controller. As such, a
controller may issue commands to multiple actuator
hardware adapters that have an effect on the physical state
being controlled.

3.3 Reactive Closed-Loop Control

Purpose

Define an architectural pattern for exercising simple closed-
loop control over a given target system in a way that directly
represents knowledge of the state of the system under
control, distinguishes between raw evidence and state
estimates, cleanly separates state estimation from control,
and bases all control decisions on the relationship between
estimated state and desired state.

Motivation

Consider a simple thermostatic temperature control system.
The system under control includes a temperature sensor and
a heater which can be controlled by a switch. The goal is to
maintain the temperature within a target range, or within a
target range. Designing and implementing a software
control system for this is straightforward. However, what if

 6

the underlying system changed (such as a change to the
sensor) after the software was written, or you had to port the
control system to different hardware? How hard would it be
to pick apart the various models, assumptions, and
algorithms from the code?

The reactive closed-loop control pattern is intended to
address this problem by defining placeholder elements for
each of the key roles in a control loop, and rules governing
separation of responsibilities between these elements.

Structure

The structure of this pattern is a simple composition of the
state estimation pattern and the state control pattern as
shown in Figure 5.

Figure 5 – Reactive Closed-Loop Control

What is important to note in the structure of this pattern is
how it can be composed from the sub patterns due to the
clean separation between estimation and control.
Estimation and control are separate functions that only
interact through the state variable.

Applicability

This pattern applies in situations where the intent (the goal)
can be expressed as a constraint on state over a time
interval, or as a sequence of such constraints. In the simplest
case, the goal may be statically built into the system. In the
more general case, an external sequencing mechanism
delivers goals in order, as described later in the section 3.7,
Executive Control.

Consequences

Some states can only be controlled indirectly. In this case
the pattern may extend, and control loops may overlap one
another via common state variables.

As long as the system is accurately modeled and estimation
and control algorithms are faithfully executed, this pattern
works for all control problems where the intent can be
expressed as a single constraint, or at least a single
constraint at a time. The pattern can be extended to support
more complex behaviors in the following ways:

* Complex constraints (e.g., trajectory) – Here the goal
includes timing information that describes a path through
state space over time. An example of this is a transition
goal, which is defined as a goal that allows for the transition
from one stable state value to another. Transition goals
express intent to have the state arrive at a target value, yet
avoid a determination of failure if the state is not
immediately being satisfied. For example, a transition goal
on a temperature state variable might be defined so that it is
succeeding as long as the temperature is moving toward the
target value, whereas a maintenance goal would be defined
so that any excursion from the constrained value range
would be considered a failure.

* Hierarchical layering of achievers – goal achievers can be
organized in a control hierarchy whereby a higher-level
achiever issues goals to subordinate achievers to coordinate
their actions in real time. An example is a position &
heading controller for a Mars rover that issues real-time
goals to the multiple driving and steering controllers.

* External sequencing of constraints – this approach is
commonly used in robotic systems not only to sequence the
constraints on a single state, but also to coordinate the
application of goals applied to many states. See section 3.7,
Executive Control.

These patterns can be combined in various ways to
implement quite complex behaviors. A common limitation,
though, is the limited tolerance for faults. In particular, the
sequencing of goals into complex activities will typically
describe one plan or script with all events ordered in time,
or possibly sequenced according to states being achieved. If
something breaks, or something unexpected happens, these
scripts have only a limited ability to recover because there is
no explicit representation of the higher-order intent, and no
formal mechanism for expressing alternative methods to
accomplish them. This limitation motivates the Deliberative
Closed-Loop Control Pattern described in section 3.9.

3.4 Goal Network

Purpose

Define an architectural pattern to represent the relationships
between a set of goals on a set of state variables that specify
control coordination across states and over time.

Motivation

The primitive patterns described thus far provide the means
to control state variables individually. In order to coordinate

 7

control of multiple states, a way is needed to represent
relationships among goals on different state variables.

Structure

A Goal Network (see Figure 6) is primarily a container for a
set of goals and their associated software state variables. To
make any sense as a plan, goals must be temporally related
with one another. This is done using Time Points and
Temporal Constraints.

A time point represents an abstract event. Every goal
associates with exactly one starting time point, and one
ending time point. However, time points can be shared by
many goals.

Time points carry no internal relationship to time. Instead,
all temporal relationships are represented through Temporal
Constraint objects, which also associate with one starting
time point and one ending time point. A temporal constraint
can specify a minimum and maximum duration allowed
between two time points, or simply a sequential ordering
constraint.

A Goal Network contains goals, time points, and temporal
constraints, as shown in Figure 6. The term “goal network”
is used because the topology of the container is that of a
directed graph where the time points are the nodes, and the
goals and temporal constraints are the edges. The “parent”
relationship shown in the figure means that each goal has a
link to its parent goal. This parent/child relationship is
populated during goal elaboration, as explained in section
3.5, Goal Elaboration.

Figure 6 – Goal Network

Since time points can be associated with different goals on
different state variables, they enable coordination of goals
across different state variables. Figure 7 depicts an example
goal network. The yellow circles represent time points. The
green boxes represent goals aligned along state time lines.
Time points joined by vertical lines indicate that those time
points are shared, representing events that connect the state
time lines. The arcs between time points represent temporal

constraints, in this case indicating a minimum and
maximum duration allowed between the given time points.

Earlier, a goal was defined as a constraint on the value of a
state variable over an interval of time. Note that the goal’s
relationship with time is indirect, through its relationship
with a starting and ending time point. Constraints on the
duration of the goal are specified through temporal
constraints on the bounding time points, and not as part of
the goal itself. This separation of concerns allows for goals
that do not have any temporal constraints, but it also allows
temporal constraints that are not elaborated from goals to be
added as part of the scheduling process, which will be
described later.

Every goal instance in the network associates with a specific
software state variable that it constrains. The set of goals
associated with a single state variable can be computed into
a sequential timeline through the process of ordering the
time points into a topological ordering that satisfies all of
the temporal constraints. This may result in overlapping
goals on the same state variable. Thus, goals must have the
property that allows them to be combined, or merged. The
process of merging two goals may result in a new, more
constrained goal. Merging occurs as part of the scheduling
process described later.

A goal network can exist in two states. When initially
constructed, an unscheduled network is simply the
aggregation goals, time points, and temporal constraints
representing a proposed plan. An executable plan has
undergone scheduling and verification (described later) to
merge and order goals according to temporal constraints,
and verified that the proposed plan is achievable.

Figure 7 – Example goal network depiction

Applicability

This pattern becomes applicable as soon as coordinated
control over multiples states is required.

Consequences

 8

The use of temporal constraints to indirectly constrain event
times allows for temporal flexibility in the plan. Contrast
this with sequences having fixed event times, or purely
sequential ordering.

3.5 Goal Elaboration

Purpose

Define an architectural pattern to represent causal
dependency relationships among a set of goals.

Motivation

Coordinated control is about controlling several component
states to accomplish some higher intent. In order to achieve
intent on a given state variable, the control system may need
to control other state variables that are causally related. In
other words, goals may beget other supporting goals.

The elaboration pattern provides a formal mechanism by
which a goal (an expression of intent) can specify
dependencies on other supporting goals needed for their
own achievement.

Structure

Elaboration is defined as the process of generating the
additional supporting goals that would be needed in the
same plan in order to accomplish the “parent” goal. A goal
can associate with an Elaborator (see Figure 8) whose job it
is to provide the additional plan elements needed to achieve
the given goal. This set of supporting goals—plus any
needed time points and temporal constraints—is known as a
Tactic. Tactics are small goal networks defined in support
of a particular parent goal. A goal can have more than one
tactic, i.e., there may be more than one set of supporting
goals that can help achieve the parent goal.

Figure 8 – Goal Elaboration Pattern

When the elaborator provides multiple tactics, only one can
actually be used at a time in a single plan. An elaborator
determines the tactic to apply depending on a variety of
possible conditions, including current state variable values,

scheduling failures, and failures of supporting goals during
execution. In the latter case, goal elaboration in response to
execution failures is called re-elaboration, and is described
further in section 3.8, Goal Monitoring and Fault Response.
In the case of a scheduling failure, a schedule using one
tactic is determined to be unachievable, so the elaborator
tries a different tactic if one is available.

The elaborator is separate from its goal mainly to separate
specification of intent (the goal) from planning behavior that
may or may not need to exist where the goals are executed.

The process of elaboration is performed at the level of an
entire goal network. The initial set of goals is elaborated and
then their supporting goals are elaborated recursively until
the process bottoms out with goals having no elaborators
(i.e., having no need for supporting goals).

Goal elaborations are normally defined such that supporting
goals are on state variables that are either the same state
variable as the parent goal, or are state variables that affect
the parent goal’s state variable [12].

The elaborator class can be more than a simple container of
a set of predefined tactic sub-networks. It can use
information available in the network context including
current and historic states of the system (from state
variables) to compute tactics appropriate to the given
situation.

Applicability

This pattern applies to any system where coordinated
control across multiple state variables is needed.

Consequences

A goal represents a desired outcome, and that encourages
operators to think in terms of the outcome rather than in
how it will be achieved. Of course, somebody still has to
design the tactics to achieve the outcome, but that is done
once, and then appropriate tactics are selected thereafter via
goal elaboration.

The elaboration process can be invoked prior to execution
(at plan design time) to elaborate operator-specified goals
into the complete set of goals needed to accomplish the
intent. A modified version of the process can be used during
execution to respond to goal failures. (A goal with failing
tactics can be re-planned by removing its current tactics
from the goal network, and elaborating and scheduling an
alternate tactic.)

3.6 Goal Planning and Scheduling

Purpose

Define a pattern for automatically preparing a goal network
for execution.

 9

Motivation

The power of the elaboration process is that it makes it
possible to describe a high-level goal and all of the
supporting goals it needs to be achieved. Maximum
flexibility is achieved if the elaborations specify the fewest
temporal constraints. Additional constraints need to be
added to the goal network by the planning and scheduling
process to create an executable goal network that is known
to be “achievable”. Achievability is determined by the
planner by checking the executable goal network against the
capabilities of the control system, and the physics of the
system under control.

Structure

The planner/scheduler shown in Figure 9 represents the
object performing planning and scheduling. A
planner/scheduler is basically a constraint solver. Given a
set of proposed goals, and temporal constraints (edges in a
directed graph) the planner first elaborates all goals
recursively to populate a complete set of goals needed to
achieve the proposed goals. The planner then merges
concurrent portions of overlapping goals on the same state
variable. Merges that result in unachievable goals are
rejected.

Figure 9 – Planner/Scheduler Interactions

Scheduling a goal network is the process by which an
elaborated goal network is prepared for execution. At the
end of elaboration, each state variable has goals and time
points defined on it. Scheduling picks an ordering of the
time points for each state variable. Goals that overlap over
time intervals are merged. If merging results in an
inconsistent goal, then a different time ordering is selected
by the scheduler. In addition, the temporal constraints in the
goal network are propagated to determine if the goal
network is temporally consistent.

Before a scheduled goal network is ready for execution is
must be validated. Validation of a scheduled goal network
checks that sequential goals on state variable are consistent
and that state predictions based on the ordered and merged
goals meet the intent of the ordered and merged goals.
Sequential goals are checked against transition achievability
criteria to determine if a goal can begin executing when the
previous goal’s end condition is met. Predictions are
computed using a mechanism called state projection which
takes into consideration models for the effects of goals on
affecting states, initial state variable values, physical models
of state variable behavior, the behavior of the control system
when it executes goals, and temporal constraints on the
goals. If a consistency check for sequential goals or a state
prediction check fails, the scheduled goal network is
rejected, and the scheduler attempts a different ordering of
time points. If all consistency checks succeed, then the
ordered and merged goal net is promoted for execution as an
executable goal network. The projections for each merged
goal are saved with that merged goal in what is called an
executable goal. If no ordering of time points results in a
valid goal network, the planner/scheduler backtracks to
choose another elaboration tactic.

Applicability

Needed if goal elaborations allow for temporal flexibility

Consequences

A key advantage of the planning and scheduling pattern is
that problems can be detected before they happen by
checking predictions for planned executable goals.

An executable goal network has been validated against
models to ensure that every goal is achievable, and every
transition from one goal to the next is achievable. Although
the ordering in which goals are executed along any given
state variable timeline will be fixed by this process, the
network may still permit flexibility in the order in which
events occur on different timelines, and the firing of time
points.

3.7 Executive Control (Timeline Execution)

Purpose

Define an architectural pattern for execution of a planned
and scheduled network of goals (an executable goal
network) that will execute goals associated with planned
activities according to a time-driven, and state-driven
schedule.

Motivation

Given that operator intent is captured within a goal network
as a series of goals placed upon state variables, how is this
translated into activities performed by the system under
control? Using the simple thermostatic control example, the

 10

switch to the heater must be turned on at time t0 and turned
off at time t1. During that span of time the heater must
remain within a certain temperature range. In this example
there are two events that must occur; turning the switch on
then turning it off. During the period of time the switch is
on the temperature of the heater must be monitored to
ensure it remains within the range specified by the goal. The
Executive Control pattern ensures the events occur within
their temporal windows.

Structure

The purpose of the Goal Executive, as depicted in Figure 10,
is to carry out the intent represented in an executable goal
network by dispatching goals for execution at the
appropriate times. The executive relies on the fact that goals
express a continuous intent on a target state variable as long
as they are in effect, and it is the responsibility of the control
system to continue to try to achieve each assigned goal for
each state variable until the next goal is dispatched for that
state variable.

The executable goal network specifies the intent timelines
for each of the state variables modeled within the control
system. An intent timeline for a state variable is represented
in the executable goal network as of a series of time points
connected by merged, executable goals. Scheduled time
points can retain some temporal flexibility as allowed by the
set of temporal constraints in the goal network. As time is
advanced by the executive, it is the responsibility of the
executive to continually propagate the temporal constraints
to refine the schedule of each time point.

Figure 10 – Executive Pattern

Like goals, executable goals are bounded with starting and
ending time points, some of which may have been generated
during the scheduling process due to partially overlapping
goals. A time point represents a time at which the executive

must perform an action. The temporal constraints of the
contributing goals determine the valid range of times, or
window, in which the time point is considered open, or
eligible to fire. To fire a time point, the Goal Executive
checks that all the goals that have this time point as their
starting time point are “ready” to start executing; that is, the
post-conditions and pre-conditions associated with the
transition from the current executable goal to the next
executable goal on the timeline have been satisfied [2].
When the Goal Executive fires a time point it becomes
“grounded” in time, removing any temporal flexibility it
may have had, and the next executable goal’s constraint is
dispatched to the control system for execution. The Goal
Executive will honor a not-ready transition status while
within the eligible window of the time point and not
dispatch the next executable goal; however once past the
window the Goal Executive will fire the time point and
issue the next executable goal even if it is not ready for
transition. Thus a temporal problem in execution will be
manifested as a potential goal failure by the goal that was
not ready to transition.

Consequences

Executive Control provides for the sequencing of activities
on individual state variable time lines and the coordination
of events across all state variables modeled within the
system. As an independent functional entity, the Goal
Executive may continue to execute the latest mission plan
while other planning activities occur. It provides an
intermediate rate of execution between potentially long-term
planning activities and rapid execution cycles of a reactive
control system. As such, care must be exercised when
choosing a rate of execution for the Goal Executive.

3.8 Goal Monitoring and Fault Response

Purpose

Define a pattern for monitoring the execution of goals in
order to respond to goals that cannot be achieved (goal
failures).

Motivation

Time continues moving forward regardless of what happens
in the system. Although a reactive control system, with the
knowledge of intent available in a goal, may be able to
compensate for some unexpected events, things can still fail.
Since the current goal network was planned using a specific
set of tactics to achieve certain goals, there may be other
goal networks (using alternate tactics) that could still
achieve the plan’s intent.

For example, consider a goal to drive a mobile robot from
point A to point B through city streets. The set of available
routes is constrained, and a given plan may choose one
route. However, after executing part of the route, an
obstacle is encountered, preventing further advance along

 11

that route. Now the only option is to give up the current
plan, and try another route.

Since the current plan may also contain goals that are still
relevant, the executive and the goal achievers cannot just
stop – they must continue trying to achieve the current plan
until a new plan can be produced. So, a separate mechanism
is required to notice that the plan is failing, and notify the
planner to do something about it.

Structure

The Goal Monitor is a separate element of the control
system that monitors the status of all currently executing
goals. The Goal Monitor consults each executable goal’s
associated state variable to check the estimated state against
the intent of the goal. The Goal Monitor may also check
temporal constraints and projections to determine if a goal
can still be satisfied. If the state variable reports that a given
merged executable goal is no longer satisfiable, the Goal
Monitor will then initiate a fault response.

Figure 11 – Goal Monitor

First, it will attempt to determine which of the contributing
goals merged into the failing executable goal have failed. To
do so, it will query each of the contributing goals to see if it
is still satisfiable. For each failing goal it then finds that
goal’s parent goal (using relations in the goal network), and
notifies the parent goal’s elaborator, which in turn
determines an appropriate fault response.

Figure 12 – Fault Response

The parent goal’s elaborator has several options. It can
decide to do nothing (i.e., just let the plan continue to
execute and hope for the best); it can assert an error
condition that would stop and safe the system; it can
propose a change of plan by invoking re-elaboration of a
different tactic; or, it can “fail up” by consulting its parent
for a fault response. The process of failing up the goal
elaboration hierarchy allows a fault to propagate up to the
level of intent at which it can be appropriately dealt with.

Consequences

Separating the goal monitor from the executive allows the
executive to continue trying to achieve the current plan as
best it can. Separating the goal monitor from the
planner/scheduler allows the monitor to continue checking
the status of goals even after a fault is detected and a
response initiated. If a second fault occurs, the monitor and
planner/scheduler can then prioritize their response based on
relationships between the failing goals. For example, if
several goals are all failing at the same time (a likely
situation if their state variables affect one another), then the
goal monitor, or planner can determine that they are all
children of the same parent goal, and then only have to
replan that one parent goal. Or, it can determine that the
goals are entirely independent, and re-elaborate and
reschedule them separately.

3.9 Deliberative Closed-Loop Control

Purpose

Reactive control is very useful for many situations when
control decisions can be made without looking far into the
future. However, sometimes the determination of what
should be accomplished in the present depends on what is
planned or predicted for the future. Because reactive control
systems have no knowledge of future plans beyond the
activity they are currently trying to accomplish, there is a
need for a mechanism to control systems that must consider
the future. The deliberative closed-loop control pattern
provides such a mechanism.

This mechanism constructs, monitors, and revises goal
networks that take into consideration requirements on what
needs to be accomplished in the future. The deliberative
closed-loop control pattern monitor function responds to
unpredictable or unanticipated events as they occur during
execution.

Motivation

Consider the problem of maintaining a battery state of
charge through a series of activities that both consume and
produce energy. One can represent the requirement to
maintain the battery state of charge above a minimum limit
as a goal on a battery energy state variable. The activities,
represented as a series of goals, need to be ordered in time
into a plan such that the battery state of charge does not fall
below the minimum limit. The goals that affect the battery

 12

state of charge in the plan are used to predict the battery
state of charge, and validate that the plan does not violate
the minimum battery state of charge limit. The goal to
maintain the state of charge can be monitored during
execution, and activities can be shed if the use an
unexpected amount of power.

Applicability

This pattern is applicable to situations in which:

(1) A large number of state variables need to be
controlled in parallel;

(2) The control strategy involves a series of activities
organized into a long term plan;

(3) The activities can be expressed as goals on state
variables;

(4) The state variables must be controlled to meet user-
defined goals; and

(5) The plan needs to be able to be changed
automatically in response to unanticipated or
unpredictable events.

Structure

This pattern is a composition the following patterns
described previously:

(1) Goal Network

(2) Goal Elaboration

(3) Goal Planning and Scheduling

(4) Executive Control (Timeline Execution)

(5) Goal Monitoring and Fault Response

Construction of a goal network includes the elaboration of
operator-specified goals, scheduling the resulting goal
network, and validating the result as an executable goal
network. The executable goal network is executed by the
goal executive, and as each executable goal executes it is
monitored by the goal monitor. The goal monitor notifies
the planner when an executable goal fails, allowing the
planner to modify the plan to respond to goal failures.

Combining these patterns enables the kinds of complex
behaviors made possible by traditional sequencing and fault
management mechanisms, but in addition, it accommodates
dynamic changes to the plan. Specifically, it provides a
coordinated mechanism for responding to faults or other
unexpected deviations from the plan.

Consequences

A key advantage of the deliberative closed loop control
pattern is that problems can be detected before they happen
by checking predictions for executable goals. Corrective
action can be taken before serious consequences ensue. For
example, if battery energy is being used faster than
predicted, the goal network may be revised to shed lower
priority energy-consuming goals. Or it may schedule new
goals to charge the battery.

The deliberative closed loop control pattern may require
significant computing resources and time for performing
scheduling. This can be ameliorated by ensuring that goal
networks are scheduled for a limited time horizon, avoiding
the computational expense of long-term planning. Also, pre-
scheduled networks can be quickly swapped in if a fast
response is required. An example may be a “safe-mode goal
network” that puts the system into a safe state.

This pattern needs good models of physics and achiever
behavior to validate scheduled goal networks. However,
models only need to be as good as necessary to achieve
objectives. Many times conservative simple models are

adequate.

3.10 Deliberative and Reactive Closed-Loop Control

Purpose

Reactive and deliberative closed-loop control patterns are
combined into a single pattern to allow for highly flexible
and robust control system behavior.

Motivation

Control systems may need to be both reactive to small
changes in the system under control, as well as being able to

Figure 13 – Deliberative and reactive closed-loop

control patterns are connected through
software state variables.

 13

plan and execute a long-range series of tasks. For example,
a Mars rover needs to be able to deliberatively plan a safe
path across rocky terrain and also reactively control its
wheel rotations to accommodate slippage while maintaining
forward progress.

Applicability

This pattern is applicable to most embedded and robotic
control systems, which require both deliberative and
reactive control.

Structure

This pattern is a composition the following patterns
described previously:

(1) Reactive Closed-Loop Control

(2) Deliberative Closed-Loop Control

These two patterns are connected through software state
variables, as shown in Figure 13. State variables are
estimated and controlled by the reactive control system in
response to executable goals metered out by the deliberative
closed loop control system. The deliberative control system
sequences and validates the plans for goal execution, and
detects goal execution failures as the reactive control system
acts on the goals. The deliberative control system responds
to goal failures through goal re-elaboration and scheduling
to produce a modified executable network. Figure 14 shows
major data flows within this combined control pattern.

Consequences

The integration of deliberative and reactive control brings
some complexity in terms of interactions between the two
patterns, but this complexity is largely inherent in the
challenging control problems for which it is applicable. The
intent of specifying this architectural pattern is to provide a
structured means of dealing with this complexity.

Figure 14 – Major data flows within combined
architectural pattern for goal-based control

4. RELATED WORK

The idea of operating systems at the level of explicit intent
is not a novel concept. For example, thermostats have been
used to control the temperature of building interiors for over
a hundred years. The thermostat’s set point is a form of goal
in that it specifies the desired temperature that the building’s
heating, ventilating, and air conditioning control system
must achieve and maintain. In the context of space
exploration, goals have actually been used for decades in
limited fashion, particularly in the context of spacecraft
attitude and articulation control systems, for the purposes of
pointing science instruments, communication antennae,
solar panels, etc. Vehicle reorientation and gimbal angles
are “commanded” by specifying trajectories of desired
angles and rotation rates; these state trajectories are explicit
representations of intent. Until recently, however, such
representations have not been used consistently across all
spacecraft subsystems, and have not been integrated into
coherent system-level control architectures and operations
processes. This section provides a brief overview of related
work in goal-based control architectures and goal-based
operations (GBO), highlighting a number of significant
achievements from the space exploration domain.

Control System

State Variables

Intent timeline

Knowledge timeline

Controllers

Goal Elaboration
& Re-elaboration

control
goals

Estimators

knowledge
goals

Scheduling

goal
failures

operator-specified goals

System Under Control

commandsmeasurements

Goal
Executive
& Monitor

executable
goal network

Sensor
Hardware Adapter

Actuator
Hardware Adapter

Control System

State Variables

Intent timeline

Knowledge timeline

Controllers

Goal Elaboration
& Re-elaboration

control
goals

Estimators

knowledge
goals

Scheduling

goal
failures

operator-specified goals

System Under Control

commandsmeasurements

Goal
Executive
& Monitor

executable
goal network

Sensor
Hardware Adapter

Actuator
Hardware Adapter

 14

One of the first full-scale (system-level) applications of
goal-based control architecture was the Remote Agent (RA)
Experiment [3], which was flight-validated in 1999 on the
Deep Space One (DS1) spacecraft, the first deep space
mission in NASA’s New Millennium Program. RA is a
model-based, reusable, artificial intelligence (AI) software
system that enables goal-based spacecraft commanding and
robust fault recovery. A simplified view of the RA software
architecture is shown in Figure 15. RA consists of general-
purpose reasoning engines (both deductive and procedural)
and mission-specific domain models. One of its key
characteristics—and a main difference with traditional
spacecraft commanding—is that ground operators can
communicate with RA using goals (e.g., “During the next
week take pictures of the following asteroids and thrust 90%
of the time”) rather than with detailed sequences of timed
commands. RA determines a plan of action that achieves
those goals; actions are represented as tasks that are
decomposed on-the-fly into more detailed tasks and,
eventually, into commands to the underlying flight software.
The RA Experiment provided an invaluable proof-of-
concept and lessons learned in a number of areas, including
benefits and challenges associated with autonomous goal-
based operations. These lessons have been documented in
the Remote Agent Experiment DS1 Technology Validation
Report [4].

NASA’s Mars Exploration Rovers (MER) [5], Spirit and
Opportunity, also employ a certain degree of goal-based
operations capability, in both the ground system and
onboard the rovers. In the ground system, operators use the
Mixed-initiative Activity Plan GENerator (MAPGEN [6])
tool to plan each rover’s science and engineering activities
on a sol-by-sol basis. Given a set of user observation goals
and their priorities, this tool enables operators to construct a

plan that satisfies these goals and schedule the activities in
the plan such that conflicts between incompatible activities
and oversubscription of limited resources are avoided.
MAPGEN leverages the automated planning and scheduling
engine that was flight-validated as part of RA on DS-1,
integrating it into a GUI environment that enables operators
to incrementally build and edit their plans. With this tool, a
plan is refined through iterations of automated computation
and judicious hand-editing based on domain expertise,
eventually converging to a final plan that the operator finds
appropriate. Onboard each rover, the flight software is
programmed to accept a combination of abstract goal-like
directives, such as ‘drive to waypoint’, and lower-level
commands. In a remote and unpredictable environment like
the Martian surface, the rovers robustly achieve their
ambitious science objectives by taking advantage of their
ability to make certain decisions in-situ, and execute
flexibly-specified plans in an event-driven fashion. These
are fundamental characteristics of goal-based systems.

The most recent and comprehensive space-based application
of a goal-based control architecture is the Autonomous
Sciencecraft Experiment (ASE) [7, 8]. ASE is a software
system currently flying onboard the EO-1 spacecraft, which
has demonstrated several integrated autonomy technologies
that together enable science-directed autonomous
operations. The ASE software includes onboard continuous
planning, robust task and goal-based execution, and onboard
machine learning and pattern recognition, and has more
recently been augmented to demonstrate model-based
diagnosis capabilities with RA heritage. Like RA, ASE
began as a technology experiment within NASA’s New
Millennium Program, as part of the Space Technology 6
project. Early tests had the goal-directed planning and
execution capabilities deployed as part of a ground-based

Deep Space One

Livingstone:
Diagnosis &

Repair

Mission
Manager

Scripted
Executive

HSTS:
Planner/

Scheduler

Goals

Planning
models

Scripts

Component
models

Remote Agent

Figure 15 – Remote Agent Experiment on Deep Space One demonstrated goal-based operations
in 1999. In this architecture the Mission Manager sends high-level goals to the
Planner/Scheduler which then generates detailed tasks (lower-level goals), and the Executive
executes scripts associated with the lower-level goals, issuing commands as needed.

 15

sequencing system; the success of these tests built up
confidence in the technology in preparation for ultimate
deployment of the capabilities onboard the spacecraft. The
technology was declared fully validated in May 2004. The
ASE software now runs full-time onboard the EO-1 satellite,
and has become its primary mission planning and control
system. Through automation of the operations process, ASE
has contributed operational savings of approximately $1M
per year, compared to EO-1’s nominal operations cost prior
to ASE deployment. It has resulted in dramatic increases in
science return, thanks to its intelligent downlink selection
and autonomous retargeting capabilities, and increased
flexibility in operations, thanks to the resulting streamlining
of human-operator-in-the-loop activities. Another long-term
benefit of the ASE project is documentation of the lessons
learned which will certainly be invaluable to future
applications of onboard autonomy and goal-based
operations.

 Not surprisingly, NASA is not alone in its desire to exploit
the benefits of goal-based autonomous control architectures.
In 2001, the European Space Agency (ESA) launched its
first Project for On-Board Autonomy [9] (PROBA-1)
spacecraft. The PROBA-1 technology validation mission
successfully demonstrated both onboard and ground-based
automation, including the ability to convey high-level goals
(user requests) to the spacecraft via the Internet. ESA is also
investigating the use of goal-based control and on-board
planning and scheduling for ExoMars [10], a Mars rover
anticipated to be the first flagship mission in ESA’s Aurora
Exploration Programme.

Although this paper’s focus is on spacecraft applications,
the goal-based control approach has broad applicability to
other domains, such as industrial robot control and
autonomous unmanned air/underwater/ground vehicles. For
example, the Defense Advanced Research Projects Agency
(DARPA) has sponsored Grand Challenges, which have
stimulated the development of various goal-directed
planning and execution techniques and technologies. More
broadly, goal-based control architecture is the focus of much
research and development in academic, governmental and
industrial organizations.

5. SUMMARY

The patterns for goal-based control provide the general
organizing principles that allow intent to be preserved
through the planning, execution, and fault response phases
of system operation. These are only the general patterns, and
real control systems present many special circumstances and
situations that call for specializations or adaptations of these
patterns. Reference [12] describe several pattern
specializations for more complex estimation, or state
representation patterns (distillation, graph state variables,
value histories); patterns for dividing control systems
across physical boundaries (proxy state variables and
hardware adapters); patterns for managing data (data state

variables, and data controllers); and patterns for smoothly
transitioning from the execution of one plan to the next
(promotion).

6. FUTURE WORK

Additional architectural patterns have been developed for
the following capabilities, and could be described in one or
more follow-on publications:

• Delegation is a pattern that enables one achiever to
send goals directly to another achiever that enables
a goal-based version of reactive control;

• Measurement Distillation is a pattern that converts
measurements into measurements that retain only
the essential information required for state
estimation;

• State Variable Timelines are an abstraction of state
variable representations for three kinds of state
variable information: knowledge, intent, and
projection;

• Proxy State Variable and Proxy Hardware Adapter
are copies of state variable information and
command and measurement histories available to a
deployment that is remote from the deployment in
which they were created,

• Data State Variables, Data Controllers, and Data
Commands are special representations and control
mechanisms to control the content and transport of
value histories using the reactive and deliberative
control mechanisms described in this paper,

• Promotion is the mechanism by which a scheduled
and validated executable goal net is installed and
placed into execution by the goal executive.

Current work is investigating the interfaces between the
control system and its human users in an attempt to improve
the ways people interact with control systems. Many of the
active roles described in these patterns can be, and
traditionally are, performed by people. Using the pattern
interfaces may allow for a more seamless interaction
between systems and their users.

Although these patterns have been applied in large
distributed systems, they present some interesting questions
in a systems-of-systems context. It is possible to use these
patterns recursively, so that systems could distribute goals
to subsystems, where the subsystems perform their own
tactical planning and execution.

 16

ACKNOWLEDGEMENT

The work described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration. Thanks to Nicolas Rouquette for
help with the UML diagrams.

REFERENCES

[1] Constellation Program Web site, National Aeronautics
and Space Administration,
http://www.nasa.gov/mission_pages/exploration/main/in
dex.html.

[2] Ingham, M., Rasmussen, R., Bennett, M., and Moncada,
A., “Engineering Complex Embedded Systems with
State Analysis and the Mission Data System”, AIAA
Journal of Aerospace Computing, Information and
Communication, Vol. 2, No. 12, Dec. 2005, pp. 507-536.

[3] Bernard, D., et al., "Design of the Remote Agent
Experiment for Spacecraft Autonomy,” Proceedings of
the IEEE Aerospace Conference, Aspen, CO, 1999.

[4] Bernard, D., et al., “Final Report on the Remote Agent
Experiment”, Proceedings of the New Millennium
Program DS-1 Technology Validation Symposium,
Pasadena, CA, February 2000.

[5] Morris, J.R., Ingham, M.D., Mishkin, A.H., Rasmussen,
R.D. and Starbird, T.W., “Application of State Analysis
and Goal-Based Operations to a MER Mission
Scenario”, Proceedings of SpaceOps 2006 Conference,
Rome, Italy, June 2006.

[6] Ai-Chang, M., et al., “MAPGEN: Mixed Initiative
Activity Planning for the Mars Exploration Rover
Mission”, Proceedings of the 13th International
Conference on Planning & Scheduling (ICAPS ’03),
Trento, Italy, June 2003.

[7] Chien, S. et al., “Using Autonomy Flight Software to
Improve Science Return on Earth Observing One”,
AIAA Journal of Aerospace Computing, Information and
Communication, Vol. 2, No. 4, April 2005, pp. 196-216.

[8] Chien, S., et al., “Lessons Learned from Autonomous
Sciencecraft Experiment”, Proceedings of the
Autonomous Agents and Multi-Agent Systems
Conference (AAMAS 2005). Utrecht, Netherlands, July
2005.

[9] Proba: Observing the Earth Web site, European Space
Agency,
http://www.esa.int/esaMI/Proba_web_site/index.html.

[10] Woods, M., et al., “On-board Planning and Scheduling
for the ExoMars Mission”, Proceeding of the DASIA
(DAta Systems In Aerospace) Conference, Berlin,
Germany, 22-25 May 2006.

[11] Gamma, E., et al, “Design Patterns: Elements of
Reusable Object-Oriented Software”, Addison-Wesley,
1995.

 17

[12] Bennett, M., Dvorak, D., Ingham, M., Morris, J.R.,
Rasmussen, R., and Wagner, D., "State Analysis for
Software Engineers Training Course", https://pub-
lib.jpl.nasa.gov/docushare/dsweb/View/Collection-68.

BIOGRAPHY

Matthew Bennett is a Senior
Software Systems Engineer in the
Flight Software & Data Systems
section at the Jet Propulsion
Laboratory. He has interests in
model-based engineering, software
architecture, and spacecraft
autonomy. He has developed
mission software for fault
protection, guidance and control,

science data collection, performance analysis, and
simulation. He holds an MS from the University of
Washington in Computer Science, and a BS from the
University of California at San Diego in Computer
Engineering.

Daniel Dvorak is a principal
engineer in the Planning &
Execution Systems section at the
Jet Propulsion Laboratory. His
research interests include software
architecture, model-based
engineering, and operation of
autonomous systems. Prior to 1996
he worked at Bell Laboratories on
the monitoring of telephone

switching systems and on the design and development of
R++, a rule-based extension to C++. Dan holds a Ph.D. in
computer science from The University of Texas at Austin, an
MS in computer engineering from Stanford University, and
a BS in electrical engineering from Rose-Hulman Institute
of Technology.

Joseph Hutcherson is a senior
software engineer in the
distributed systems technologies
group at the Jet Propulsion
Laboratory. He has helped
develop information distribution
systems for the Navy and Marine
Corps using R/F and satellite
communications. Most recently he
has helped to develop a Java –

based version of MDS. He has a BS in General Engineering
from Harvey Mudd College.

Michel Ingham is a senior software
system engineer in the Flight
Software Systems Engineering and
Architecture Group at the Jet
Propulsion Laboratory. His
research interests include model-
based methods for systems and
software engineering, software
architectures, and spacecraft
autonomy. He earned his Sc.D. and

S.M. degrees from MIT in Aeronautics and Astronautics,
and a B.Eng. in Honours Mechanical Engineering from
McGill University in Montreal, Canada.

Robert Rasmussen has been a
systems engineer at JPL since 1975
after receiving his Ph.D in
Electrical Engineering from Iowa
State University. He has
contributed broadly to several
planetary missions, including
Voyager and Galileo, and was the
lead engineer for the Cassini
Attitude and Articulation Control

Subsystem. Bob has long been interested in spacecraft
control and autonomy, helping to initiate the award winning
Remote Agent experiment on DS-1. He has also been
Technologist for the Information Technologies and Software
Systems Division, and Architect for the Mission Data
System project, developing a unifying architecture and
model-based engineering methodology for complex
autonomous systems. He is presently a JPL Engineering
Fellow and Chief Engineer for the Systems and Software
Division.

David Wagner is a senior software
system engineer in the flight
software applications group at the
Jet Propulsion Laboratory. He has a
BS in Aerospace Engineering from
the University of Cincinnati, and a
MS in Aerospace Engineering from
the University of Southern
California.

 18

