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Model-based software quality assurance (MB-SQA) pnades a rigorous framework for
the verification and validation of software systemshrough the systematic modeling and
analysis of formal architecture representations. Tis paper describes the results of applying
an MB-SQA practice framework that utilizes the Architecture Analysis and Design
Language (AADL) to JPL’s Mission Data System (MDSYyeference architecture. The MDS
is a unified reference architecture for space missn flight, ground, and test systems. In the
case study, the AADL assurance practice frameworkral several AADL-based analyses were
applied to the evaluation of critical quality attributes of the MDS reference architecture as
well as an MDS adaptation for the control of a head camera. The results of the case study
demonstrate the utility of the practice framework axd the AADL-based analyses in
addressing (1) the modeling of key MDS architectudlathemes and (2) quality assurance with
respect to performance, particularly flow latency.

Nomenclature

AADL = Architecture Analysis and Design Language
FOM = Figure of Merit

IV& = Independent Verification and Validation
MB-SQA = Model-Based Software Quality Assurance
MDS = Mission Data System

OSATE = Open Source AADL Tool Environment
SQA = Software Quality Assurance

V&V = Verification and Validation

I. Introduction

hroughout software engineering literature, softwguality assurance (SQA) typically refers to moriitg the

software development process to ensure that thjeagpris adhering to established development stasdand
procedures. In other words, the high quality (repdlity” as an adjective) of a software systerassured through
the rigorous enforcement of standards and procedure

However, SQA can also refer to ensuring that tHieveoe system has certain qualities (here, readliyli as a
noun), or, as referred to in the software architectcommunity, quality attributes. These qualityyilautes are
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indirectly measurable software system propertieshsas maintainability, performance, and safetirdd by
system stakeholders. In order to ensure thattvaa system meets the quality attribute requirémset forth by
the system stakeholders, software engineers mustipesoftware quality assurance.

This type of SQA is a critical, yet difficult taglkr embedded software systems, because (1) quatiijputes
need to be built into a system from the beginning &) quality attributes are indirectly measurable

First, quality attributes must be engineered ihi $oftware system through the employment of sipeeittics,
such as architecture styles, design patterns, fererece architecturés. These tactics are selected to address a
particular or several quality attribute(s) requiesits and contribute to the overall architecturaicept. Second,
quality attributes are indirectly measurable. Egample, there is no single measurement for “peréorce,”
because performance is highly coupled to the fonatirequirements of the software system, the cheniatics of
the system within which the software is embedded #he non-functional needs of the system stakehsld
Therefore, Figures of Merit, or FOMs, are usuaklyied, such as data transport latency, task exectime, and
latency jitter, that quantify the quality attribute this case performance, with respect to thi$esy context. These
FOMs provide software engineers with an indicadrperformance and system stakeholders with assertrat
their concerns are being addressed.

The architectural concept and quality attribute F<Oe documented as part of the software architectud
specified in an “architecture description docunientTraditionally, the views that comprise an arekture
description do not contain formal models that carabalyzed with respect to these FOMs. The lagigofously
specified software architecture description docusiemakes it extremely difficult for quality assucarpersonnel to
determine whether or not an architecture has beestrzicted such that stakeholder quality concemaddressed.

These problems can be addressed through takingdel+based approach to SQA. Model-based software
quality assurance (MB-SQA) is the application ofdmlebased engineering techniques (i.e., the uskraial
abstractions and analyzable representations torpeti/pical engineering tasks) to the verificatéord validation of
software architectures with respect to qualityiladties. Model-based engineering techniques utiizectured,
graphical, implementation-independent notationaitesys for producing unambiguous documentation efesy
requirements and design, thereby providing the dation for formal and effective software qualitysasance.
Using MB-SQA for both verification and validatiov&V) and independent verification and validatio’/gV),
which are often employed at each phase of the edeloesbftware system development lifecycle, provietdsvare
engineers with the capability to develop a thorougterstanding of and insight into the critical retzéeristics of a
system that are vital to its correct operation.

This paper proposes an approach to MB-SQA thatrdges the Society of Automotive Engineers (SAE)
Architecture Analysis and Design Language (AADLPddpen Source AADL Tool Environment (OSATE). It is
proposed that these tools and associated practiceefvork can be employed in both the V&V and 1V&fibets of
embedded software systems development to help eetiseiiachievement of stakeholder quality requiremerihis
formal modeling language and supporting toolseevegiplied to representing and analyzing an adaptafithe Jet
Propulsion Laboratory (JPL) Mission Data System @jDeference architecture for real-time embeddetrab
systems, to evaluate the effectiveness and eaggpbfing this approach to a real system.

Section 2 provides background on the AADL, the AAB&surance practice framework, and examples of the
types of quality attribute analyses that can bedopered by using AADL and the AADL assurance praetic
framework. Section 3 presents an overview of theSvieference architecture and observations on h@SM
architectural themes relate to both AADL modeliaghniques and model-based engineering of softweaterss in
general. Section 4 presents the case study uskdstoate the AADL assurance practice framewoskagell as the
models that were developed for that case stud résults of performing various analyses on thesgefs are also
presented. Finally, Section 5 presents conclusaoasfuture work.

” An architecture style is a form or pattern of dasivith a shared vocabulary of design idioms aneksréor using
them? A design pattern is a commonly recurring struetaf communicating components that solves a general
design problem within a particular context. A refece architecture an architectural pattern, orogtatterns,
partially or completely instantiated, designed gmdven for use in particular business and technicaltexts,
together with supporting artifacts to enable thisie*
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. BACKGROUND

This section provides necessary background infaomator understanding how the AADL is useful in
performing MB-SQA and to understand the contextitterapplication to the MDS reference architectuFerst, a
brief overview of the AADL is presented. Then,umsnary of the AADL assurance practice frameworausined.
Finally, MDS and its architecture concepts arepifticed.

A. AADL
The SAE AADL standard provides formal modeling cgpis for the description and analysis of softwagstesn
architectures in terms of distinct components 4rsit interactiond. The AADL includes software, hardware, and
system component abstractions to (1) specify aralyad real-time embedded systems, complex systéms-o
systems, and specialized performance capabilityesys and (2) map software onto computational harelwa
elements. The AADL is especially effective for rbbased analysis and specification of complex-tiesd

embedded systenfs.

Within the AADL, a component is characterized lsyidentity (a uniqgue name and runtime essencegilpes
interfaces with other components, distinguishingpprties (critical characteristics of a componerithiw its
architectural context), and subcomponents and th&sractions. In addition to interfaces and ingrstructural
elements, other abstractions can be defined forpooent and system architectures. For exampleraabdtows
can be identified and associated with specific comgpts and interconnections to perform flow analys&éhese
additional elements can be included through coreDAAlanguage capabilities and the specification of a
supplemental annex language.

The component abstractions of the AADL are sepdriaii® the three categories listed belBwFigure 1 shows
the AADL graphical representations of these compbabéstractions.

Application Software:

e Thread: active component that can execute

concurrently and be organized into thread groups

e Thread Group: component abstraction for [APplication Software

logically organizing _th_read, data, and thread I device
group components within a process " data \;

e Process: protected address space whos

Execution Platform

boundaries are enforced at runtime proma e memory
. . [
e Data: data types and static data in source text | thread group : | thread
e Subprogram: concepts such as call-return anc ——— P TR J M

calls-on methods (modeled using a subprogran

component that represents a callable piece o [
subprogram processor
source code)

Execution Platform (Hardware):
e Processor: schedules and executes threads Composite

e Memory: stores code and data i
e Device: represents sensors, actuators, or othe system

components that interface with or are part of the

|

physical environment Figure 1. AADL Component Abstractions
e Bus: interconnects processors, memory, and
devices
Composite

e System: design elements that enable the integraticother components into distinct units withire th
architecture; they can consist of other systemsedisas of software or hardware components
AADL also includes several component interactiombjch can be separated into the four categorig¢sdiis
below. Figure 2 shows the AADL graphical repreatans of these component interactions.
Port Connections:
o Data Port: interfaces for typed state data tragsiom among components without queuing
e Event Port: interfaces for the communication oéreg raised by subprograms, threads, processors, or
devices that may be queued

™ Throughout the remainder of this paper, AADL com@ut abstractions are indicated by capitalizatid®DL
component instances in models are indicated bgstal
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e Event Data Port: interfaces for message
transmission with queuing

P Dataport P i o S —a ,,"’ e Port Groups: a connection for a collection of ports
— | meeee- : or other port groups

Biit Bk o Boeracion Component Access Connections:
in out (between two port roups that 3-—-@ e Provides: indicates that a component provides
3 — B access to a data or bus component contained

within it
B> Eventdata port | | Port Group Bundie or roup e Requires: indicates that a component requires
e B M access to a shared data component or bus
_____ component that is external to it
e . égom' "; Subprogram Call Connections:
Hestesinninn e ! ¢ indicates the control flow of a call from the calle
Requites —_— to the callee — both local and remote
gl Bdiatng Parameter Connections:

= - o indicates the flow of data from ports to
Figure 2. AADL Component Interactions subprogram parameters and between parameters of
different subprogram calls

The AADL standard includes runtime semantics faadaxchange and control mechanisms including messag
passing, event passing, synchronized access toedshemmponents, thread scheduling protocols, timing
requirements, and remote procedure calls. In iagdidynamic reconfiguration of run-time architeetsi can be
specified using operational modes and mode transitiwithin the context of both software and hardwar
components. For a full description of the AADL sbwicts please refer to Ref. 5.

B. AADL Assurance Practice Framework

The AADL assurance practice framework providesunéation of processes, artifacts, methods, and tsed
to perform MB-SQA during both V&V and IV&V activiéis. Figure 3 presents an overview of the AADL esste
practice framework. For a more detailed descniptibthe AADL assurance practice framework pleaserrto Ref.
6.

AADL Analysis Repository

Analysis Guidelines . Component Library . | Custom Property Sets .
Key:

““““““““ g
!
1
@ Focus )‘__"( Build )T_'( Ana!yze ] L AADL
T ( —
e 1 ‘ Models ——» Process Flow
J

Includes Risks and

Requirements Quality Attributes \ Relationship btw

E e [ S I — — — » Activities and

Supporting Artifacts
V&V or Analysis Analysis
V&V Plan Plan Products

Figure 3. AADL Assurance Practice Framework

Relationship btw
Activities and
Process Artifacts

As illustrated in Figure 3, the AADL assurance piccframework has three main activities: Focus)d and
Analyze. These activities form an iterative pracesth continuous feedback flowing from one acyivit the next.

The Focus activity determines the components ofeiimbedded software system that will be modeled and
analyzed for quality assurance. In many situatidineay not be desirable or feasible to develdp fietailed
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models of the entire software system architecturberefore, the Focus activity is driven by theical issues
identified by the system stakeholders (i.e., highk guality requirements) and the analysis methaisi to probe
these issues. The outputs of the Focus activeyaanell-defined Analysis Plan and any necessauifinations to
the V&V or IV&V Plan.

The principal objective of the Build activity is wevelop AADL models of the software system elerment
identified during the Focus activity. A model isfidl or partial representation of a software systelement
sufficiently detailed to support one or more focusmalyses. The initial steps in the Build acgivihvolve
referencing appropriate Analysis Guidelines (pdrthe AADL Analysis Repository) that define specifnethods
and identify tools for developing and analyzing misd The output of the Build activity is the SEAADL models.

The Analyze activity involves conducting detailess@ssments of targeted aspects of the embeddedhsoft
system using the models created during the Builivigc’ Different assessments often require different eted
For example, a reliability assessment requiresifieeof a stochastic process model, while a schreglabsessment
requires the use of a timing model. Analysis Glinds establish the requisite methods and stepgafioous types
of analysis. A unified architecture analysis mofigl each software system is maintained as path®fAnalyze
activity to ensure that the various analysis modeisurately represent the same architecture. zldgi the
extensibility of the AADL notation, this unified elritecture analysis model is annotated with infdiamarelevant
for different types of analysis, so that analysideis can be easily derived from one unified madi¢he software
system, thereby reducing the analysis model vadidastep to the examination of the filters that gyae the
analysis models.

The Analyze activity leverages OSATE, the Open 8eWADL Tool Environmenf. OSATE is an extensible
tool environment based on Eclipse that providesuthand graphical AADL editing support, semantiecking of
AADL models, and translation of those models intdIX Several analysis tools are available thatriiatee with
OSATE. Some of these, such as security and eedddatency analysis tools, operate directly onnatance of
the AADL model. Others interface with AADL moddisrough filters that map relevant information frahre
AADL model into representations specific to thelgsia tool, supporting activities such as netwarkding or fault
tree analyses.

Finally, it should be noted that the AADL assurapcactice framework advocates the use of an AADRaIgsIs
Repository, which consists of reference materibé& support modeling and analysis for V&V and IV&VAs
shown in Figure 3, the repository consists of Asglysuidelines, a Component Library, and Custonp@&ny Sets.
Analysis Guidelines provide V&V and IV&V personnelith supporting materials for (1) formulating arsty
strategies, (2) establishing key parameters thmildhoe considered, and (3) identifying specifialgsis processes,
methods, and tools for their particular applicatiomhese guidelines are organized into viewpoihtd ddress
broad concerns associated with quality and otharfanctional attributes of the target system asl waslcritical
behavioral aspects. The Component Library is deciobn of AADL component type and implementation
declarations that can be used to create analysielsifor a target system. These components aeniaegl into
hierarchical layers ranging from general compondhtt can be used across an organization to sjzedal
component variations required for a specific prioje¢he repository’'s Custom Property Sets inclupecwmlized
properties required for analyses. These propedtiesintegrated into analysis models through at-buiAADL
capability that allows a user to define new prapsrand property types. Initially, the contentloé repository is
general; however, during its use in a project agaaizational context, the content of a repositovgles.
Components and properties are added and / or radddnd new analysis techniques and tools areifiéeint

C. The Mission Data System

The JPL MDS project was initiated in April 1998hél principal project objectives were “to define aledelop
an advanced multi-mission architecture for an endrd information system for deep-space missiomsl ‘@o
address several institutional objectives: earl@aboration of mission, system and software dessgnpler, lower
cost design, test, and operation; customer-corttabmplexity; and evolvability to in situ expldmat and other
autonomous applications.”Figure 4 provides a conceptual diagram of the M&f&rence architecture.

MDS is a goal-based system, which is defined agste® in which all actions are directed by goaltead of
command sequences. A goal is a constraint on a statable over a time intervl. Types of states include:
dynamics, environment, device status, paramet@sgurces, data product collections, data managesaremht
transport policies, and externally controlled fasto

In MDS, the hardware adapter receives informatiboua the environment and the hardware itself from t
sensors. These measurements are used as eviteharegassed to a state estimator. The stateagsts use the
evidence provided by the hardware adapter andigtery of the states to estimate the current statbe system
including an estimate of the uncertainty. Opea®rpress their intent in the form of goals denlarvhat should
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happen, as opposed to low-level command

sequences that dictate how the intent is to be <Mission PIanning&Execution)

achieved. A Mission Planning and Execution |

function then elaborates and schedules these goals ~ <"Zredge Control

based on the current state of the system as N

determined by the state estimator. The state State

estimates and elaborated goals are inputs to the state Knowledge Sae

state controllers, which issue appropriate Functions values

commands to the hardware to achieve these goals.

More detail on Goal Elaboration, Mission i vl

Planning, and Execution is provided in Ref. 10. (‘g/qiem
The following subsection provides ar Under & ihents

overview of the key MDS architectural theme o

that motivate the state- and goal-based cont u |

State State

Commands

Hardware
— Adapter
approach described above. The next section t

Report
provides a mapping between the MDS

architectural_ themes and _constructs and the Figure 4. The MDS Reference Architecture
approaches in AADL that will be used to model

MDS.

D. MDS Architectural Concepts
The MDS architecture is based on a set of cont¢bptsvere developed to meet the needs of real¢im@edded
control systems given the unique characteristieeobspace applications. The MDS architecturatepts include:
e Take an Architectural Approach: Construct subsystems from architectural elemems$ the other way
around.
e Ground-to-Flight Migration: Migrate capability from ground to flight, whewppropriate, to simplify
operations.
e Sate and Models are Central: System state and models form the foundatiomformation processing.
o Explicit Use of Models: Express domain knowledge explicitly in modelthea than implicitly in program
logic.

e Goal-Directed Operations. Operate missions via specifications of desiriadesrather than sequences of

actions.

e Closed-Loop Control: Design for real-time reaction to changes inestather than for open-loop commands

or Earth-in-the-loop control.

¢ Resource Management: Resource state usage is projected with modelslaecked against constraints.

e Separate Sate Estimation from Sate Control: For consistency, simplicity and clarity, separatate
estimation logic from control logic.

e Integral Fault Protection: Fault protection must be an integral part ofdlesign, not an add-on.

o Acknowledge Sate Uncertainty: State estimation must be honest about the evéjestate estimates are not

facts. State values are rarely known with ceryaint

e Separate Data Management from Data Transport: Data management duties and structures should be

separated from those of data transport.

e Join Navigation with Attitude Control: Navigation and attitude control must build frcen common
mathematical base.

¢ Instrument the Software: Instrument the software to gain visibility inte operation, not just during testing
but also during operation.

e Upward Compatibility: Design interfaces to accommodate foreseeablermes in technology.

For a deeper description and exploration of thesaitactural themes, please refer to Ref. 9.

lll.  Modeling MDS with AADL
In order to effectively model the Mission Data ®ystwith AADL, it was necessary first to create appiag
between the MDS architectural themes and consfrantsthe approaches used in AADL. This mappirayiges
guidance in developing analysis strategies andoagpes, identifying critical issues, and definipgdfic views
and models for the MDS case study.
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Take an Architectural Approach: AADL is an architecture description language femal-time embedded
systems, and therefore enables modeling of compdresmed systems with fully defined interfaces artdractions
between components.

Ground-to-Flight Migration: AADL supports modeling the migration of capalilirom ground to flight by
clearly separating the software architecture atb@ication layer from its deployment on a physarad compute
platform.

Sate and Models are Central: In MDS, state variable values (estimates) hagingle producer and multiple
consumers, and therefore state information flowmfa single producer to one or more consumers.sétprently,
state variables could be modeled in AADL as Datamanents that are accessed by producer and consasher
In this representation, (1) information flow is Ieeted in the read and write access propertieshef Data
components, and (2) information transfer timingaeen a producer and consumer is implicit in theetien order
of the producer and consumer tasks.

However, in this work, another modeling strategysvemployed. AADL was specifically designed to nlode
sampled state as signal streams in a closed-loafrotcsystem. Therefore, AADL provides Data Poids
representing the state estimates to be communicatacthermore, AADL provides Port connections thia used
to express the flow of state information. Througk use of AADL Data Ports and Port connectiongl-frame
(immediate) and phase-delayed communications cagxjpessed to ensure deterministic sampling. Deétestic
sampling is important in order to maintain the 8itgtof the control loops.

MDS state variables can thus be represented amitheing Data Port of the producer task that isegeting the
state estimate. Consumers (state estimators atedcsintrollers) access state variables throughd®aonections to
their incoming Data Port. Desired communicatiamirtig is specified through the connection semanti&y
creating flow specifications of the individual coam@nts and the end-to-end system, V&V and IV&V pareel can
annotate the flows with flow-related propertiestsas latency, data age, data accuracy and precaiondata miss
rates for analysis purposes.

Explicit Use of Models AADL is a formal language that supports rigorousdeling of systems as software and
hardware components as well as their interactions.

Goal-Directed Operations: Goals in MDS are constraints on state over & tpariod. AADL supports the
modeling of goals through the use of sublanguagexes that enable the creation of domain-speaiftations to
the AADL model.

Closed-Loop Control: AADL supports the modeling of closed-loop, flmsiented architectures through the use
of Data Ports that represent state and connedh@ahsepresent flow. Deterministic flow is ensutlecbugh the use
of mid-frame and phase-delayed connections. Ierotfords, measurements are available through ‘Dat& Ports
of sensor hardware adapters and are passed t@gstmia Data Port connections. Data availabladcestimator
mid-frame is expressed by an immediate Data Pomection.

Resource Management: The execution platform components in AADL rergscompute platform and physical
resources. User-defined properties enable V&V &MV personnel to characterize resource capacitas
resource budgets. The AADL concepts Processor,dvignBus, and Device define these resources asaahehs
that include budget-based resource management.

System power consumption can also be modeled in IAARVith respect to MDS, power consumption can be
addressed in two categories: power consumptidil)othe physical plant in the system under coraral (2) the
compute platform in the control system. The MDS#n Planning and Execution function already fesusn
power concerns of the physical plant. If desi®@dDL can also capture power requirements of thespla}l plant
elements through power-related properties on phlysiomponents modeled through the AADL Device cphce
AADL can then be used to characterize variationgpawer requirements through Modes and Mode-specific
Properties and different deployment configuratifmrgperforming trades.

The compute platform is represented in AADL as souece on which the MDS application software is
executed. Specifically, the binding of the hardwadapter software to the underlying compute platfes
explicitly modeled in AADL to determine processdilization.

Separate Sate Estimation from State Control: The AADL Package concept allows users to orgardnd
compartmentalize the modeling space for represgmtinlti-layer, componentized architectures. Coosatly,
state estimation can be modeled and packaged sagdram the controllers that influence state.

Integral Fault Protection: AADL includes fault handling mechanisms as peftits execution semantics
including Recovery Entry Points for threads, Elfoent Ports for communicating with a health monigord Modes
to represent various fault tolerant configuratio’SADL also has an Error Model Annex extension thatmits
users to abstractly characterize fault behaviorfanll propagation in support of fault impact asdlation analysis
as well as reliability and fault tree analysis.
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Acknowledge Sate Uncertainty: AADL properties can be used to characterize data represented in state
variables including uncertainty characteristics.

Separate Data Management from Data Transport: AADL separates the logical flow of informatiohrough
Data Ports from its deployment across both grounttfight compute platforms. Furthermore, the nggmaent of
data history can be abstracted into the specifinadf desired data goals with respect to the st@atmble history
logging and transport.

Join Navigation with Attitude Control: Joining navigation with attitude control is cad in AADL models
through the use of a common set of state data setdyy both navigation and attitude control comptsie

Instrument the Software: Instrumentation of software can be modeled inDAAhrough Properties associated
with software model elements. Alternatively, usea1 define AADL instrumentation patterns assodiatéth
model elements that are elaborated during modgntiation.

Upward Compatibility: AADL semantics allow the partial descriptiona@mponent interfaces so that they can
be specialized within implementations or extensiofsirthermore, Properties on these interfacesbeansed to
explicitly capture upward compatibility requirement

IV. A Case Study

This section presents the results of using the AA3kurance practice framework to perform MB-SQAtan
Mission Data System. First, the MDS referenceitgcture is modeled. Then, an adaptation of theSMEference
architecture, namely the control of a heated cajriseranodeled. Finally, the MDS adaptation is apedly with
respect to flow latency, which provides an exangflguality assurance with respect to performancthéV&V
and IV&V context. The graphical AADL representatsoshown throughout this section were developedSATE
and are equivalent to the textual AADL represeatesi

A. MDS Reference Architecture Model

Figure 5 contains an AADL graphical description
generated in OSATE of the MDS referenc [dREtontolsystem
architecture. This diagram contains the san MessuremertsTn[ @)
information as Figure 4 albeit a formal instead ¢ CommandsOut [T
informal representation and at a higher level |
abstraction.

As seen in Figure 5, the AADL model is comprise
of three top-level components, namely th'
MDSControlSystem, the MDSSystemUnderControl,
and the  MDSComputePlatform. The
MDSControl Sysem and theMDSSystemUnder Control
interact with one another by passing sens
measurements and actuator commands as well Fagure 5. MDS Reference Architecture AADL Model
measurement and command histories. These
interactions are depicted as connections betweeh @mups to indicate that there may be a collectad
connections between the two components. NIB&SComputePlatform interacts with théIDSSystemUnder Control
through theDeviceBus that provides physical access to the sensors emdtars in the system under control. In
addition, the software components d¥1IDSControlSystem are bound to hardware components of
MDSComputePlatform via a binding Property (not shown in Figure 5).

1. Modeling the Compute Platform

Figure 6 contains a detailed AADL model of tMDSComputePlatform. The MDSComputePlatform may
include the flight system and / or the ground systas well as the connectivity between the two. The
MDSComputePlatform is connected to thIDSSystemUnder Control through theDeviceBus that provides physical
access to the sensors and actuators in the systder gontrol. The MDS hardware adapters are mappéide
compute platform in a deployment configuration thgio the use of AADL binding properties.

2. Modeling the Sysem Under Control

The MDSSystemUnderControl consists of the devices and hardware adaptersctmprise the system under
control, which are defined when the MDS referenahitecture is adapted for a specific system. Ddpg on the
system being modeled, a single Device may repréeentomplete system under control. In that case; Data
Ports represent sensors, whose data content asuregeents, and “in” Data Ports represent actuatdrese data

WD SystemlInderControl

MeasurementsOut
Commandsln

CommandHistaryIn| [ |commandHistoryOut

MeasurementHistoryIn [; MeasurementHistoryout

) > DeviceBus

<<BusieTessd>
MO SComputePlatform

DeviceBus
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DeviceBus

Brarieeee: flight_system_device_bus
e

<<BusAfcessy>

content are commands. Each sensor or actuator can
be modeled as a separate Device, including one or
more Data Ports for measurements and / or
commands.
flight_processar The AADL model of the MDS reference
architecture consists of the hardware adapters,

{Bugserfassy>

< DThecesss ground_systern_bus

<<BusAricessy»
round_processar <<BusAkcessy>

> SpaceLink

Spacelink

hasic_bus :

b > hasic_bus

Figure 6. MDS Compute Platform

3. Modeling the Control System
Figure 7 presents the AADL model of th

> davice_bus namely the SensorHardwareAdapters, which are

ground_system_memony

flight_syster_rnemory
b > hasic_bus
responsible for converting sensor readings into
asicbus (e 55>¥|ight_system_hufs(5}a¢t/ p g g

measurements, andActuatorHardwareAdapters,
which are responsible for converting control
commands into actuator commands. Sensor
readings are passed from the physical system to the
hardware adapters in thdDSControlSystem and
control commands are converted by the hardware
adapters and passed to actuators in the physical
system.

Hardware adapters also maintain measurement
and command histories and make them available to
the SateEgtimation  component of the
MDSControl System. For a specific MDS
adaptation, the generic Port Groups shown in these
figures are refined to represent specific sensor
measurements and actuator commands, state
estimates, xgoals, and histories.

e MDS consydtem. As depicted in the conceptual view ofNiES

reference architecture shown in Figure 4, the ssprition in Figure 7 depicts the major componeaftthe
MDSControlSyssem, namely state estimatiorStéteEstimation), state control §ateControl), two components

relating to execution GoalMonitor and
GoalExecutive), and two components
related to planning GoalPlanner and
OperatorConsole).

As shown in Figure 7, state estimatol
are represented by th&ateEstimation
Thread Group and controllers ar
represented by the&tateControl Thread
Group. Bundling estimators and controlle
as Thread Groups allows the refinement
each with a set of Threads that represe
individual estimators and controllers.

The Port Group SateEstimatesOut
represents the results of estimation, i.e., t
observed state of the system under contr
This Port Group is refined using Data Port
each Data Port representing the curre
value of an estimated state variabl
Estimated state variables are used by t
Thread GroupSateControl. Individual
state estimators within th&ateEstimation
Thread Group may make use of eac
others’ state values. Th#&ateEstimation
Thread Group is also responsible fc
maintaining a history log of the estimate.

______ OperatorConsole

IECommandHistoryIn E B
<<Portargup >3 replanrequest <€—
icommandhistoryIn <kEwvantData>>

lEMeasurementHistoryIn :
<<Pai )
MeasurementHistoryIn

H GoalPlanner

—EEstimateHistoryIn H L
missiongoals >__4W——’ tissionGoals :
T —> FieplanRequest |

<< GoalMetwark |

<«<EventDatar»

replanrequest B
@ SkateEstimatesIn

GoalMetwork

“iGoalsout

Fortaropr

<<Portroup> >

StateEstimation

: XGoaIsInIE _.......S.E‘?.t.e..c.?.”.t.r.?l. ...... .
—EEstimateHistoryOut H

i stateEstimatesout [ QfsPortaroun >
CommandsIn i mu\!gstateEstimatesIn

EMeasurementslmp;EMeasurementsIn

IECommandsOut

states, which is made available through a

separate Port GrougstimateHistoryOut.

Figure 7. MDS Control System
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Above the interface with the system under contsothie execution layer of the MDS reference architeg
which consists of th&oalMonitor and theGoal Executive. The GoalExecutive interprets a goal network, i.e., a
mission plan, and passes executable goals to titeotlers of the Thread GroufateControl. The Goal Monitor
compares the state estimation history to the eabtrigoals to determine whether the controllersafle to achieve
the goals or if replanning should be initiated.e ®xecutable goals are represented by a Port Gnatifs refined in
adaptations of the MDS reference architecture.

The GoalPlanner and theOperator Console address the planning aspects of the MDS referarotatecture. The
GoalPlanner is responsible for producing a goal network anglamning that goal network if the controllers are
unable to achieve the goals within the goal netwamtstraints. Th®peratorConsole provides status including
telemetry such as measurement, state estimatesaanichand histories, and allows for mission plannimmuts by
human operators.

4. Modd Organization

The AADL Package concept is used to organize thdefimg space as
illustrated in Figure 8. All packages that comerihie MDS reference
architecture model are included in one project
(MDS Reference_Architecture) in OSATE. The PackageMDSData
contains all declarations of Port Group types aradaDcomponent types.
The Data component types are used in Data Poramdicns to specify the
type of data communicated through these Ports.

=52 CameraSystem
== aadl
=== packages
== Camera
CompleteMDS5System-Camera, aadl
ControlSoftware_Camera. aadl
Hardwaresdapters_Camera,aadl
InterfaceDevices_Camera,aadl
MD3Control3ystem_Camera.aadl
MDSData_Camera.aadl
SystemUnderControl-Camera. aadl

The Package&ystemUnderControl contains the System declaration for
the system under control. ThéardwareAdapters Package contains the
Systems representing the sensor adapters and timtaacadapters. The
MDSControl System Package contains the MDS control system, while th
components of the MDS control system, i.e., thees&stimators, state
controllers, goal executive, goal monitor, and gaahner, are declared in
the Control Software Package. The elements of the compute platform ar
declared in théxecutionHardware Package. Finally, the top-level system
is declared in th€ompleteMDSSystem Package.

In addition to the packages, an MDS reference tachire Property Set
is also defined for modeling rate groups. OtheopBrty Sets can be

= propertysets
-2 aaxl
=58 MDS_Reference_architecture
== aadl
== packages
CompleteMDSSystem. aadl
2l ControlSoftware, aadl
ExecutionHardware, aad|
HardwareAdapters, aadl
MDSConkrolSystem, aadl
MOSDaka, aadl
SystemUnderContral, aadl
== propertysets
RateGroups, aad|
-2 aaxl
B Plug-in Resources

similarly defined to analyze the MDS reference aetture with respect to
other properties critical to MDS performance. Figure 8. Model Organization
B. MDS Adaptation Example

In this section, AADL is used to refine the MDSamrdnce architecture model described in the preseaton
into an MDS adaptation model. AADL support for rebdefinement is used to accomplish this task. WS
reference architecture is adapted to represenecfispMDS system in a separate OSATE project as $e Figure
8, thereby enabling the independent developmemhufiple MDS adaptations. The AADL support for tess
package names enables refinement of the originalSMEBference architecture packages into system f&peci
packages.

Individual components of the MDS reference arcliitecwere refined by making use of the Extends tcoos
The Extends construct allows the declaration obd Broup type, Component type, or Component implaation
in terms of an existing type or implementation These declarations refine previously declarextufes and
subcomponents. The declarations can also be asatbtsubcomponents or features to the model. Grotip type
extensions were declared to fill in the detailstloé Port Groups defined in the MDS reference aechite.
Component type extensions were also declared itteréfature classifiers to the adaptation-spe&iict Group and
Component classifiers. Finally, component impletaton extensions were declared that introduce ifipec
instances of hardware adapters, estimators, ctersphoal executives, and goal monitors throudtcsomponent
declarations.

In this case study, the MDS reference architedgieslapted to the temperature control of a camenanted on
a fixed platform, which is a typical control proisieon board a spacecraft.A diagram of the major components of
the heated camera system is shown in Figure 9athisnexample, a temperature signal that originatethe
temperature sensor (modeled as an AADL Device)dlttwough the control system, which controls theatton of

** For more information on the distinction betweepety, implementations, and instances please refReftcs.
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Control Switch 1 @ 77777777 Telgperature
Actuator ENSon
Ps1
JWM/— Heater 1
PS2 }
JWM/— Heater 2

Switch 2
Actuator

Switch 2
command

(b)

Figure 9. Fault-Tolerant Heated Camera Control Systm'*?

the camera heater’s power switch (also modelecha&ADL Device). A conceptual block diagram of theater
controller with sensors and actuators is shownigarie 9b.

The camera hardware is modeled in AADL by refinihgMDSSystemUnder Control component defined in the
MDS reference architecture. Temperature sensoheaatér switches (seen in Figure 9b) are repres@stseparate

Devices. These Devices are physically
gy emeisorvas connected to the Device Bus. The devices are
-— this type is refined for a MDS instance by refining the Connected to the hardWare adapters, one for
-— classifiers of the features Lo be instance specific
thread groun comtroller each_ sensor an(_j actuator. _These adapters
features provide a logical connection to the
StateEstimatesIn: port group MDSData::StateEstimatesIng N
ControlGoalsIn: port group MDSData::ZgoalsIn: MD&ontrOI$§ern through the reflned
CommandsOut: port group MDSData::ComeandsOut: MeaSUt‘eI’TEﬂtSOut and Commandsm POI‘t
end sontroller; Groups. These Port Groups have been refined
thread group implementation controller.basic tO deﬁne the indiVidUaI Data POI‘tS Used for
end contralles.hasic; communicating measurements and commands.
—-— zZee comments regarding the controller The Components Of thMD$0ntrOI$gm
thread group estimator are also refined for this example. The MDS
features .
SGtateEstimatesOut: port group MD3Dats::StateEstimatesOut: reference arChIteCture has Thread Groups that
MeasurementsIn: port group MDSData::MeasurementsIn: represent CO”eCt'OnS Of hardware adapters,
ConmandsIn: port group MDSData: :CommandsIn { ti t troll I ti d
StateValueHistory: :ValueHistoryDepth => 2; estima OI‘_S, con r_o ers’ goa execu _Ivesl an
yi goal monitors. Figure 10 shows tRetimator

EstimateHistoryout: port group ValueHistories::EstimateHistory:

HGoalsIn: port group MDEData::XgoalsIn; and Contro”er _Thread Qroups Of the MDS
end estimator; reference architecture with Port Group features
defining their interface to other MDS control
Figure 10. Example MDS Reference Architecture Paclge system components.
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In the heated camera example, thege

}package Control3oftware: :Camers

Thread Groups are refined by creatir puniic
individual Threads for each componer ‘e arour =sticator

extends Controlloftware::estimator

within the group. For example, in Figur.  features
11 the Egln«]ator Thread GI’OUp Iﬂ the StateEstimatesOut: refined to port group MDIData::Camera::StateEstimatesOut;

HeasurementsIn: refined to port group MD3Data::Camera::lMeasurementsIn;

MDS reference arChItECture |S ref"’]ed |nt CommwandsIn: refined to port group MD3Data::Camwera: :CommandsIng
T E . - EstimateHistorylut: port group ValueHistories::EstimateHistory:
ernperature leator, - XGoalsIn: port group MDSData: :XgoslsIng

TemperatureSensorHealthEstimator, and Tlows
. . 5 Flow: £1 th M In -+ 3 E out;
Heater SMtchEstimator threads through ... coeieaeer o Foon feasumenanteain 7 Starehotimarastme
defining an estimator.camera Thread
thread group implementation estimator.camera

Group implementation that contain  sumcomponents

|nstance declaratlons for the thre TemperatureEstimator: thread TemperatureEstimator;
TemperatureiensorHealthEstimator: thread TemperatureSensorHealthEstimator;
Threads Heater3witchEstimator: thread Heater3witchEstimator:

For some system components in tt._ cernections
MDS  reference  architecture, the
refinement into the heated camera Figure 11.  Example MDS Adaptation Package
adaptation simply involves refining the
classifiers from the generic classifiers of theerefice architecture model to the heated cameransyspecific
classifiers. This is illustrated in Figure 11 hetrefinement of the estimator Port Group feattwoeefer to the
camera-specific Port Group classifiers. These Booup classifiers are themselves extensions oPtré Group
types in the MDS reference model that add DatasRprécific to the camera example.

Once the adaptation model structure was
simmeasurement [Stmutation | completed, it was possible to examine the
information flow through the system. The
TempEstimator information flow in the MDS control system is
updatpsiare shown in Figure 12 as a collaboration diagram.
Tempsv TR 2 State variables are read and updated through

smcormand access methods. The heater switch controller

S W e o takes heater goals as input and produces heater
oL atCommand switch commands. This controller uses the

upgarestate estimated states of the heater switches to decide
E‘: — which command to issue. The switch estimator

[ Setchstimator | . [saacantoiier | ——[swnaiiwa]  dletermines the state of the heater switches. Both
] the current and the previous state value may be

used, as shown by tt8aitchEstimator accessing
Figure 12. Heated Camera Example Information Flo## ~ both the current and previous temperature
estimates.

The estimators make use of temperature measurerinentshe hardware adapters, temperature senséthhea
state, and heater switch state. The estimated istatvailable to other estimators and to contreltbrough “out”
Data Ports, namely th&ateEstimatesOut Port Group. This Port Group was refined for tleated camera example
by creating Data Ports specific to this systemr éxample, th&ateEstimatesOut Port Group is refined to include a
Data Port calledemperature_Sate. Access to the current value of a state varieblepresented by an immediate
Data Port connection, while access to the previalise of a state variable is represented by a ddl®ata Port
connection.

getMeasurement

SensorHWA

gethleasurement

SensorHealthEstimator

getState

updatestate

C. Flow Latency Analysis

This section presents the results of performingAhalyze activity of the AADL practice framework tbe
MDS adaptation example described in the previocise As previously stated, one of the objectigésising a
MB-SQA approach is to assure that certain quatitybaite requirements are being achieved by thieveoé system.
In this example, the figure of merit “flow latencig’ used to characterize the quality attribute fgrenance” for the
heated camera system. This section presentsgbhksef analyzing the heated camera system moidelrespect
to flow latency, which gives an indication of whetlor not performance requirements are being met.

Control systems process signal streams. Often raratoalgorithm is sensitive to the signal stream
characteristics. These characteristics includeatteeiracy and precision of the sensor readings,obadissing
sensor readings, expected changes to successivesvai the signal stream, the latency and ageeotitita in the
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signal stream, as well as variation and jitteratehcy and age. AADL provides the capability tadeleend-to-end
flows and to utilize these end-to-end flow speaifiens to perform end-to-end flow latency analysis.

From a control engineer’s perspective, end-to-éma fatency is comprised of (1) processing latetrcgerform
the control computation, (2) sampling latency duever- and under-sampling, and (3) transmissitenty of the
signal from the sensor and the signal to the amtuwater physical connections. Furthermore, wheordrol system
is implemented as software, several additionabfaotontribute to end-to-end flow latency includifig sharing of
processor and network resources, (2) preemptivedsding, (3) blocking due to mutually exclusive ess to shared
logical resources such as shared data areas,g4f partitioned architectures, and (5) rate gropgimization.

Processing latency refers to the amount of tintakes to perform a function. For example, the @ssing
latency of a sensor is the amount of time betwberdetection of a signal and the correspondingorespevent or
message from the sensor; in software, the proagessiency of a software component refers to thewarnof time it
takes to compute the function. This time may benloed by its worst-case execution time, which valae often
used in scheduling analysis to determine schedityabi

Sampling latency refers to the time delay that Itesiiom a task reading its input and then perfognits
computation at a specified rate. The maximum @te@ontribution due to sampling is the period & thcipient.

Control engineers are concerned with transmissitenty over physical connections between the systeter
control and the control system. They often dotake into consideration any delays in communicalietween the
software components in the control system. Howes@mmunication protocols contribute to latencytrassfer
requests from multiple sources are handled. Inespmtocols, latency takes the form of queuing ydeks data
from multiple producers is queued. In other proteclatency takes the form of sampling delays ats deady for
transfer must wait until its assigned slot in thetpcol schedule is available.

In addition, the runtime architecture of the emlsebldoftware has a number of latency contribut&rgemption
latency occurs when tasks share a resource. Fon@er, multiple tasks may execute on the same gsoceor
tasks may require exclusive access to a sharedcadesda Typically, a deadline is specified for tagkindicate the
latest time since its dispatch by which it is expddo complete its execution. In essence, theluearepresents
the worst-case sum of processing time and preemptiee.

Partition latency occurs when different parts & #émbedded application execute within differentipanms, i.e.,
in different virtual machines on the same procesdoifferent partitions get different time slots égecute on the
same processor. Communication between partitiorestiher non-deterministic, which results in latejitter, or
deterministic and therefore phase-delayed, whicreases latency.

Finally, rate group optimization is used to redtloe number of separate threads and context swgdbetween
these threads by placing logical threads with #iraesrate in the same operating system thread. eGoastly, the
execution order of logical threads changes. Hdgéal threads communicate through shared vagala change in
the execution order may change what was intendedetomid-frame communication into phase-delayed
communication thereby increasing the latency ofdéita being communicated.

The SEI has developed a flow latency analysis freonle for AADL models that utilizes end-to-end flow
specifications and knowledge about the controliapfibn executiort® This framework consists of a collection of
application threads executing at a given rate aachntunicating their results via different communimat
mechanisms. This implementation of the flow lajemaoalysis capability in OSATE was applied to th®#
adaptation models of the heated camera

system.

An  End-to-End Flow declaration P
TemperatureResponse  was  defined  to L L3 7 R
represent a signal from the temperatu B b R e

sensor through the control system to ti
switch actuator device. This provides
measure of the time between the sensing ¢
switching threshold temperature and tt
reception of a command to turn the heater
or off by the switch actuator. The path i

Jrensorimdumeidaptars AuatorHarduareAdapters

{6 IMeasurementsout mandsin
b H K]

defined as an end-to-end flow through tt it __J& FanCommandsout
MDSControlSystem of the heated camera cporifibpss

originating at theTemperatureSensor Device [o= =R

within the camera hardware B cmend:os

(MDSSystemUnder Control) and ending in the Figure 13. TheTemperatureResponse Flow through the
HeaterSwnitch Device within the camera Heated Camera Adaptation Model
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hardware MDSSystemUnderControl). Figure 13 depicts the application of tAemperatureResponse flow
specification to the MDS adaptation models of thathd camera system.

The flow through thé/IDSControl System has been specified using the “flows” keyword asvahin Figure 11.
A flow specification indicates the flow from a coonent input to one of its outputs without havingetgose or
know its implementation. Flow specifications cavé properties such as latency.

In the case of th#1DSControl System, a component implementation with subcomponents madeled and is
shown in Figure 7. The component implementatiocladation includes a flow implementation, which icates
how the flow specification is realized through thebcomponents. Figure 13 depicts the realizatibithe
TemperatureResponse flow specification through the components of MBSControlSystem. The flow starts with
the sensor reading going to and through (1) thesdmardware adapters, (2) the state estimatorsig8 control,
(4) the actuator hardware adapters, and (5) firafigls with the actuator command output. The iddiai flow
specifications have a latency Property associatddtiiem that indicate the latency contributed oy tomponent.

In the adaptation model of the heated camera systerend-to-end flow declaratioremperatureResponse is
elaborated by expanding the flow specification toé MDSControlSystem by its flow implementation. This
expanded end-to-end flow is then interpreted by ftbw latency analysis capability in OSATE. Theelacy
analyzer calculates the end-to-end latency taking account latency contributions by the runtimehaecture as
well as the computing hardware. It compares thalte of this analysis with the expected laten@pprty value of
the end-to-end flow specification. Figure 14 shdws OSATE uses the Eclipse marker mechanism astalean
view to report results to the user. This figur@wh two error reports indicating that the calcudaénd-to-end
latency has exceeded the expected lat&hcy.

E; Problems &8 == Prupert\es' E AADL Property Yalues ?,Ia o=
12 errors, 0'warnings, 4 infos (Filker matched 6 of 26 items)
Description
= B Errars (2 ikems)
&3 End-ta-end Flow TempRsp latency 80 ms exceeds specifisd latency 50 ms G
3 End-ta-end Flow TempRsp latency 80 ms exceeds specified latency 50 ms e
= B Infos (4 ikems)
i Expected end-to-end Flow TempRsp latency based on subcomponent flow specs is 50 ms C
i Expected end-to-end Flow TempRsp latency based on subcomponent flow specs is 50 ms =
i MNoke: perform end-to-end Flow analysis on instance model, The declarative model results for end-to-end are based on immed ©
i Moke: perform end-to-end Flow analysis on instance model, The declarative model results for end-to-end are based onimmed ©

Figure 14. Flow Latency Analysis Results for th& emperatureResponse Flow

V. Conclusion

Model-based software quality assurance (MB-SQA)vigles a rigorous framework for the verification and
validation of software systems through the systemmabdeling and analyses of formal architectureesentations.
MB-SQA provides V&V and IV&V personnel with the calplity of formally demonstrating that the architee of
their embedded software system meets quality at&ilbequirements. These quality attribute requéras are
codified as Figures of Merit, or FOMs, which areamgrable system properties that give an indicasfdmow well
the architecture addresses a particular qualitybate. This paper specifically addressed the iagppbn of the
AADL quality assurance practice framework thatizgi§ the SAE Architecture Analysis and Design Lagguand
supporting toolset OSATE for performing MB-SQA antedded software systems.

This paper described the process of applying th®A4uality assurance practice framework to JPL'sdibn
Data System (MDS) reference architecture. The NHD& unified reference architecture for space-misdiight,
ground, and test systems. In the case study, #hielAassurance practice framework and several AABkdd
analyses were applied to the evaluation of critigality attributes of the MDS reference architeetas well as an
MDS adaptation for the control of a heated camera.

As demonstrated in the paper, AADL can be usedfextéely model key MDS architectural themes suach
state-based control, the separation of estimatimh @ntrol and the separation of data managemethtdata
transport, as well as top-level MDS constructs aagstate estimators, state controllers, and haedadapters. The
ability to model these architectural themes andstocts provides the foundation for analyzing thB3/reference

%% Note that illustrative values were used for thisdel and the results are not indicative of the Itedor any
existing MDS implementation.
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architecture as well as adaptations of the MDS wéispect to FOMs that give an indication of critiqaality
attributes.

The case study described in this paper involvedatirogl both the MDS reference architecture and apiadion
of the MDS as applied to the temperature controh afamera mounted on a fixed platform, which igmcal
control problem on board a spacecraft. The quatitybute of interest was performance, and theipé&-OM used
to give an indication of performance was flow latgn The models of the reference architecture ataptation
were analyzed with respect to flow latency in oreensure that the quality concern of performamas addressed.

It should be noted that these models can also &kyzad with respect to other figures of merit repreative of
performance such as scheduling and workloads dsasadther quality attributes such as security satiability.
Future work in MB-SQA using the AADL assurance picecframework aims at exploring these other figuoé
merit and quality attributes.

In summary, the results of the case study demdestna utility of the practice framework and the Bi&based
analyses in addressing (1) the modeling of keyitactural themes for a reference architecture &)dqgality
assurance with respect to performance, particullanly latency.
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