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Operating robotic space missions via time-based conmand sequences has become a
limiting factor in the exploration, defense, and conmercial sectors. Command sequencing
was originally designed for comparatively simple ad predictable missions, with safe-mode
responses for most faults. This approach has beencreasingly strained to accommodate
today’s more complex missions, which require advamd capabilities like autonomous fault
diagnosis and response, vehicle mobility with hazdr avoidance, opportunistic science
observations, etc. Goal-based operation changes thendamental basis of operations from
imperative command sequences to declarative speciitions of operational intent, termed
goals. Execution based on explicit intent simplifie operator workload by focusing on what to
do rather than how to do it. The move toward goal-Bsed operations, which has already
begun in some space missions, involves changes aopportunities in several places:
operational processes and tools, human interface sign, planning and scheduling, control
architecture, fault protection, and verification and validation. Further, the need for future
interoperation among multiple goal-based systems ggests that attention be given to areas
for standardization. This overview paper defines tle concept of goal-based operations,
reviews a history of steps in this direction, andidcusses the areas of change and opportunity
through comparison with the prevalent operational @radigm of command sequencing.

I. Introduction

PACE missions have traditionally been operatedguime-based command sequencing, where commands are

planned to be executed at prescribed instantmig, tind where telemetry is returned for operatodetermine if
the planned activities were accomplished. This @ggr has worked well in missions that have a maizge
number of spacecraft states and transitions forabpes to reason about, that interact with rel&fiyedictable
environments, and that can resort to safe-modevtot aperator intervention when unexpected behawtmurs.
These characteristics have been true of many mss$iom the earliest days of robotic space explamaincluding
orbiters, planetary fly-bys, and stationary landers

As missions have become ever more ambitious, thigalions of traditional mission operations havedrae
more apparent. One limiting factor is complexitydamworkload. Preparation of command sequences and
interpretation of telemetry are time-consuming peses, especially for the most hazardous phasagrogsion.
Human operators cannot keep a sufficiently detammhtal model of all the states and transitionsately and
repeatedly command a vehicle, so operations muse ntw higher levels of abstraction, leaving moréaile to
automation. A second limiting factor lies in the@sption of predictability inherent in command saging. Some
missions are already operating in less predictebleronments, such as Mars surface explorationd, some
missions cannot return up-to-the-moment telemetrgperators, either because of long light-time comigation
delays or infrequent communication schedules. Adthiniting factor is the slow reaction time toénésting events
or changes. Missions that perform scientific maimig and military reconnaissance must capture aadtrto short-
lived events—opportunities that would otherwiseldst while waiting for human-in-the-loop analysisdacontrol.
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A fourth limiting factor exists in flight controlrehitectures for sequence execution. “Sequencasthey are
called, do not inherently support the kinds of temapflexibility and autonomous decision-makingtthee needed.

The answer to these challenges clearly suggestadbé for more automation in ground systems andemor
autonomy in flight systems, but is that all thaheeded? Is command sequencing still an appropseational
paradigm for these more ambitious missions, ohéset a need for—perhaps even a movement toward-wa ne
operational paradigm? In this paper we claim tharegis a more suitable paradigm, termed “goal-based
operations”, that there is already movement in dir@ction and that it differs in a fundamental wegm command
sequencing.

The key principle behind this evolution is the sfieation of operator intent. Providing a systenithwa
specification of intent endows it with the capaddycheck for successful accomplishment of objestiand to use
alternative methods to achieve objectives if nergsgsee Figure 1)Goal-based operatiosimplifies operator
workload by allowing them to focus avhatobjectives the spacecraft should be achievingeraharhowit should
be achieving them. Goals also allow flexibility ime ordering and timing of activities. They faeiti adjustable
levels of autonomy and a spectrum of fault respesb@rt of simply entering “safe mode”. Importanttyenables
in situ decisions needed for mission scenariosriékennaissance, making it easier to autonomoesigsk assets in
response to local observations.

Goal-based operation addresses these limitatiomsakyng operator intent explicand carrying it into uplink
products. Goal-based operation, which focuses aat vehdo (goals) rather than how to do it (commseguences),
provides closed-loop control of systems, from tighést levels of mission objectives and coordimabbassets to
supervisory control of low-level control loops. Thdvantages are several: simplified operator waikldexibility
in ordering and timing of activities; more robugkeocation in unpredictable environments and in theeace of real-
time communication; and adjustable levels of autano

Importantly, goal-based operation facilitatees situ decisions (such as in reconnaissance and exmojati
making it easier to autonomously re-task assetesponse to local observations. The AutonomousnSecaft
Experiment (ASE? on the Earth Observing 1 (EO-1) spacecraft i sucexample. As a result of on-board image
processing, ASE re-targets EO-1 on subsequentsabbised upon changes such as flooding, ice meit|aam
flows. EO-1 has been operating autonomously sirmeeMber of 2004. Goal-driven operation supportdridyed of
increasing functionality in flight systems, with rmocomponents designed to achieve higher-levekctbgs rather
than simply execute timed commands.

Aspects of goal-based operations are already inrusevariety of systems, sometimes under differearhes
such as “task-based commanding” or “activity-baepdration”, but mostly implemented ed hocways. An
important next step in this evolution of operatiavid be a general control architecture that (akesaoperational
intent explicit in the form ofoals (b) manages interactions among multiple actisjtend (c) establishes a uniform
operations approach across the breadth of capedilincluding navigation, attitude control, obsegy resource
management, fault protection, and coordination oltipie assets.

Although goal-based operation is presented in pliser from the perspective of robotic space missitime

“Be at x,y”. OK.
Let me choose
how to achieve
that.
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Figure 1. Goal-based operations elevate control tine level of operator intent.A goal specifies a state to be
achieved in the system under control; it specifilbat to do, not how to do it, thus reducing operatorkload
and leaving options open for the control sysl
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concepts apply equally to Earth-bound robots susturamanned aerial vehicles (UAVS), autonomous gtoun
vehicles (as in the DARPA Grand Challenge), unmdnmaderwater vehicles (UUVs), and control of indast
processes.

This paper presents a brief history of goal-baggerations in unmanned space missions, describesti@w
concept affects different phases of the enginedifagycle, and examines a software architectureafaontrol
system designed for goal-based operation. The pEperexplores how a goal-based approach affecsabpns
process and tools and workflow, and then deschbesoperators can interact with a goal-driven sysieterms of
different views. Finally, the paper addresses corseabout determinism, reliability, V&V, and impaon
established systems.

II. A Brief History of Goal-based Operations

The idea of operating systems at the level of ekpintent is not a completely novel concept — éslample,
thermostats have been used to control the temperatu building interiors for over a hundred yeaf$e
thermostat’s set point is a form of goal — it spesithe desired temperature that the buildingating, ventilating,
and air conditioning control system must achievd amaintain. In the context of space explorationalgdave
actually been used for decades in limited fashpamticularly in the context of spacecraft attituated articulation
control systems, for the purposes of pointing smemstruments, communication antennae, solar paeét.
Vehicle reorientation and gimbal angles are “comadeali by specifying trajectories of desired angled eotation
rates; these state trajectories are explicit reptesions of intent. Until recently, however, suepresentations have
not been used consistently across all spaceciagl/stems, and have not been integrated into cohgystem-level
control architectures and operations processes. Sdution provides a brief history of goal-baseerafions (GBO),
highlighting a number of significant achievememtsf the space exploration domain.

One of the first full-scale (system-level) applioas of goal-based spacecraft operations was theoRReAgent
(RA) Experiment, which was flight-validated in 1999 on the Dee@&pOne (DS1) spacecratft, the first deep space
mission in NASA’s New Millennium Program. RA is aodel-based, reusable, artificial intelligence (8dftware
system that enables goal-based spacecraft comngaaduh robust fault recovery. A simplified view dfet RA
software architecture is shown in Figure 2. RA ¢sissof general-purpose reasoning engines (bothaiied and
procedural) and mission-specific domain models. ©hets key characteristics—and a main differenca¢hw
traditional spacecraft commanding—is that groundrafors can communicate with RA using goals (éuring
the next week take pictures of the following astiscand thrust 90% of the time”) rather than witkttaded
sequences of timed commands. RA determines a plaction that achieves those goals; actions anesepted as
tasks that are decomposed on-the-fly into moreilddtéaasks and, eventually, into commands to théetlging
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Figure 2. Remote Agent Experiment on Deep Space Ondhe Remote Agent experiment
demonstrated goal-based operations in 1999. In anchitecture the Mission Manager sends high-
level goals to the Planner/Scheduler which theregaties detailed tasks (lower-level goals), and the
Executive executes scripts associated with therievel goals, issuing commands as needed.
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flight software. The RA Experiment provided an ilable proof-of-concept and lessons learned in rabaur of
areas, including benefits and challenges assocwitachutonomous goal-based operations. Theserisdsave been
documented in the Remote Agent Experiment DS1 Taloly Validation Repoft

NASA’s Mars Exploration Rovers(MER), Spirit and Opportunity, also employ a certaegree of GBO
capability, in both the ground system and onbo&l rovers. In the ground system, operators useVilred-
initiative Activity Plan GENerator (MAPGEW tool to plan each rover’s science and engineeaiiiyities on a sol-
by-sol basis. Given a set of user observation gmadsstheir priorities, this tool enables operatorsonstruct a plan
that satisfies these goals and schedule the aesivit the plan such that conflicts between incdibfgactivities
and oversubscription of limited resources are aaidMAPGEN leverages the automated planning anedstimg
engine that was flight-validated as part of RA 08-D) integrating it into a GUI environment that leles operators
to incrementally build and edit their plans. Withist tool, a plan is refined through iterations oftamated
computation and judicious hand-editing based onaiorexpertise, eventually converging to a finaptaat the
operator finds appropriate. Onboard each rover,fligbt software is programmed to accept a comiamabf
abstract goal-like directives, such as ‘drive toyp@int’, and lower-level commands. In a remote angredictable
environment like the Martian surface, the roverbustly achieve their ambitious science objectivgstdking
advantage of their ability to make certain decisiomsitu, and execute flexibly-specified plansam event-driven
fashion. These are fundamental characteristicoaflgased systems.

The most recent and comprehensive space-basedatjipli of goal-based operations is the ASRASE is an
autonomous software agent currently flying onbdhedEO-1 spacecraft, which has demonstrated semegtated
autonomy technologies that together enable sciditeeted autonomous operations. The ASE softwackeidies
onboard continuous planning, robust task and gasédh execution, and onboard machine learning attdripa
recognition, and has more recently been augmemtetemonstrate model-based diagnosis capabilitiéds R
heritage. Like RA, ASE began as a technology erpemnt within NASA’s New Millennium Program, as paftthe
Space Technology 6 project. Early tests had thédjoected planning and execution capabilities dgetl as part
of a ground-based sequencing system; the succélsesef tests built up confidence in the technologyeparation
for ultimate deployment of the capabilities onbo#rd spacecraft. The technology was declared fdlidated in
May 2004. The ASE software now runs full-time onfobthe EO-1 satellite, and has become its primassion
planning and control system. Through automatiorthef operations process, ASE has contributed opeiti
savings of approximately $1M per year, compareB@1’s nominal operations cost prior to ASE deplewpt It
has resulted in dramatic increases in sciencemetbhanks to its intelligent downlink selection aadtonomous
retargeting capabilities, and increased flexibility operations, thanks to the resulting streamginaf human-
operator-in-the-loop activities. Another long-tefmenefit of the ASE project is documentation of feesons
learned, which will certainly be invaluable to ftewapplications of onboard autonomy and GBO.

Not surprisingly, NASA is not alone in its desteexploit the benefits of spacecraft autonomy goal-based
operations. In 2001, the European Space Agency YHSénched its first Project for On-Board Autondmy
(PROBA-1) spacecraft. The PROBA-1 technology vdlaamission successfully demonstrated both onbaart
ground-based automation, including the ability ey high-level goals (user requests) to the spaftevia the
Internet. ESA is also investigating the use of G&@l on-board planning and scheduling for ExoRjaasMars
rover anticipated to be the first flagship missiofSA’s Aurora Exploration Programme.

Although this paper’s focus is on the use of GBGsmdicecratft, this approach has broad applicabditgther
domains, such as industrial robot control and aartyus unmanned air/underwater/ground vehiclesekample,
the Defense Advanced Research Projects Agency (PARRs sponsored Grand Challenges, which have
stimulated the development of various goal-diregihning and execution techniques and technolodiese
broadly, GBO is the focus of much research and |dpueent in academic, governmental and industrial
organizations.

lll. Goal-Based Operations across the Project Lifecycle

Although the final phase of a space mission pragttrmed “operations”, the concept of goal-bageerations
shapes engineering activities much earlier. Indlassical project lifecycle, as shown in Figurgt® concept of
goals plays a role in several phases, as desdrided.

Phase A (Mission and System Definition):
= Establish high-level mission objectives, which rbayexpressed as goals.
= Build up (goal-based) scenarios for accomplishirggttigh-level objectives.
= Develop initial Concept of Operations.
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Figure 3. Project Lifecycle PhasesThe concept of a ‘goaBhapes engineering activities beginning in Phase
A, where high-level objectives may be stated atsgaad mission scenarios may be specified as segeeof
goals, to Phase E, where goals are instantiateahalated, scheduled, and executed.

Phase B (Preliminary Design):
= Identify key goal types (parametric specificatiohgy goal expansions or elaborations.
= Flesh out Concept of Operations, goal-based opaisprocess.
= Identify goal-based operations tools that mustdagpged for mission.

Phase C (Design & Build):
= Define full set of goal types.
= Define full set of goal elaborations or expansions.
= Define logic needed for scheduling.
= Design & implement achievement software (flight ognd).
= Design & implement goal-based operations tools.

Phase D (Assembly Test and Launch Operations) haseFE (Operations):
= |nstantiate, elaborate, schedule and execute geeled to achieve mission objectives.
= May define additional goals for system check-owtdoel the set of operational goals.
= Update goal-based operations tools and achievesofimiare as necessary.

IV. Software Architecture

Goal-based operations applies to a large clasystérms that can collectively be referred to as tsyblooth
mobile robots (spacecraft, surface rovers, humanoimbts, etc) and immobile robots (building envir@ntal
control systems, chemical processing control systgrower generation systems, etc). In all caseptngose is
control of a physical system to achieve specifipedives, and the complexity of those systems avasr careful
attention to software architecture for monitoringdacontrol. Indeed, there has been a lot of relesachitectural
work in the overlapping fields of space system$gptizs, autonomous systems, and industrial processol. A
general consensus has emerged around a 3-layétearat€ consisting of reactive control at the lowest lay#an
execution in the middle, and deliberative plannimghe top layer. This section overviews one suathitecture
specifically designed for goal-based operationsyelg, the Mission Data Systéf{MDS). This section describes
MDS in terms of architectural concepts, with sortterdgion to goal representation and processing aresms, but
leaves many details to other papets

A. Goal as a Specification of Intent

As stated earlier, a goal is a specification ofrapenal intent, meaning that it specifihatwe want a system
to do. Although a command sequence tells a systhat ¥ do in terms of time-based commands, theesemu
doesn’t knowingly achieve operational intent. Fraraple, a command sequence may close a switclD@tPIvM
and open it at 2:00 PM, but if the switch spontaiso opens at 1:30 PM, the operational intent maly be
achieved, and operators won't be aware of thatssrileey check telemetry. Since we want to use godtse real
world where things don’t always go as desired, al gaust have a success criterion that can be cHegisng
execution. A goal-driven control system has a @mitto achieve (or maintain) some condition, oorefhat it has
failed to do so. This is the architectural conasfatognizant failur&*'*
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All of this begs the question bbwto represent intent. Since we're going to usegtmbperate a system, goals
must have clear semantics that can be processadcbynputer. By itself, this requirement would allavkind of
goal such as “execute proced{evith parameters, b, andc, and return success or failure”, but such goats ar
specific to the design of a control system, withbnaader semantics. With goal-based operation we teealso use
goals for interoperation and coordination of a eysbf systems, with elements potentially built lifjedent teams,
so goal semantics should be independent of coaysiem design. Specifications of intent should comtirally
from the problem domain and should have obviousningato systems engineers and operators. In this ve
“intent” must be about theystem under controhot the control system. For example, a goal npegi$y a desired
spacecraft attitude since that is a constraint etate of the system under control, but a goal mastspecify a
mode of an attitude controller since that is anlemgntation-specific state of a controller in atoolnsystem.

The MDS control architecture

defines a goal as a constraint on the A
value history of a state variable during : :
a time intervaL as depicted in Figure 4. 20 —F—-reereeesneneens H LN
The term “state variable” refers to an  C2mera
Temperature, goal

element of the control system that c
corresponds to a physical state of the 10 —— e : B
system under control. For example, a : H
power switch in the system under
control will physically be in an opened >
state or closed state or tripped state, 200 _ Time
and the control system will use Lo pm 3:00 pm

evidence such as sensor measurementsgure 4. Goal as a constraint in value and timeA goal represents
to estimate the state of the switch aspperational intent as a constraint on the valuesaoftate variable
opened, closed, or tripped. A goal onduring a time interval, such as “Camera temperatisrd 0—20C from

the state of the switch is specified as a1:00 PM to 2:00 PM”. As such, a goal can be vispad as a region

constraint on the switch’s estimated of acceptable behavior in value and time, as deplitly the box.
state. For example, a goal could

specify that the value of the state variable mestlwsed’ continuously from 1:00 PM to 2:00 PMdiferent goal
could require that the switch be closed 90% oftiitme between 1:00 PM and 2:00 PM, thus toleratargporary
switch transitions. In all cases, a goal specidiggquirement on a state history that must befigatidf the goal’s
constraint is violated, the control system detéotsviolation and handles it in ways to be descriloger.

Goals can also be specified on uncontrollable st&er example, the light level from the Sun iscwitrollable,
but activities that depend on some minimum lighttle-such as picture-taking—can include a goal ghtlievel.
Such a goal will not be ready to start until theéneated light level satisfies the goal’s constraifhen such a goal
is coupled appropriately with dependent goals, thenstarting or ending time of whole activitiesdae based on
such conditions. In this sense goals representresgants, and forward progress in execution cacobéitioned on
events.

B. State Variables and Their Timelines
The preceding definition of
‘goal’ begs the question “Can
all types of operational intent
really be specified as constraints
on the wvalues of state Camera e
variables?” We believe the Temperature, Goal1l (e CeEle
answer is “yes” given that the c -

—

P I e X

10 = 7 b o
whole purpose of operations is —
to change the state of a system >
under control in specified ways. Time
Examples of physical states 2:00 pm 3:00 pm

include device status Figure 5. Intent and Knowledge TimelinesA state variable contains two
(configuration, ~ temperature, timelines. The intent timeline holds goals, ordemtording to time, as
operating modes), dynamics gepjcted by the colored polygons. The knowledgelitin holds estimated
(vehicle position and attitude, state values, as depicted by the dashed blue Angoal succeeds if its
gimbal angles, wheel rotations), ¢onstraint is satisfied by the estimated stateohystiuring its time interval.
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resources (power and energy, propellant, data ggprisandwidth), and data (science observationspesgng
measurements). Given the wide variety of kindsatesvariables, goals can represent low-level dbjes, as we've
seen with the power switch goal, and they can edpoesent high-level objectives that drive an enpihase of a
mission, such as “spacecraft is landed on Marsinvehipsex by timet”. This high-level goal will get decomposed
into a myriad of supporting goals, in a mannerdalbscribed later.

As mentioned earlier, every state variable in thetrol system corresponds to a physical state énsifstem
under control. Each state variable contains twelimes: anintent timelinethat holds the goals, ordered according
to time, and &nowledge timelin¢hat holds estimated state up to the present(sex Figure 6). During execution a
goal that extends from time tib time $ succeeds if the estimated state history betweand ¢ satisfies the goal’s
constraint. Suitable displays of these timelinegbés an operator to examine the past, presentfuanict, and see
how the system under control behaved, insofar eanitoe estimated from available evidence.

An important aspect of the state knowledge timeinthat estimates contain not only the ‘best et value’
of the physical state but also some representafitine amount of uncertainty. This inclusion of artainty is very
important for robust control because it acknowledt@at sensors and actuators are imperfect asawellir models
of devices and the environment. If the evidencelable to a state estimator is noisy or conflictiogunavailable,
then the uncertainty of its estimate must be cpaedingly higher. This aspect of estimate uncetyamimportant
in two ways: it allows an estimator to be honesiulthe evidence and not pretend that its estinatefacts, and it
enables a controller to exercise caution when atgtrol decisions depend on highly uncertain estsatf an
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Figure 6. Software architecture layers.All layers operate asynchronously and concurremtlyachieve
goals. The control layer operates on short timeesgareacting to local observations, while the piey
layer operates on longer time-scales, coordinatsygtem-wide behavior, including system-level fault
responses. State variables in the Control Systemegimond to physical states in the System UndetrGlo
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activity depends on some minimum level of certaiotystate estimates, then a goal can specify sumbnatraint
since uncertainty is part of the value represemradi every state variable.

C. Layered Control Architecture

A canonical architecture has emerged in the reseammmunity based on the notion of layered cortvops
that address control problems at various timescateb level of abstractiénThe layers run concurrently and
asynchronously to provide a combination of resp@rsss and robustness. Figure 6 shows the MDStectthre
consisting of four layers: Control, Execution, Pilang, and Presentation. Note that the Presentédigr includes
human operators and their decision-malasgpart ofthe control system. It is here that operation&rihis first
specified in the form of goals and it is here thatlongest control loops are closed.

Goals can exist at very different levels of abstoac from high-level goals such as “Be landed oar$/ to low-
level goals such as “Maintain switch 27 in clostdes. Goals also address control problems at uartonescales,
meaning that some goals have relatively short durstand/or stringent requirements on startingnatirey times,
while other goals have relatively long durationg/an flexible starting and ending times. As showrFigure 1, the
lowest layer—the Control Layer—provides reactiventcol with real-time responsiveness while the hgihe
automated layer—the Planning Layer—generates diolzansistent plans, ready for execution. The Eienu
layer executes the current plan, determining wiveadvance to the next goal on each intent timelioasistent
with temporal constraints. The Presentation Layewiges the displays and controls used by operatdnsre the
highest level decision-making occurs.

As a goal is being executed in the Control Laysrsiatus is independently monitored in the Exeoutiayer by
evaluating its constraint against state estimatethe associated knowledge timeline. If the goaiti$ satisfiable
then execution proceeds normally, but if not, tbalgtatus monitor reports the failed goal to theni®ing Layer
while the Control Layer continues to try to achi¢kie now-failed goal. The Planning Layer resporadthe goal
failure through the process of re-elaboration,escdbed in the next section.

D. Goal Elaborations and the State Effects Diagram
A goal that is directly executable by the Contralyer can simply be submitted by an operator andCthrerol

Layer will try to achieve it. However, few goalsnche achieved in isolation without considering ithigiplications
on other related states of the system, and mang goaply cannot be achieved without the supporitber goals
on other state variables that have an effect onstage of the primary goal. For example, a goalspacecraft
attitude has implications on antenna pointing amhera pointing, so it has effects that might bemséstent with
goals on thosaffectedstates. Likewise, a goal on spacecraft attitude @#ly be achieved if goals aaffecting
states are achieved or maintained, such as adepowatr and propellant, warm catalyst beds for tinasters, and
healthy inertial measurement units.

State effects model Goal elaboration
( Goal )
oal:
Camera ( — _O
Jemperaturg N § Camera warm J 5

———— —— — — — — — — — — — — —

OE Goal: O
e Camera power on
Heater

Health

Camera
Power

O_ Goal: —O

| Camera heater healthy |

Figure 7. State effects model and goal elaboratio®\ state effects model, produced during analysithef
system under control, shows what physical statésctabther states. A goal elaboration, producedirdyr
operations engineering, shows a goal above the ethihe and its supporting goals below the lindle&ing

the state-to-state effects that must be managee@uired) to achieve the original goal.
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Figure 8. Hierarchical goal elaboration.The end result of goal elaboration is a tree ofgning goals
with the “leaf goals” being goals that have no fuet elaboration. The goals still need to be schedul
into a plan (a goal network) and then executed.oAlthe goals in the tree—not just the leaf goalee—a
monitored during executioisince each ne represents intent with respect to a particutatesvariable

The engineering knowledge of what states affectrathates in the system under control is repredentastate
effects diagramas shown in Figure 7, and that knowledge guidesdesign of fundamental “blocks” of goals that
can be assembled into plans that respect the @sgusalong state variables in the system under obnihese
fundamental blocks, called goal elaborations, $pestipporting goals on related state variables tresd to be
satisfied to achieve the original goal, or make dhiginal goal more likely to succeed. Each typegoél has an
associated elaborator that generates its suppagbats (if any), and those supporting goals mayngdedves have
elaborations with supporting goals, so goal eldaimmas a hierarchical process that finishes whermmore goals
havil 2elaborations. The design of goal elaborai®fssed on the state effects diagram and thecappl of a few
rules<

Since there may be more than one way to achieveag gn elaborator may contain multiple tacticseSén
alternate tactics may be explored during initiainpling and scheduling and also in response tofgibales.

E. Goal Network and Temporal Constraint Network

To achieve coordinated control, goals must be adrgdnso that temporal dependencies are honoredhatd
incompatible goals are not scheduled for concuressetution. The structure in which a coordinatduedale of
goals is arranged is called a goal network, cdngisif goals situated in a temporal constraint mekwEvery goal
has a starting and ending time point, and goalsrthest begin or end simultaneously share the same point.
Every time point has a time window which designates earliest possible and latest possible timeshie time
point to fire during execution. This window—whichagnbe as small as an instant of time—is a detemnioyethe
temporal constraints in the network. A temporalstoaint specifies minimum and maximum time duratietween
two time points. The time windows of time point® arpdated by a temporal propagation algorithm apoeal
constraints are added or modified during schedwdimdjas time points fire during execution.

[10m 30m]

[7h 8h]

D

' _ Goal 1
Epoch N

/

temporal
constraint

R 4

time point’ O O

Figure 9. Example goal network.A goal network consists of goals situated withitemporal constraint
network (TCN), where the starting time of a goajaserned by the time point attached on its lefé sand
the ending time by the time point attached onightrside. Time points connected by a dashed lieetlze
same time point, meaning that multiple goals mayt gir end simultaneously. The Epoch is a special
singleton time point designating a predefined refee instant in time.
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F. Plan Execution

The Execution Layer is responsible for supervisaxgcution of the current plan, as represented goal
network, including monitoring the status of evecyive goal. The intent timelines contain the gdalbe achieved,
ordered according to temporal constraints, so theof the Goal Executive is to keep the goal adriewn the
Control Layer informed as to what goals to execAtetime proceeds, the Goal Executive marches dbemnntent
timeline, directing the Control Layer.

At the same time, the Goal Monitor is checking eactive goal to see if its constraint can stilldagisfied. At
any time, if the estimated state history on a kedgk timeline violates the active state constramthe intent
timeline, then the Goal Monitor reports the godufe to the Planning Layer (to determine if a neeny is possible)
and also reports it to the Presentation Layer gpkaperators informed. Of course, in the case atespnissions
with intermittent communication or long one-wayhtgime delays, such notification to operators roayelayed.

G. Unified Flight-Ground Architecture

Although flight software and ground software operiatvery different environments, they must opetageether
as a system, so they must share some architecturaépts, even if their respective implementatiffer. Goal-
based operation permits considerable freedom hswomuch control is performed in flight versus grduln one
extreme, Ground could perform all the functiongoél elaboration and scheduling, and then trantraitesulting
goal network to a Flight system that contains ¢hly Execution Layer and Control Layer. In the ot@reme, an
operator on Ground could issue a single top-lewal ghat is transmitted to a Flight system wheris #laborated
and scheduled and executed without human oversMtite typically, the right balance will be somewhéen
between, with a mix of high-level elaboration astesiuling on Ground and lower-level elaboration sciteduling
on Flight. Also, the balance may change in eithigeation during the life of a mission. For exampdering the
earliest phase of a mission the Ground operatons chaose to operate a spacecraft with goals tleeatirely
elaborated and scheduled on the Ground, relying Blight safe-hold response in the event of a fphkire. As the
behavior of the spacecraft becomes better knowerabprs might begin to migrate some elaborationtkead-light
system in order to reduce their workload or redtm@munications requirements. In the event of ahElamomaly
that requires expert analysis, operators might tleegart back to detailed control from Earth. Thg keint is that
using the same architecture in Flight and Groundgga mission considerable operational flexibility.

H. Verification and Validation

A goal/state/model-based architecture as desctibegin holds several benefits in system-level \gtifon and
validation. First, there is the obvious fact thet tontrol system is self-checking since it is cargusly monitoring
the status of every executing goal. Thus, any behaisible in a knowledge timeline that violates executing
goal will be detected and will trigger goal re-aedttion. This automatic checking is certainly prafte to any
post-processing of telemetry, and is valuable md¢ during operations but also during testing. $ecdhere is a
one-to-one correspondence between physical statestate variables. That means that when runniagdmtrol
system against a simulated system under contrisl possible to make a direct comparison betwegmated state
and true (simulated) state. Such comparisons dyrtpie validation of estimators and controllersir@ihthe explicit
use of models—patrticularly the state effects maedel the strongly related goal elaboration modelsvige for
direct inspection/validation by domain experts ats enable application of model-checking tbols

V. Operations Process, Tools, and Workflow

Ambitious mission objectives project complexity omperations. The complexity of mission operatioas be
quantified by the number of system states an opreisitequired to keep track of. In order to regltids number, in
the face of increasingly complex missions, the esysimust allow the operator to focus at a higheellef
abstraction. This concept is not exactly new. traditional systems, operators typically do notibethe uplink
process by sitting down at a terminal and begintotype in commands. They begin by formulatinghkiievel
objectives which are then translated into highllegtivities or observations, at an appropriatellef abstraction
such that operators can agree on scope and gdiramay. However, the uplink product is a collectiof
commands specified at roughly the same low levelostraction or, at best, sequences which groupnaords with
a similar objective. These command-based sequareesonstructed with the intent that they will iaelk the
original higher-level objectives. One stark linibka of this approach is the decomposition of at&s into
commands. As complexity increases and the hieyagobws, the question must arise “where do we dteine
between activities and their translation into comds?” This question ignores the issues inheremtaimslation,
such as, how to ensure that information is not. lo&iven that concern, we are compelled to ask nioee
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fundamental question “why draw the line at all? whguire a translation from one form to anotheitie intent

inherent in goals can be specified at any levalaifil. For example, one could specify a goalagfoover to be at
X,y,Z or for a switch to be closed. This flexibilityyaws a goal network, in the degenerate case, topbetely

mimic a command-based sequence, but with the additbenefits of an arbitrarily deep hierarchy anseamless
decomposition throughout.

Even in the extreme case where a goal-based sysisrbeen restricted such that no choices are giweith
respect to the building and execution of the gaaldnchy, operators still benefit from the speaeifion of intent. In
the review portion of the typical uplink proceske treverse translation from commands to intentnisad-hoc
procedure which must be performed continually by diperator and, more often than not, only insidsgr tbwn
mind. The goal abstraction hierarchy documents ttanslation in a formal, inspectable and—if wepkay the
MDS architecture—verifiable manner, because theomgwosition is directly informed by models of thestgm
under control. The plan can now be checked agamsictual design document thus creating a diexdiable link
between design and operations. Furthermore, ithisbetween design and operations travels throbhghflight
software, because software components are buittthirfrom, and operate directly on, the very sanuelels of the
system under control. This enables operators t@ reasily understand the flight software and hosvaystem will
interpret the products that the operators uplihldstmitigating both the need for resident flighftware experts on
the operations team and the increased risk assdaorith workforce turnover. As mentioned, goals cepresent
not only activities, but also resources and flighies within the same hierarchy, thus allowing apers and tools to
use the models to trace resource violations battketsource.

In addition to allowing uplink operators to inspéagh-level intent with respect to low-level coritobjectives,
goals and goal hierarchies allow downlink operasord system analysts to inspect the up-linked tntéih respect
to telemetry and actual results, in context. Femtiore, the state-based nature of telemetry inaklgased system
allows operators direct and/or automated comparéqhans to results, even if such checks are mugi@yed in the
flight system. Goals allow a system to close thaplacross the entire operations process, direglidying uplink
products to downlink telemetry.

The discrepancy in form at different levels in thierarchy also places limitations on operationdst@nd
processes. Typically, operations tools are nadt boidigest both activities and sequences, resyliin the use of
multiple tools in the refinement of plans. This essitates a product-flow paradigm, where producigrpss from

one tool to the next through the exchange of dkgs. f Reversing
Product Elow Work Elow the_flow through this_ process is awkward at best s usually
avoided. Instead, fixes are often made in placthaut the

% benefit of the functionality of preceding tools odue to

restrictions on the duration of the process, olaens are simply

Figure 10. Goal-based operations shed and science opportunities are lost. Goallitdde a shift to
facilitates a shift from a product-flow- @ work-flow paradigm (Figure 10), where one produset
oriented process to a work-flow managed by a common tool undergoes successivesstige
paradigm. refinement, resulting in a more reversible, coltalive, and

seamless process.

VI. Operator Interaction with Goal-Based Systems

Since the objective of GBO is to enable controthy specification of operator intent, user intamacwith the
ground/flight system inherently involves mechanisfos them to express their intentions, to visualihese
intentions, and, most importantly, to understand tiwose intentions are (or are not) being carriediro context.
Displays need to provide information about whaplemned, what is happening, and what has happdnetiaus
levels of abstraction. In particular, users wilksjly what they want accomplished expressed as-leiggi goals,
perhaps partially decomposed into a network of ealyy sequenced as an overall plan for missionvigcti
Information depictions for mission operations wi#pict the goals and their state of accomplishrimetiie context
of the operational environment that the missioacisially encountering.

It is well recognized that goal and plan depictigifi be necessary for operations at levels abovaroand
sequencing® To this point, however, operational systems thealdwith goal’ still, in general, depict only
sequences of activities over time, without indicatof why those activities are being carried out at varieusls of
abstraction. Without depiction of higher-level goahd of lower-level implementations, mission opmsawill not
have the information necessary to decide whethamngld goals are still appropriate in dynamic emvivents or
whether the decomposition of goals into subgoatses effective.
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Figure 11. Temporal view of autonomous activity ina STEREO spacecraft. A temporal view shows
autonomous activities, goal accomplishment, enwir@mtal events and system responses over timeleatesk
levels of abstraction.

One approach is to represent mission objectivegh-lavel goals, and lower-level implementations aas
abstraction hierarchy*® In such a hierarchy looking upward helps undestahy something is being planned or
specified; looking downward helps understand howsitbeing accomplished. Displays can be organizgd b
relationships in the hierarchy to facilitate anangrthese questions. In general, goals and subfmafsa complex
network, not a strict hierarchy, which adds chaksto user interaction design.

In general, one can consider three categoriesevissito provide context for GBO. femporal view depicts
autonomous activities, goal accomplishment, enviremntal events and system responses over timefiatigsdevels
of abstraction. Figure 11, from reference 15, isemporal view of rule-based autonomy activity inSalar-
Terrestrial Relations Observatory (STEREO) spadedraa goal-based system rather than the ruledaystem
here, goals and subgoals would be depicted initeihe. A structural view depicts relationships among goals,
activities, resources in hierarchies of abstractiod dependency. Figure 12 shows a concept fauatstal view,
indicating the complex set of relationships amormglg and subgoals for an autonomous science gctikit
operational view depicts goals, activities, and events in wheat context is appropriate to the system involved:
landscapes for rovers, system diagrams for spdtdwoealth and housekeeping, planetary surfacessémnce
observation, and so forth. Figure 13 shows a dysgtam the planning tool for the CRISM (Compact
Reconnaissance Imaging Spectrometer for Mars) aemdbthe Mars Reconassaince OrbiteThe display shows
orbiter ground tracks annotated with planned olzgens; it is used interactively together with eperal view in
the observation planning process. The Web Inteflac@umescencé (WITS) browser is another good example of
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Figure 12. Structural View Concept. This view shows relationships among goals at differlevels of
abstraction and dependency. From the perspectivaefigle goal, looking upward explains why it &xiand
looking downward explains how it will be accomptidh
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an operational view. All of these views should loercinated: user selection, filtering, and manipafain one
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Figure 13. Operational View: CRISM Planning Tool. An operational
view depicts goals, activities, and events in gorapriate context.

VII. Challenges for Goal-Based Operations

Despite the promise of significant benefits andithpressive progress that has already been matiésimrea
(see Section Il), there remain a number of cha#lerfgr the wide deployment of GBO. Some of thes#lehges are
technical in nature, while others are predominaatiyural hurdles that need to be overcome. Thii@® provides
a brief overview of some of these challenges, aggssts approaches to addressing them.

A. Observability and Controllability of the System

One commonly-expressed concern about goal-basedtmpes is that it decreases the operator’'s obbéitya
into the behavior of the system, and/or the amaofiontrollability they have on the system. Thisicern stems
from a common interpretation of the word “goal’aselatively high-level objective or state to béiaged. In any
mission, unusual situations may arise that reqoperators to take over detailed control of a vehisluch as
running very low-level sequences, even down tdekiel of opening/closing switches, and the condégtthat GBO
might preclude such detailed control. The fachit tGBO allows such control because goalamgtlevel of detail
can be specified by operators, scheduled on thengtaand uplinked to the vehicle. During normalragiens, of
course, low-level goals may be generated autonligtitam elaborations of higher-level goals, butstlis not a
requirement; operators can specify low-level gditsctly andnot specify higher-level goals, if desired. This comes
down to a tradeoff between desired level of grooowtrollability versus the amount of flexibility dmobustness to
be provided onboard the spacecraft.

Similarly, when properly implemented, GBO allows fmproved visibility into the operation of the sg:
because this approach places more emphasis onghgetd estimates of system state, the operatoataEss to
more intuitive state-based telemetry, in additiorttte low-level measurements that typically makethgbulk of
spacecraft engineering telemetry streams todayth&umore, availability of the success/failure statfi executed
goals, and the ability to downlink this intent-itel information explicitly, makes it easier for ogers to quickly
focus in on activities that have not executed nathinrather than having to dig through Megabytesore of low-
level telemetry, trying to identify the source of enboard fault.

Of course, in any system with some degree of amgnohere is a real concern that operators mayrbecso
reliant on the automation that they may becomedéfsto intervene quickly in the case of an offrireal situation
that the onboard automation is not able to resdhate that this is a general issue associated ttvthmove towards
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spacecraft with increase onboard autonomy, andvitbtGBO in particular. The solution to this profldies in a
combination of:
- proper training, including simulated failures tieaercise more complex diagnostic procedures;
- development of operator interface tools that fedidi visibility into the system state (see Sectgnand
- operations procedures that involve periodic cordition of consistency between low-level telemetrg an
state estimates.

B. Reliability/V&V (The Myth of Non-Determinism)

Another concern that has been expressed is theatopg on Earth will not know in advance with certawhat
commands are being issued avftenthey are being executed. This is another exanfpeconcern that pertains to
systems with onboard autonomy, whether goal-basedto Although time-based sequences may allowadpes to
have more control over the nominal execution of m@mds, they are inherently brittle; given a traaisl flight
software architecture, where the nominal sequenemgine and the fault protection software run inajpel, any
off-nominal behavior is far more likely to resuit a drastic system-level response, such as safihgn fault
protection takes over from nominal sequence executrurthermore, the fact of the matter is thatrafmes have
long accepted some degree of uncertainty in theiggeiming and commanding of certain activitiescts as
attitude control maneuvers. Operators don't knoacdy when or for how long an ACS will fire eachrdbter; it's a
detail thathasto be handled onboard since the dynamics predhadith-in-the-loop control. With more and more
robotic vehicles interacting with unpredictable ieonments, it is necessary to situate more reat-toecision-
making in the vehicle. The challenge, then, isasigh goal-based control systems that are as woutyas ACS.

Operators might also ask, quite reasonably, “Howl danow that the control system won’t do something
stupid?” This is a legitimate concern, just as ifor any software system, but it is sometimes db@asean erroneous
belief that autonomous systems are “nondetermifijgiased on the arguments discussed above regaggectution
uncertainty. In fact, all software is deterministiseaning that if it is given the same conditians|uding its own
internal state, it will do exactly the same thirgykefore. The real problem, of course, is thatstag inputs to the
deterministic FSW process have a certain degremadrtainty; that is, operators cannot predict vthatsystem is
doing in real-time because they don’t know whatdittons it is seeing, given intermittent or timeaied
communication with Earth. The real concern is lagstulated as “How well can you validate a goaddshcontrol
system?” To a large extent, the answer dependseoddsign of the software architecture. As Sedtonas shown,
a state/model/goal-based architecture provideguctste that is not only testable in traditionalys/ebut also
analyzable by model-checking tools.

C. Software Maturity and Tool Support

A legitimate concern that people have regarding G6lems is that the enabling software architestarel
tools are not as mature and widely-available asehibhat form the basis for existing operations @gnes.
However, as discussed in Section 1l, state-of-theyaal-directed ground and flight software systdmse been
matured and validated to the point of sufficientLTiR justify adoption of this approach as a viaty¢ion for new
missions. In order to further mitigate this con¢cemore work should be focused on the adaptatiofamiiliar
operations tools, to allow them to be used for GBfplications in the near term, and the developroéittuitive,
easy-to-use tools that provide operators with thszpvability and controllability they require, asalissed above.

D. Operations Processes and Training

Another valid concern is that current operationacpsses may not be directly compatible with GBQ@] iwat
current operations personnel are not experiencadisnapproach. Clearly, the transition to a newagmm like
GBO is expected to have an impact on certain askednl operations engineering processes. Althougir amount
of work has been devoted to developing the teclyiedoand software tools that enable GBO, more tefifrst be
focused on developing and validating the procefisas must go hand-in-hand with these technologesi on
training personnel to adopt these processes. Tuaighion in Section 1l points out how some flightjgcts have
started tackling this problem, and how missiong IBO-1 have implemented effective operations peasebuilt
around the premise of goal-directed activities.

E. Responsiveness/Performance Concerns:

Although GBO does not inherently require any paftéidy complex software solutions, most of the GBO
systems fielded to date have leveraged delibergtimaning and scheduling algorithms that exhibitstkwase
exponential time performance. Clearly, this is egaaf concern, to the extent that these algorithitigontinue to
be deployed onboard spacecraft with increasinguéeqy. Although progress has been made in recent ye
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improve the performance of these algorithms, éigough the use of appropriate heuristics, it lmawledged that
there is a significant level of complexity inherant the planning and scheduling problem, which canoe

optimized away. The right way to address this comaterefore, is through architectural and opereti mitigation

strategies, including:

- allocating control functionality appropriately assahe flight software architecture, such thatetkgensive
deliberation computations are performed by elemehtihe architecture that run at lower priority rththe
elements of the architecture that are responsimeséfety-critical real-time monitoring and respans
behavior; and/or

- allowing the operators to specify additional coaistts on the planning and scheduling problem taiced
the amount of computation required to solve it,,eaglding temporal constraints to further resttict
number of acceptable schedules, or reducing theuatraf flexibility that the planning and scheduling
algorithms must reason about.

VIII. Conclusion and Outlook

Goal-based operations (GBO) of robotic systems ghsuthe semantics of operations from the imperative
directives of time-based command sequencing toiilies on states of the system under control. Mditwms for
this change include the desire to reduce operatdklead and operator error, the desire to make raffeetive use
of expensive assets through increased automakiemeécessity in some missions of making timelysiin control
decisions to respond to short-lived events, andllfinthe need for implementation-independent seiosufor
operation and interoperation of systems built bytiple vendors. In the longer term, GBO is an eealfbr far-
future missions consisting of multiple assets comiihg among themselves to achieve mission obgestivith
infrequent oversight from human operators.

It is encouraging to see the beginnings of a mowéreavard GBO, but if GBO is to achieve its fulltpotial,
particularly with respect to interoperability, cormmoperational views, and trained operators, thendsrds will
need to be developed. One such standards effostseixi ESA’s ECSS “Standardization in Ground Systéin
Operations Domain” ECSS-E-70-11 Space Segment GipgraThis standard defines three levels of aotoy
including: (1)execution of pre-planned missions operations omehd2) execution of adaptive mission operations on
board, and (3) execution of goal-based missionatjwers on-board.
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